Pub Date : 2023-11-28DOI: 10.3390/machines11121058
Filip Vrbanić, M. Gregurić, Mladen Miletić, E. Ivanjko
Existing transportation infrastructure and traffic control systems face increasing strain as a result of rising demand, resulting in frequent congestion. Expanding infrastructure is not a feasible solution for enhancing the capacity of the road. Hence, Intelligent Transportation Systems are often employed to enhance the Level of Service (LoS). One such approach is Variable Speed Limit (VSL) control. VSL increases the LoS and safety on motorways by optimizing the speed limit according to the traffic conditions. The proliferation of Connected and Autonomous Vehicles (CAVs) presents fresh prospects for improving the operation and measurement of traffic states for the operation of the VSL control system. This paper introduces a method for the detection of multiple congested areas that is used for state estimation for a dynamically positioned VSL control system for urban motorways. The method utilizes Q-Learning (QL) and CAVs as mobile sensors and actuators. The proposed control approach, named Congestion Detection QL Dynamic Position VSL (CD-QL-DPVSL), dynamically detects all of the congested areas and applies two sets of actions, involving the dynamic positioning of speed limit zones and imposed speed limits for all detected congested areas simultaneously. The proposed CD-QL-DPVSL control approach underwent an evaluation across six distinct traffic scenarios, encompassing CAV penetration rates spanning from 10% to 100% and demonstrated a significantly better performance compared to other control approaches, including no control, rule-based VSL, two Speed-Transition-Matrices-based QL-VSL configurations with fixed speed limit zone positions, and a Speed-Transition-Matrices-based QL-DVSL with a dynamic speed limit zone position. It achieved enhancements in macroscopic traffic parameters such as the Mean Travel Time and Total Time Spent by adapting its control policy to every simulated scenario.
{"title":"Reinforcement Learning-Based Dynamic Zone Positions for Mixed Traffic Flow Variable Speed Limit Control with Congestion Detection","authors":"Filip Vrbanić, M. Gregurić, Mladen Miletić, E. Ivanjko","doi":"10.3390/machines11121058","DOIUrl":"https://doi.org/10.3390/machines11121058","url":null,"abstract":"Existing transportation infrastructure and traffic control systems face increasing strain as a result of rising demand, resulting in frequent congestion. Expanding infrastructure is not a feasible solution for enhancing the capacity of the road. Hence, Intelligent Transportation Systems are often employed to enhance the Level of Service (LoS). One such approach is Variable Speed Limit (VSL) control. VSL increases the LoS and safety on motorways by optimizing the speed limit according to the traffic conditions. The proliferation of Connected and Autonomous Vehicles (CAVs) presents fresh prospects for improving the operation and measurement of traffic states for the operation of the VSL control system. This paper introduces a method for the detection of multiple congested areas that is used for state estimation for a dynamically positioned VSL control system for urban motorways. The method utilizes Q-Learning (QL) and CAVs as mobile sensors and actuators. The proposed control approach, named Congestion Detection QL Dynamic Position VSL (CD-QL-DPVSL), dynamically detects all of the congested areas and applies two sets of actions, involving the dynamic positioning of speed limit zones and imposed speed limits for all detected congested areas simultaneously. The proposed CD-QL-DPVSL control approach underwent an evaluation across six distinct traffic scenarios, encompassing CAV penetration rates spanning from 10% to 100% and demonstrated a significantly better performance compared to other control approaches, including no control, rule-based VSL, two Speed-Transition-Matrices-based QL-VSL configurations with fixed speed limit zone positions, and a Speed-Transition-Matrices-based QL-DVSL with a dynamic speed limit zone position. It achieved enhancements in macroscopic traffic parameters such as the Mean Travel Time and Total Time Spent by adapting its control policy to every simulated scenario.","PeriodicalId":48519,"journal":{"name":"Machines","volume":"35 Suppl. 1 1","pages":""},"PeriodicalIF":2.6,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139217860","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-28DOI: 10.3390/machines11121055
Dada Saheb Ramteke, Anand Parey, R. B. Pachori
Gears are the most important parts of a rotary system, and they are used for mechanical power transmission. The health monitoring of such a system is needed to observe its effective and reliable working. An approach that is based on vibration is typically utilized while carrying out fault diagnostics on a gearbox. Using the Fourier–Bessel series expansion (FBSE) as the basis for an empirical wavelet transform (EWT), a novel automated technique has been proposed in this paper, with a combination of these two approaches, i.e., FBSE-EWT. To improve the frequency resolution, the current empirical wavelet transform will be reformed utilizing the FBSE technique. The proposed novel method includes the decomposition of different levels of gear crack vibration signals into narrow-band components (NBCs) or sub-bands. The Kruskal–Wallis test is utilized to choose the features that are statistically significant in order to separate them from the sub-bands. Three classifiers are used for fault classification, i.e., random forest, J48 decision tree classifiers, and multilayer perceptron function classifier. A comparative study has been performed between the existing EWT and the proposed novel methodology. It has been observed that the FBSE-EWT with a random forest classifier shows a better gear fault detection performance compared to the existing EWT.
