Pub Date : 2023-10-01eCollection Date: 2023-01-01DOI: 10.1162/netn_a_00318
Filip Milisav, Vincent Bazinet, Yasser Iturria-Medina, Bratislav Misic
Applications of graph theory to the connectome have inspired several models of how neural signaling unfolds atop its structure. Analytic measures derived from these communication models have mainly been used to extract global characteristics of brain networks, obscuring potentially informative inter-regional relationships. Here we develop a simple standardization method to investigate polysynaptic communication pathways between pairs of cortical regions. This procedure allows us to determine which pairs of nodes are topologically closer and which are further than expected on the basis of their degree. We find that communication pathways delineate canonical functional systems. Relating nodal communication capacity to meta-analytic probabilistic patterns of functional specialization, we also show that areas that are most closely integrated within the network are associated with higher order cognitive functions. We find that these regions' proclivity towards functional integration could naturally arise from the brain's anatomical configuration through evenly distributed connections among multiple specialized communities. Throughout, we consider two increasingly constrained null models to disentangle the effects of the network's topology from those passively endowed by spatial embedding. Altogether, the present findings uncover relationships between polysynaptic communication pathways and the brain's functional organization across multiple topological levels of analysis and demonstrate that network integration facilitates cognitive integration.
{"title":"Resolving inter-regional communication capacity in the human connectome.","authors":"Filip Milisav, Vincent Bazinet, Yasser Iturria-Medina, Bratislav Misic","doi":"10.1162/netn_a_00318","DOIUrl":"10.1162/netn_a_00318","url":null,"abstract":"<p><p>Applications of graph theory to the connectome have inspired several models of how neural signaling unfolds atop its structure. Analytic measures derived from these communication models have mainly been used to extract global characteristics of brain networks, obscuring potentially informative inter-regional relationships. Here we develop a simple standardization method to investigate polysynaptic communication pathways between pairs of cortical regions. This procedure allows us to determine which pairs of nodes are topologically closer and which are further than expected on the basis of their degree. We find that communication pathways delineate canonical functional systems. Relating nodal communication capacity to meta-analytic probabilistic patterns of functional specialization, we also show that areas that are most closely integrated within the network are associated with higher order cognitive functions. We find that these regions' proclivity towards functional integration could naturally arise from the brain's anatomical configuration through evenly distributed connections among multiple specialized communities. Throughout, we consider two increasingly constrained null models to disentangle the effects of the network's topology from those passively endowed by spatial embedding. Altogether, the present findings uncover relationships between polysynaptic communication pathways and the brain's functional organization across multiple topological levels of analysis and demonstrate that network integration facilitates cognitive integration.</p>","PeriodicalId":48520,"journal":{"name":"Network Neuroscience","volume":"7 3","pages":"1051-1079"},"PeriodicalIF":3.6,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10473316/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41133793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01eCollection Date: 2023-01-01DOI: 10.1162/netn_a_00307
Sarah Greenwell, Joshua Faskowitz, Laura Pritschet, Tyler Santander, Emily G Jacobs, Richard F Betzel
Many studies have shown that the human endocrine system modulates brain function, reporting associations between fluctuations in hormone concentrations and brain connectivity. However, how hormonal fluctuations impact fast changes in brain network organization over short timescales remains unknown. Here, we leverage a recently proposed framework for modeling co-fluctuations between the activity of pairs of brain regions at a framewise timescale. In previous studies we showed that time points corresponding to high-amplitude co-fluctuations disproportionately contributed to the time-averaged functional connectivity pattern and that these co-fluctuation patterns could be clustered into a low-dimensional set of recurring "states." Here, we assessed the relationship between these network states and quotidian variation in hormone concentrations. Specifically, we were interested in whether the frequency with which network states occurred was related to hormone concentration. We addressed this question using a dense-sampling dataset (N = 1 brain). In this dataset, a single individual was sampled over the course of two endocrine states: a natural menstrual cycle and while the subject underwent selective progesterone suppression via oral hormonal contraceptives. During each cycle, the subject underwent 30 daily resting-state fMRI scans and blood draws. Our analysis of the imaging data revealed two repeating network states. We found that the frequency with which state 1 occurred in scan sessions was significantly correlated with follicle-stimulating and luteinizing hormone concentrations. We also constructed representative networks for each scan session using only "event frames"-those time points when an event was determined to have occurred. We found that the weights of specific subsets of functional connections were robustly correlated with fluctuations in the concentration of not only luteinizing and follicle-stimulating hormones, but also progesterone and estradiol.