{"title":"A New Automated Classification Framework for Gear Fault Diagnosis Using Fourier–Bessel Domain-Based Empirical Wavelet Transform","authors":"Dada Saheb Ramteke, Anand Parey, R. B. Pachori","doi":"10.3390/machines11121055","DOIUrl":"https://doi.org/10.3390/machines11121055","url":null,"abstract":"Gears are the most important parts of a rotary system, and they are used for mechanical power transmission. The health monitoring of such a system is needed to observe its effective and reliable working. An approach that is based on vibration is typically utilized while carrying out fault diagnostics on a gearbox. Using the Fourier–Bessel series expansion (FBSE) as the basis for an empirical wavelet transform (EWT), a novel automated technique has been proposed in this paper, with a combination of these two approaches, i.e., FBSE-EWT. To improve the frequency resolution, the current empirical wavelet transform will be reformed utilizing the FBSE technique. The proposed novel method includes the decomposition of different levels of gear crack vibration signals into narrow-band components (NBCs) or sub-bands. The Kruskal–Wallis test is utilized to choose the features that are statistically significant in order to separate them from the sub-bands. Three classifiers are used for fault classification, i.e., random forest, J48 decision tree classifiers, and multilayer perceptron function classifier. A comparative study has been performed between the existing EWT and the proposed novel methodology. It has been observed that the FBSE-EWT with a random forest classifier shows a better gear fault detection performance compared to the existing EWT.","PeriodicalId":48519,"journal":{"name":"Machines","volume":"61 1","pages":""},"PeriodicalIF":2.6,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139220037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-28DOI: 10.3390/machines11121057
Haoji Wang, J. Wei, Bin Lin, Xiaoqi Cui, Hetian Hou, Zhiyuan Fu, Jianchun Ding, Tianyi Sui
Ceramic waveguide components play a critical role in modern microwave semiconductor systems. For the first time, this work reports experimental results obtained when dielectric ceramics are abrasive-machined into waveguide components. This process will cause subsurface damage (SSD), resulting in a deviation in their working frequency which can degrade the performance of the system. For a substrate-integrated waveguide (SIW) resonator working at 10.1 GHz, SSD with a depth of 89 um can cause a maximum frequency offset of 20.2%. For a mm wave component working at 70 GHz, the corresponding frequency offset could increase to 169%. Three resonator SIW filters with SSD are studied, and the results demonstrate that the frequency offset induced by SSD can reduce the pass rate of the filters from 95.4% to 0%. A theoretical analysis is performed to reveal the mechanism and to offer a quantitative estimation of the limiting range of the offset caused by SSD. Feasible methods for reducing the offset caused by SSD, such as structure design, processing optimization, and material reinforcement, are discussed.