{"title":"High-amplitude network co-fluctuations linked to variation in hormone concentrations over the menstrual cycle.","authors":"Sarah Greenwell, Joshua Faskowitz, Laura Pritschet, Tyler Santander, Emily G Jacobs, Richard F Betzel","doi":"10.1162/netn_a_00307","DOIUrl":"https://doi.org/10.1162/netn_a_00307","url":null,"abstract":"<p><p>Many studies have shown that the human endocrine system modulates brain function, reporting associations between fluctuations in hormone concentrations and brain connectivity. However, how hormonal fluctuations impact fast changes in brain network organization over short timescales remains unknown. Here, we leverage a recently proposed framework for modeling co-fluctuations between the activity of pairs of brain regions at a framewise timescale. In previous studies we showed that time points corresponding to high-amplitude co-fluctuations disproportionately contributed to the time-averaged functional connectivity pattern and that these co-fluctuation patterns could be clustered into a low-dimensional set of recurring \"states.\" Here, we assessed the relationship between these network states and quotidian variation in hormone concentrations. Specifically, we were interested in whether the frequency with which network states occurred was related to hormone concentration. We addressed this question using a dense-sampling dataset (<i>N</i> = 1 brain). In this dataset, a single individual was sampled over the course of two endocrine states: a natural menstrual cycle and while the subject underwent selective progesterone suppression via oral hormonal contraceptives. During each cycle, the subject underwent 30 daily resting-state fMRI scans and blood draws. Our analysis of the imaging data revealed two repeating network states. We found that the frequency with which state 1 occurred in scan sessions was significantly correlated with follicle-stimulating and luteinizing hormone concentrations. We also constructed representative networks for each scan session using only \"event frames\"-those time points when an event was determined to have occurred. We found that the weights of specific subsets of functional connections were robustly correlated with fluctuations in the concentration of not only luteinizing and follicle-stimulating hormones, but also progesterone and estradiol.</p>","PeriodicalId":48520,"journal":{"name":"Network Neuroscience","volume":"7 3","pages":"1181-1205"},"PeriodicalIF":4.7,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10473261/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41143741","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01eCollection Date: 2023-01-01DOI: 10.1162/netn_a_00296
Alaa Abdelgawad, Shady Rahayel, Ying-Qiu Zheng, Christina Tremblay, Andrew Vo, Bratislav Misic, Alain Dagher
Parkinson's disease is a progressive neurodegenerative disorder characterized by accumulation of abnormal isoforms of alpha-synuclein. Alpha-synuclein is proposed to act as a prion in Parkinson's disease: In its misfolded pathologic state, it favors the misfolding of normal alpha-synuclein molecules, spreads trans-neuronally, and causes neuronal damage as it accumulates. This theory remains controversial. We have previously developed a Susceptible-Infected-Removed (SIR) computational model that simulates the templating, propagation, and toxicity of alpha-synuclein molecules in the brain. In this study, we test this model with longitudinal MRI collected over 4 years from the Parkinson's Progression Markers Initiative (1,068 T1 MRI scans, 790 Parkinson's disease scans, and 278 matched control scans). We find that brain deformation progresses in subcortical and cortical regions. The SIR model recapitulates the spatiotemporal distribution of brain atrophy observed in Parkinson's disease. We show that connectome topology and geometry significantly contribute to model fit. We also show that the spatial expression of two genes implicated in alpha-synuclein synthesis and clearance, SNCA and GBA, also influences the atrophy pattern. We conclude that the progression of atrophy in Parkinson's disease is consistent with the prion-like hypothesis and that the SIR model is a promising tool to investigate multifactorial neurodegenerative diseases over time.