{"title":"Microwave Frequency Offset Induced by Subsurface Damage in Abrasive-Machined Semiconductor Ceramic Waveguide","authors":"Haoji Wang, J. Wei, Bin Lin, Xiaoqi Cui, Hetian Hou, Zhiyuan Fu, Jianchun Ding, Tianyi Sui","doi":"10.3390/machines11121057","DOIUrl":"https://doi.org/10.3390/machines11121057","url":null,"abstract":"Ceramic waveguide components play a critical role in modern microwave semiconductor systems. For the first time, this work reports experimental results obtained when dielectric ceramics are abrasive-machined into waveguide components. This process will cause subsurface damage (SSD), resulting in a deviation in their working frequency which can degrade the performance of the system. For a substrate-integrated waveguide (SIW) resonator working at 10.1 GHz, SSD with a depth of 89 um can cause a maximum frequency offset of 20.2%. For a mm wave component working at 70 GHz, the corresponding frequency offset could increase to 169%. Three resonator SIW filters with SSD are studied, and the results demonstrate that the frequency offset induced by SSD can reduce the pass rate of the filters from 95.4% to 0%. A theoretical analysis is performed to reveal the mechanism and to offer a quantitative estimation of the limiting range of the offset caused by SSD. Feasible methods for reducing the offset caused by SSD, such as structure design, processing optimization, and material reinforcement, are discussed.","PeriodicalId":48519,"journal":{"name":"Machines","volume":"116 1","pages":""},"PeriodicalIF":2.6,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139220573","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper presents a novel adaptive tracked robot equipped with passive swing arms for overcoming obstacles. First, the paper introduces the overall composition of the robot and focuses on the adaptive mechanism of the passive swing arms. Second, analyzing the single-step obstacle-overcoming process of the robot reveals the relationship between the obstacle height and the geometric parameters of the passive swing arms, establishing a kinematic model. Then, a dynamic model of the robot’s obstacle-overcoming process is established by simplifying the robot into a crank–slider linkage, and the time range for the robot to overcome obstacles is analyzed. Finally, through virtual simulation and a physical prototype, the feasibility and maneuverability of the robot’s design are verified. These findings demonstrate the potential of the robot in various applications, such as search and rescue missions and homeland security.
{"title":"Design and Analysis of an Adaptive Obstacle-Overcoming Tracked Robot with Passive Swing Arms","authors":"Ruiming Li, Xianhong Zhang, Shaoheng Hu, Jianxu Wu, Yu Feng, Yan-an Yao","doi":"10.3390/machines11121051","DOIUrl":"https://doi.org/10.3390/machines11121051","url":null,"abstract":"This paper presents a novel adaptive tracked robot equipped with passive swing arms for overcoming obstacles. First, the paper introduces the overall composition of the robot and focuses on the adaptive mechanism of the passive swing arms. Second, analyzing the single-step obstacle-overcoming process of the robot reveals the relationship between the obstacle height and the geometric parameters of the passive swing arms, establishing a kinematic model. Then, a dynamic model of the robot’s obstacle-overcoming process is established by simplifying the robot into a crank–slider linkage, and the time range for the robot to overcome obstacles is analyzed. Finally, through virtual simulation and a physical prototype, the feasibility and maneuverability of the robot’s design are verified. These findings demonstrate the potential of the robot in various applications, such as search and rescue missions and homeland security.","PeriodicalId":48519,"journal":{"name":"Machines","volume":"77 1","pages":""},"PeriodicalIF":2.6,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139231025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-27DOI: 10.3390/machines11121054
M. Nguyen, S. Kwak, Seung-duck Choi
Discontinuous pulse-width-modulation (DPWM) methods have been extensively used in the industrial area to reduce overall losses, which decreases the corresponding thermal stress on the power switches of converters. However, local thermal overload can arise due to different aging conditions of semiconductor devices or failure in the cooling system. This leads to reduced reliability of the converter system due to the low expected lifespan of the most aged switches or phase legs. In this paper, the modified DPWM strategies for independent control of per-phase switching loss are introduced to deal with this matter. The proposed per-phase DPWM techniques are generated by modifying the conventional three-phase DPWM methods for reducing the switching loss in a specific leg, whereas the output performance is not degraded. This paper reports on output performance, including output current total harmonic distortion (THD) and power loss of switching devices, analysis for the various modified DPWM strategies for independent control of per-phase switching loss, which is applicable in 2-level 3-phase voltage source inverters (2L3P VSIs). The results are compared to the corresponding continuous PWM technique to verify and analyze the effectiveness and accuracy of the modified DPWM strategies for independent control of per-phase switching loss.