{"title":"Predicting longitudinal brain atrophy in Parkinson's disease using a Susceptible-Infected-Removed agent-based model.","authors":"Alaa Abdelgawad, Shady Rahayel, Ying-Qiu Zheng, Christina Tremblay, Andrew Vo, Bratislav Misic, Alain Dagher","doi":"10.1162/netn_a_00296","DOIUrl":"https://doi.org/10.1162/netn_a_00296","url":null,"abstract":"<p><p>Parkinson's disease is a progressive neurodegenerative disorder characterized by accumulation of abnormal isoforms of alpha-synuclein. Alpha-synuclein is proposed to act as a prion in Parkinson's disease: In its misfolded pathologic state, it favors the misfolding of normal alpha-synuclein molecules, spreads trans-neuronally, and causes neuronal damage as it accumulates. This theory remains controversial. We have previously developed a Susceptible-Infected-Removed (SIR) computational model that simulates the templating, propagation, and toxicity of alpha-synuclein molecules in the brain. In this study, we test this model with longitudinal MRI collected over 4 years from the Parkinson's Progression Markers Initiative (1,068 T1 MRI scans, 790 Parkinson's disease scans, and 278 matched control scans). We find that brain deformation progresses in subcortical and cortical regions. The SIR model recapitulates the spatiotemporal distribution of brain atrophy observed in Parkinson's disease. We show that connectome topology and geometry significantly contribute to model fit. We also show that the spatial expression of two genes implicated in alpha-synuclein synthesis and clearance, <i>SNCA</i> and <i>GBA</i>, also influences the atrophy pattern. We conclude that the progression of atrophy in Parkinson's disease is consistent with the prion-like hypothesis and that the SIR model is a promising tool to investigate multifactorial neurodegenerative diseases over time.</p>","PeriodicalId":48520,"journal":{"name":"Network Neuroscience","volume":"7 3","pages":"906-925"},"PeriodicalIF":4.7,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10473281/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41152482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01eCollection Date: 2023-01-01DOI: 10.1162/netn_a_00300
Gustavo Deco, Yonatan Sanz Perl, Laura de la Fuente, Jacobo D Sitt, B T Thomas Yeo, Enzo Tagliazucchi, Morten L Kringelbach
A promising idea in human cognitive neuroscience is that the default mode network (DMN) is responsible for coordinating the recruitment and scheduling of networks for computing and solving task-specific cognitive problems. This is supported by evidence showing that the physical and functional distance of DMN regions is maximally removed from sensorimotor regions containing environment-driven neural activity directly linked to perception and action, which would allow the DMN to orchestrate complex cognition from the top of the hierarchy. However, discovering the functional hierarchy of brain dynamics requires finding the best way to measure interactions between brain regions. In contrast to previous methods measuring the hierarchical flow of information using, for example, transfer entropy, here we used a thermodynamics-inspired, deep learning based Temporal Evolution NETwork (TENET) framework to assess the asymmetry in the flow of events, 'arrow of time', in human brain signals. This provides an alternative way of quantifying hierarchy, given that the arrow of time measures the directionality of information flow that leads to a breaking of the balance of the underlying hierarchy. In turn, the arrow of time is a measure of nonreversibility and thus nonequilibrium in brain dynamics. When applied to large-scale Human Connectome Project (HCP) neuroimaging data from close to a thousand participants, the TENET framework suggests that the DMN plays a significant role in orchestrating the hierarchy, that is, levels of nonreversibility, which changes between the resting state and when performing seven different cognitive tasks. Furthermore, this quantification of the hierarchy of the resting state is significantly different in health compared to neuropsychiatric disorders. Overall, the present thermodynamics-based machine-learning framework provides vital new insights into the fundamental tenets of brain dynamics for orchestrating the interactions between cognition and brain in complex environments.
{"title":"The arrow of time of brain signals in cognition: Potential intriguing role of parts of the default mode network.","authors":"Gustavo Deco, Yonatan Sanz Perl, Laura de la Fuente, Jacobo D Sitt, B T Thomas Yeo, Enzo Tagliazucchi, Morten L Kringelbach","doi":"10.1162/netn_a_00300","DOIUrl":"10.1162/netn_a_00300","url":null,"abstract":"<p><p>A promising idea in human cognitive neuroscience is that the default mode network (DMN) is responsible for coordinating the recruitment and scheduling of networks for computing and solving task-specific cognitive problems. This is supported by evidence showing that the physical and functional distance of DMN regions is maximally removed from sensorimotor regions containing environment-driven neural activity directly linked to perception and action, which would allow the DMN to orchestrate complex cognition from the top of the hierarchy. However, discovering the functional hierarchy of brain dynamics requires finding the best way to measure interactions between brain regions. In contrast to previous methods measuring the hierarchical flow of information using, for example, transfer entropy, here we used a thermodynamics-inspired, deep learning based Temporal Evolution NETwork (TENET) framework to assess the asymmetry in the flow of events, 'arrow of time', in human brain signals. This provides an alternative way of quantifying hierarchy, given that the arrow of time measures the directionality of information flow that leads to a breaking of the balance of the underlying hierarchy. In turn, the arrow of time is a measure of nonreversibility and thus nonequilibrium in brain dynamics. When applied to large-scale Human Connectome Project (HCP) neuroimaging data from close to a thousand participants, the TENET framework suggests that the DMN plays a significant role in orchestrating the hierarchy, that is, levels of nonreversibility, which changes between the resting state and when performing seven different cognitive tasks. Furthermore, this quantification of the hierarchy of the resting state is significantly different in health compared to neuropsychiatric disorders. Overall, the present thermodynamics-based machine-learning framework provides vital new insights into the fundamental tenets of brain dynamics for orchestrating the interactions between cognition and brain in complex environments.</p>","PeriodicalId":48520,"journal":{"name":"Network Neuroscience","volume":"7 3","pages":"966-998"},"PeriodicalIF":4.7,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10473271/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41172896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01eCollection Date: 2023-01-01DOI: 10.1162/netn_a_00321
Richard F Betzel, Sarah A Cutts, Jacob Tanner, Sarah A Greenwell, Thomas Varley, Joshua Faskowitz, Olaf Sporns
Edge time series decompose functional connectivity into its framewise contributions. Previous studies have focused on characterizing the properties of high-amplitude frames (time points when the global co-fluctuation amplitude takes on its largest value), including their cluster structure. Less is known about middle- and low-amplitude co-fluctuations (peaks in co-fluctuation time series but of lower amplitude). Here, we directly address those questions, using data from two dense-sampling studies: the MyConnectome project and Midnight Scan Club. We develop a hierarchical clustering algorithm to group peak co-fluctuations of all magnitudes into nested and multiscale clusters based on their pairwise concordance. At a coarse scale, we find evidence of three large clusters that, collectively, engage virtually all canonical brain systems. At finer scales, however, each cluster is dissolved, giving way to increasingly refined patterns of co-fluctuations involving specific sets of brain systems. We also find an increase in global co-fluctuation magnitude with hierarchical scale. Finally, we comment on the amount of data needed to estimate co-fluctuation pattern clusters and implications for brain-behavior studies. Collectively, the findings reported here fill several gaps in current knowledge concerning the heterogeneity and richness of co-fluctuation patterns as estimated with edge time series while providing some practical guidance for future studies.