{"title":"Development of Various Types of Independent Phase Based Pulsewidth Modulation Techniques for Three-Phase Voltage Source Inverters","authors":"M. Nguyen, S. Kwak, Seung-duck Choi","doi":"10.3390/machines11121054","DOIUrl":"https://doi.org/10.3390/machines11121054","url":null,"abstract":"Discontinuous pulse-width-modulation (DPWM) methods have been extensively used in the industrial area to reduce overall losses, which decreases the corresponding thermal stress on the power switches of converters. However, local thermal overload can arise due to different aging conditions of semiconductor devices or failure in the cooling system. This leads to reduced reliability of the converter system due to the low expected lifespan of the most aged switches or phase legs. In this paper, the modified DPWM strategies for independent control of per-phase switching loss are introduced to deal with this matter. The proposed per-phase DPWM techniques are generated by modifying the conventional three-phase DPWM methods for reducing the switching loss in a specific leg, whereas the output performance is not degraded. This paper reports on output performance, including output current total harmonic distortion (THD) and power loss of switching devices, analysis for the various modified DPWM strategies for independent control of per-phase switching loss, which is applicable in 2-level 3-phase voltage source inverters (2L3P VSIs). The results are compared to the corresponding continuous PWM technique to verify and analyze the effectiveness and accuracy of the modified DPWM strategies for independent control of per-phase switching loss.","PeriodicalId":48519,"journal":{"name":"Machines","volume":"4 1","pages":""},"PeriodicalIF":2.6,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139232616","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-27DOI: 10.3390/machines11121053
M. Nguyen, S. Kwak, Seung-duck Choi
Unequal thermal stress among the phase legs of a multiphase converter leads to a reduction in the useful lifespan and reliability of that converter in general. Increasing the converter’s lifespan by relieving the stressed phase leg, which suffers excessive thermal stress due to aging, is crucial. This paper evaluates two control concepts, including two per-phase model predictive control methods for extending the lifespan of a voltage source inverter. These two per-phase techniques alter the switching pattern to reduce the losses of the most aged phase leg. Hence, the loss and the corresponding thermal stress of the leg that has aged the most are reduced. In such a way, the lifespan and reliability of the converter are prolonged. Two per-phase model predictive control techniques are executed in both simulation and experiment environments, where the corresponding results are provided to evaluate the behavior of these control strategies, considering several operational aspects both in steady state and transient operation. In addition to static load conditions, two per-phase techniques are verified for the correct operation under dynamic load (induction motor) conditions.
{"title":"Performance Evaluation of Per-Phase Model Predictive Control Schemes for Extending Lifespan of Voltage Source Converters","authors":"M. Nguyen, S. Kwak, Seung-duck Choi","doi":"10.3390/machines11121053","DOIUrl":"https://doi.org/10.3390/machines11121053","url":null,"abstract":"Unequal thermal stress among the phase legs of a multiphase converter leads to a reduction in the useful lifespan and reliability of that converter in general. Increasing the converter’s lifespan by relieving the stressed phase leg, which suffers excessive thermal stress due to aging, is crucial. This paper evaluates two control concepts, including two per-phase model predictive control methods for extending the lifespan of a voltage source inverter. These two per-phase techniques alter the switching pattern to reduce the losses of the most aged phase leg. Hence, the loss and the corresponding thermal stress of the leg that has aged the most are reduced. In such a way, the lifespan and reliability of the converter are prolonged. Two per-phase model predictive control techniques are executed in both simulation and experiment environments, where the corresponding results are provided to evaluate the behavior of these control strategies, considering several operational aspects both in steady state and transient operation. In addition to static load conditions, two per-phase techniques are verified for the correct operation under dynamic load (induction motor) conditions.","PeriodicalId":48519,"journal":{"name":"Machines","volume":"230 1","pages":""},"PeriodicalIF":2.6,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139228187","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-27DOI: 10.3390/machines11121052
Tian Tian, Guiji Tang, Xiaolong Wang
Resonance demodulation of vibration signals is a common method for extracting fault information from rolling bearings. Nonetheless, demodulation quality is dependent on frequency band location. Established methods such as the Fast Kurtogram, Autogram, SKRgram, etc. have achieved satisfactory results in some cases, but the results are not good in the presence of strong white Gaussian noise and random impulses. To solve these issues, an algorithm that selects the optimal demodulation frequency band (ODFB) based on the ratio of the logarithmic envelope spectrum Gini coefficient (LESGIRgram) is proposed. The core idea of this paper is to capture the difference between the LESGIgrams of health and fault signals and accordingly locate the frequency bands that contain the most fault information. Initially, the baseline is constructed by calculating the logarithmic envelope spectrum Gini coefficient matrix of the health bearing (LESGIbaseline). Next, the LESGI matrix of the fault bearing (LESGImeasured) is computed. The ratio of LESGImeasured to LESGIbaseline is calculated, and the ODFB can be selected with the maximum LESGIR. The fault signal is then filtered using this derived ODFB, and envelope analysis is performed to extract fault features. The proposed algorithm for detecting rolling bearing faults has been verified for accuracy and effectiveness through simulation and experimental data.