{"title":"Hierarchical organization of spontaneous co-fluctuations in densely sampled individuals using fMRI.","authors":"Richard F Betzel, Sarah A Cutts, Jacob Tanner, Sarah A Greenwell, Thomas Varley, Joshua Faskowitz, Olaf Sporns","doi":"10.1162/netn_a_00321","DOIUrl":"10.1162/netn_a_00321","url":null,"abstract":"<p><p>Edge time series decompose functional connectivity into its framewise contributions. Previous studies have focused on characterizing the properties of high-amplitude frames (time points when the global co-fluctuation amplitude takes on its largest value), including their cluster structure. Less is known about middle- and low-amplitude co-fluctuations (peaks in co-fluctuation time series but of lower amplitude). Here, we directly address those questions, using data from two dense-sampling studies: the MyConnectome project and Midnight Scan Club. We develop a hierarchical clustering algorithm to group peak co-fluctuations of all magnitudes into nested and multiscale clusters based on their pairwise concordance. At a coarse scale, we find evidence of three large clusters that, collectively, engage virtually all canonical brain systems. At finer scales, however, each cluster is dissolved, giving way to increasingly refined patterns of co-fluctuations involving specific sets of brain systems. We also find an increase in global co-fluctuation magnitude with hierarchical scale. Finally, we comment on the amount of data needed to estimate co-fluctuation pattern clusters and implications for brain-behavior studies. Collectively, the findings reported here fill several gaps in current knowledge concerning the heterogeneity and richness of co-fluctuation patterns as estimated with edge time series while providing some practical guidance for future studies.</p>","PeriodicalId":48520,"journal":{"name":"Network Neuroscience","volume":"7 3","pages":"926-949"},"PeriodicalIF":3.6,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10473297/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41178837","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01eCollection Date: 2023-01-01DOI: 10.1162/netn_a_00312
Timothé Guyonnet-Hencke, Michael W Reimann
The brain is composed of several anatomically clearly separated structures. This parcellation is often extended into the isocortex, based on anatomical, physiological, or functional differences. Here, we derive a parcellation scheme based purely on the spatial structure of long-range synaptic connections within the cortex. To that end, we analyzed a publicly available dataset of average mouse brain connectivity, and split the isocortex into disjunct regions. Instead of clustering connectivity based on modularity, our scheme is inspired by methods that split sensory cortices into subregions where gradients of neuronal response properties, such as the location of the receptive field, reverse. We calculated comparable gradients from voxelized brain connectivity data and automatically detected reversals in them. This approach better respects the known presence of functional gradients within brain regions than clustering-based approaches. Placing borders at the reversals resulted in a parcellation into 41 subregions that differs significantly from an established scheme in nonrandom ways, but is comparable in terms of the modularity of connectivity between regions. It reveals unexpected trends of connectivity, such as a tripartite split of somatomotor regions along an anterior to posterior gradient. The method can be readily adapted to other organisms and data sources, such as human functional connectivity.
{"title":"A parcellation scheme of mouse isocortex based on reversals in connectivity gradients.","authors":"Timothé Guyonnet-Hencke, Michael W Reimann","doi":"10.1162/netn_a_00312","DOIUrl":"10.1162/netn_a_00312","url":null,"abstract":"<p><p>The brain is composed of several anatomically clearly separated structures. This parcellation is often extended into the isocortex, based on anatomical, physiological, or functional differences. Here, we derive a parcellation scheme based purely on the spatial structure of long-range synaptic connections within the cortex. To that end, we analyzed a publicly available dataset of average mouse brain connectivity, and split the isocortex into disjunct regions. Instead of clustering connectivity based on modularity, our scheme is inspired by methods that split sensory cortices into subregions where gradients of neuronal response properties, such as the location of the receptive field, reverse. We calculated comparable gradients from voxelized brain connectivity data and automatically detected reversals in them. This approach better respects the known presence of functional gradients within brain regions than clustering-based approaches. Placing borders at the reversals resulted in a parcellation into 41 subregions that differs significantly from an established scheme in nonrandom ways, but is comparable in terms of the modularity of connectivity between regions. It reveals unexpected trends of connectivity, such as a tripartite split of somatomotor regions along an anterior to posterior gradient. The method can be readily adapted to other organisms and data sources, such as human functional connectivity.</p>","PeriodicalId":48520,"journal":{"name":"Network Neuroscience","volume":"7 3","pages":"999-1021"},"PeriodicalIF":3.6,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10473268/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41148975","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01eCollection Date: 2023-01-01DOI: 10.1162/netn_a_00316
Fei Li, Qiang Lin, Xiaohu Zhao, Zhenghui Hu
Most Granger causality analysis (GCA) methods still remain a two-stage scheme guided by different mathematical theories; both can actually be viewed as the same generalized model selection issues. Adhering to Occam's razor, we present a unified GCA (uGCA) based on the minimum description length principle. In this research, considering the common existence of nonlinearity in functional brain networks, we incorporated the nonlinear modeling procedure into the proposed uGCA method, in which an approximate representation of Taylor's expansion was adopted. Through synthetic data experiments, we revealed that nonlinear uGCA was obviously superior to its linear representation and the conventional GCA. Meanwhile, the nonlinear characteristics of high-order terms and cross-terms would be successively drowned out as noise levels increased. Then, in real fMRI data involving mental arithmetic tasks, we further illustrated that these nonlinear characteristics in fMRI data may indeed be drowned out at a high noise level, and hence a linear causal analysis procedure may be sufficient. Next, involving autism spectrum disorder patients data, compared with conventional GCA, the network property of causal connections obtained by uGCA methods appeared to be more consistent with clinical symptoms.
{"title":"Description length guided nonlinear unified Granger causality analysis.","authors":"Fei Li, Qiang Lin, Xiaohu Zhao, Zhenghui Hu","doi":"10.1162/netn_a_00316","DOIUrl":"10.1162/netn_a_00316","url":null,"abstract":"<p><p>Most Granger causality analysis (GCA) methods still remain a two-stage scheme guided by different mathematical theories; both can actually be viewed as the same generalized model selection issues. Adhering to Occam's razor, we present a unified GCA (uGCA) based on the minimum description length principle. In this research, considering the common existence of nonlinearity in functional brain networks, we incorporated the nonlinear modeling procedure into the proposed uGCA method, in which an approximate representation of Taylor's expansion was adopted. Through synthetic data experiments, we revealed that nonlinear uGCA was obviously superior to its linear representation and the conventional GCA. Meanwhile, the nonlinear characteristics of high-order terms and cross-terms would be successively drowned out as noise levels increased. Then, in real fMRI data involving mental arithmetic tasks, we further illustrated that these nonlinear characteristics in fMRI data may indeed be drowned out at a high noise level, and hence a linear causal analysis procedure may be sufficient. Next, involving autism spectrum disorder patients data, compared with conventional GCA, the network property of causal connections obtained by uGCA methods appeared to be more consistent with clinical symptoms.</p>","PeriodicalId":48520,"journal":{"name":"Network Neuroscience","volume":"7 3","pages":"1109-1128"},"PeriodicalIF":3.6,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10473308/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41171805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01eCollection Date: 2023-01-01DOI: 10.1162/netn_a_00317
William Orwig, Roni Setton, Ibai Diez, Elisenda Bueichekú, Meghan L Meyer, Diana I Tamir, Jorge Sepulcre, Daniel L Schacter
The neuroscience of creativity seeks to disentangle the complex brain processes that underpin the generation of novel ideas. Neuroimaging studies of functional connectivity, particularly functional magnetic resonance imaging (fMRI), have revealed individual differences in brain network organization associated with creative ability; however, much of the extant research is limited to laboratory-based divergent thinking measures. To overcome these limitations, we compare functional brain connectivity in a cohort of creative experts (n = 27) and controls (n = 26) and examine links with creative behavior. First, we replicate prior findings showing reduced connectivity in visual cortex related to higher creative performance. Second, we examine whether this result is driven by integrated or segregated connectivity. Third, we examine associations between functional connectivity and vivid distal simulation separately in creative experts and controls. In accordance with past work, our results show reduced connectivity to the primary visual cortex in creative experts at rest. Additionally, we observe a negative association between distal simulation vividness and connectivity to the lateral visual cortex in creative experts. Taken together, these results highlight connectivity profiles of highly creative people and suggest that creative thinking may be related to, though not fully redundant with, the ability to vividly imagine the future.