{"title":"The LESGIRgram: A New Method to Select the Optimal Demodulation Frequency Band for Rolling Bearing Faults","authors":"Tian Tian, Guiji Tang, Xiaolong Wang","doi":"10.3390/machines11121052","DOIUrl":"https://doi.org/10.3390/machines11121052","url":null,"abstract":"Resonance demodulation of vibration signals is a common method for extracting fault information from rolling bearings. Nonetheless, demodulation quality is dependent on frequency band location. Established methods such as the Fast Kurtogram, Autogram, SKRgram, etc. have achieved satisfactory results in some cases, but the results are not good in the presence of strong white Gaussian noise and random impulses. To solve these issues, an algorithm that selects the optimal demodulation frequency band (ODFB) based on the ratio of the logarithmic envelope spectrum Gini coefficient (LESGIRgram) is proposed. The core idea of this paper is to capture the difference between the LESGIgrams of health and fault signals and accordingly locate the frequency bands that contain the most fault information. Initially, the baseline is constructed by calculating the logarithmic envelope spectrum Gini coefficient matrix of the health bearing (LESGIbaseline). Next, the LESGI matrix of the fault bearing (LESGImeasured) is computed. The ratio of LESGImeasured to LESGIbaseline is calculated, and the ODFB can be selected with the maximum LESGIR. The fault signal is then filtered using this derived ODFB, and envelope analysis is performed to extract fault features. The proposed algorithm for detecting rolling bearing faults has been verified for accuracy and effectiveness through simulation and experimental data.","PeriodicalId":48519,"journal":{"name":"Machines","volume":"101 1","pages":""},"PeriodicalIF":2.6,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139234507","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-25DOI: 10.3390/machines11121050
Konchanok Vorasawad, Myoungkuk Park, Changwon Kim
The rise of smart factories and warehouses has ushered in an era of intelligent manufacturing, with autonomous robots playing a pivotal role. This study focuses on improving the navigation and control of autonomous forklifts in warehouse environments. It introduces an innovative approach that combines a modified Linear Segment with Parabolic Blends (LSPB) trajectory planning with Model Predictive Control (MPC) to ensure efficient and secure robot movement. To validate the performance of our proposed path-planning method, MATLAB-based simulations were conducted in various scenarios, including rectangular and warehouse-like environments, to demonstrate the feasibility and effectiveness of the proposed method. The results demonstrated the feasibility of employing Mecanum wheel-based robots in automated warehouses. Also, to show the superiority of the proposed control algorithm performance, the navigation results were compared with the performance of a system using the PID control as a lower-level controller. By offering an optimized path-planning approach, our study enhances the operational efficiency and effectiveness of Mecanum wheel robots in real-world applications such as automated warehousing systems.