{"title":"Creativity at rest: Exploring functional network connectivity of creative experts.","authors":"William Orwig, Roni Setton, Ibai Diez, Elisenda Bueichekú, Meghan L Meyer, Diana I Tamir, Jorge Sepulcre, Daniel L Schacter","doi":"10.1162/netn_a_00317","DOIUrl":"https://doi.org/10.1162/netn_a_00317","url":null,"abstract":"<p><p>The neuroscience of creativity seeks to disentangle the complex brain processes that underpin the generation of novel ideas. Neuroimaging studies of functional connectivity, particularly functional magnetic resonance imaging (fMRI), have revealed individual differences in brain network organization associated with creative ability; however, much of the extant research is limited to laboratory-based divergent thinking measures. To overcome these limitations, we compare functional brain connectivity in a cohort of creative experts (<i>n</i> = 27) and controls (<i>n</i> = 26) and examine links with creative behavior. First, we replicate prior findings showing reduced connectivity in visual cortex related to higher creative performance. Second, we examine whether this result is driven by integrated or segregated connectivity. Third, we examine associations between functional connectivity and vivid distal simulation separately in creative experts and controls. In accordance with past work, our results show reduced connectivity to the primary visual cortex in creative experts at rest. Additionally, we observe a negative association between distal simulation vividness and connectivity to the lateral visual cortex in creative experts. Taken together, these results highlight connectivity profiles of highly creative people and suggest that creative thinking may be related to, though not fully redundant with, the ability to vividly imagine the future.</p>","PeriodicalId":48520,"journal":{"name":"Network Neuroscience","volume":"7 3","pages":"1022-1033"},"PeriodicalIF":4.7,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10473280/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41171856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01eCollection Date: 2023-01-01DOI: 10.1162/netn_a_00315
Chao Jiang, Ye He, Richard F Betzel, Yin-Shan Wang, Xiu-Xia Xing, Xi-Nian Zuo
A rapidly emerging application of network neuroscience in neuroimaging studies has provided useful tools to understand individual differences in intrinsic brain function by mapping spontaneous brain activity, namely intrinsic functional network neuroscience (ifNN). However, the variability of methodologies applied across the ifNN studies-with respect to node definition, edge construction, and graph measurements-makes it difficult to directly compare findings and also challenging for end users to select the optimal strategies for mapping individual differences in brain networks. Here, we aim to provide a benchmark for best ifNN practices by systematically comparing the measurement reliability of individual differences under different ifNN analytical strategies using the test-retest design of the Human Connectome Project. The results uncovered four essential principles to guide ifNN studies: (1) use a whole brain parcellation to define network nodes, including subcortical and cerebellar regions; (2) construct functional networks using spontaneous brain activity in multiple slow bands; and (3) optimize topological economy of networks at individual level; and (4) characterize information flow with specific metrics of integration and segregation. We built an interactive online resource of reliability assessments for future ifNN (https://ibraindata.com/research/ifNN).
{"title":"Optimizing network neuroscience computation of individual differences in human spontaneous brain activity for test-retest reliability.","authors":"Chao Jiang, Ye He, Richard F Betzel, Yin-Shan Wang, Xiu-Xia Xing, Xi-Nian Zuo","doi":"10.1162/netn_a_00315","DOIUrl":"10.1162/netn_a_00315","url":null,"abstract":"<p><p>A rapidly emerging application of network neuroscience in neuroimaging studies has provided useful tools to understand individual differences in intrinsic brain function by mapping spontaneous brain activity, namely intrinsic functional network neuroscience (ifNN). However, the variability of methodologies applied across the ifNN studies-with respect to node definition, edge construction, and graph measurements-makes it difficult to directly compare findings and also challenging for end users to select the optimal strategies for mapping individual differences in brain networks. Here, we aim to provide a benchmark for best ifNN practices by systematically comparing the measurement reliability of individual differences under different ifNN analytical strategies using the test-retest design of the Human Connectome Project. The results uncovered four essential principles to guide ifNN studies: (1) use a whole brain parcellation to define network nodes, including subcortical and cerebellar regions; (2) construct functional networks using spontaneous brain activity in multiple slow bands; and (3) optimize topological economy of networks at individual level; and (4) characterize information flow with specific metrics of integration and segregation. We built an interactive online resource of reliability assessments for future ifNN (https://ibraindata.com/research/ifNN).</p>","PeriodicalId":48520,"journal":{"name":"Network Neuroscience","volume":"7 3","pages":"1080-1108"},"PeriodicalIF":3.6,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10473278/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41148500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Erratum for “Frequency-based brain networks: From a multiplex framework to a full multilayer description”","authors":"J. Buldú, M. Porter","doi":"10.1162/netn_x_00340","DOIUrl":"https://doi.org/10.1162/netn_x_00340","url":null,"abstract":"","PeriodicalId":48520,"journal":{"name":"Network Neuroscience","volume":"12 1","pages":"i-ii"},"PeriodicalIF":4.7,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139331265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}