{"title":"Efficient Navigation and Motion Control for Autonomous Forklifts in Smart Warehouses: LSPB Trajectory Planning and MPC Implementation","authors":"Konchanok Vorasawad, Myoungkuk Park, Changwon Kim","doi":"10.3390/machines11121050","DOIUrl":"https://doi.org/10.3390/machines11121050","url":null,"abstract":"The rise of smart factories and warehouses has ushered in an era of intelligent manufacturing, with autonomous robots playing a pivotal role. This study focuses on improving the navigation and control of autonomous forklifts in warehouse environments. It introduces an innovative approach that combines a modified Linear Segment with Parabolic Blends (LSPB) trajectory planning with Model Predictive Control (MPC) to ensure efficient and secure robot movement. To validate the performance of our proposed path-planning method, MATLAB-based simulations were conducted in various scenarios, including rectangular and warehouse-like environments, to demonstrate the feasibility and effectiveness of the proposed method. The results demonstrated the feasibility of employing Mecanum wheel-based robots in automated warehouses. Also, to show the superiority of the proposed control algorithm performance, the navigation results were compared with the performance of a system using the PID control as a lower-level controller. By offering an optimized path-planning approach, our study enhances the operational efficiency and effectiveness of Mecanum wheel robots in real-world applications such as automated warehousing systems.","PeriodicalId":48519,"journal":{"name":"Machines","volume":"11 8","pages":""},"PeriodicalIF":2.6,"publicationDate":"2023-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139237090","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-25DOI: 10.3390/machines11121049
Jinjin Wang, Nobuyuki Oishi, Phil Birch, Bao Kha Nguyen
Crop height is a vital indicator of growth conditions. Traditional drone image-based crop height measurement methods primarily rely on calculating the difference between the Digital Elevation Model (DEM) and the Digital Terrain Model (DTM). The calculation often needs more ground information, which remains labour-intensive and time-consuming. Moreover, the variations of terrains can further compromise the reliability of these ground models. In response to these challenges, we introduce G-DMD, a novel method based on Gated Recurrent Units (GRUs) using DEM and multispectral drone images to calculate the crop height. Our method enables the model to recognize the relation between crop height, elevation, and growth stages, eliminating reliance on DTM and thereby mitigating the effects of varied terrains. We also introduce a data preparation process to handle the unique DEM and multispectral image. Upon evaluation using a cotton dataset, our G-DMD method demonstrates a notable increase in accuracy for both maximum and average cotton height measurements, achieving a 34% and 72% reduction in Root Mean Square Error (RMSE) when compared with the traditional method. Compared to other combinations of model inputs, using DEM and multispectral drone images together as inputs results in the lowest error for estimating maximum cotton height. This approach demonstrates the potential of integrating deep learning techniques with drone-based remote sensing to achieve a more accurate, labour-efficient, and streamlined crop height assessment across varied terrains.
作物高度是生长状况的重要指标。传统的基于无人机图像的作物高度测量方法主要依靠计算数字高程模型(DEM)和数字地形模型(DTM)之间的差值。这种计算方法往往需要更多的地面信息,仍然需要大量的人力和时间。此外,地形的变化会进一步影响这些地面模型的可靠性。为了应对这些挑战,我们引入了 G-DMD,这是一种基于门控递归单元(GRU)的新方法,利用 DEM 和多光谱无人机图像来计算作物高度。我们的方法使模型能够识别作物高度、海拔高度和生长阶段之间的关系,消除了对 DTM 的依赖,从而减轻了不同地形的影响。我们还引入了数据准备过程,以处理独特的 DEM 和多光谱图像。通过使用棉花数据集进行评估,我们的 G-DMD 方法显著提高了最大和平均棉花高度测量的准确性,与传统方法相比,均方根误差 (RMSE) 分别降低了 34% 和 72%。与其他模型输入组合相比,同时使用 DEM 和多光谱无人机图像作为输入,在估算棉花最大高度时误差最小。这种方法展示了将深度学习技术与无人机遥感相结合,在不同地形上实现更准确、更省力、更简化的作物高度评估的潜力。
{"title":"G-DMD: A Gated Recurrent Unit-Based Digital Elevation Model for Crop Height Measurement from Multispectral Drone Images","authors":"Jinjin Wang, Nobuyuki Oishi, Phil Birch, Bao Kha Nguyen","doi":"10.3390/machines11121049","DOIUrl":"https://doi.org/10.3390/machines11121049","url":null,"abstract":"Crop height is a vital indicator of growth conditions. Traditional drone image-based crop height measurement methods primarily rely on calculating the difference between the Digital Elevation Model (DEM) and the Digital Terrain Model (DTM). The calculation often needs more ground information, which remains labour-intensive and time-consuming. Moreover, the variations of terrains can further compromise the reliability of these ground models. In response to these challenges, we introduce G-DMD, a novel method based on Gated Recurrent Units (GRUs) using DEM and multispectral drone images to calculate the crop height. Our method enables the model to recognize the relation between crop height, elevation, and growth stages, eliminating reliance on DTM and thereby mitigating the effects of varied terrains. We also introduce a data preparation process to handle the unique DEM and multispectral image. Upon evaluation using a cotton dataset, our G-DMD method demonstrates a notable increase in accuracy for both maximum and average cotton height measurements, achieving a 34% and 72% reduction in Root Mean Square Error (RMSE) when compared with the traditional method. Compared to other combinations of model inputs, using DEM and multispectral drone images together as inputs results in the lowest error for estimating maximum cotton height. This approach demonstrates the potential of integrating deep learning techniques with drone-based remote sensing to achieve a more accurate, labour-efficient, and streamlined crop height assessment across varied terrains.","PeriodicalId":48519,"journal":{"name":"Machines","volume":"100 8","pages":""},"PeriodicalIF":2.6,"publicationDate":"2023-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139237695","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-24DOI: 10.3390/machines11121046
S. Alaci, F. Ciornei, I. Românu, I. Doroftei, C. Bujoreanu, I. Tamașag
This paper proposes a new rapid and straightforward method along with a related device for finding the three basic parameters of an actual external involute spur gear. The number of teeth is easily counted, but the other two parameters—the module and the coefficient of profile shift—are difficult to identify. The method is based on the principle of inspection of the precision of gear teeth, using the dimension over pins, when the maximum distance is measured between the lateral surfaces of two cylindrical rollers of well-controlled dimensions, placed into the spaces between teeth. The dimension over pins is applied as a function of the number of teeth (odd or even) and requires experience (and this is the main disadvantage of the method) for finding the correct maximum distance between pins. The new method eliminates this drawback as it proposes a measuring scheme where four identical rollers are used in a designed inspection device. The system is statically determinate and, therefore, the dimension to be measured is unequivocally found. A new relation for the dimension to be measured is deduced and allows for finding the module and the coefficient of profile shift. The inspection device is described and a concrete case is presented for exemplifying the methodology. A further application permits finding the centre distance for an external spur gearing. Unlike the classical technique where the centre distance is obtained based on the centring surfaces of the wheels, the new method implies only dimensions measured through flank measurements, thus eliminating errors introduced by the deviations between the flanks and the centring surfaces of the wheels.
{"title":"A New Direct and Inexpensive Method and the Associated Device for the Inspection of Spur Gears","authors":"S. Alaci, F. Ciornei, I. Românu, I. Doroftei, C. Bujoreanu, I. Tamașag","doi":"10.3390/machines11121046","DOIUrl":"https://doi.org/10.3390/machines11121046","url":null,"abstract":"This paper proposes a new rapid and straightforward method along with a related device for finding the three basic parameters of an actual external involute spur gear. The number of teeth is easily counted, but the other two parameters—the module and the coefficient of profile shift—are difficult to identify. The method is based on the principle of inspection of the precision of gear teeth, using the dimension over pins, when the maximum distance is measured between the lateral surfaces of two cylindrical rollers of well-controlled dimensions, placed into the spaces between teeth. The dimension over pins is applied as a function of the number of teeth (odd or even) and requires experience (and this is the main disadvantage of the method) for finding the correct maximum distance between pins. The new method eliminates this drawback as it proposes a measuring scheme where four identical rollers are used in a designed inspection device. The system is statically determinate and, therefore, the dimension to be measured is unequivocally found. A new relation for the dimension to be measured is deduced and allows for finding the module and the coefficient of profile shift. The inspection device is described and a concrete case is presented for exemplifying the methodology. A further application permits finding the centre distance for an external spur gearing. Unlike the classical technique where the centre distance is obtained based on the centring surfaces of the wheels, the new method implies only dimensions measured through flank measurements, thus eliminating errors introduced by the deviations between the flanks and the centring surfaces of the wheels.","PeriodicalId":48519,"journal":{"name":"Machines","volume":"82 1","pages":""},"PeriodicalIF":2.6,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139241808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}