Pub Date : 2024-08-08DOI: 10.5194/soil-10-533-2024
Tchodjowiè P. I. Kpemoua, Pierre Barré, Sabine Houot, François Baudin, Cédric Plessis, Claire Chenu
Abstract. The implementation of agroecological practices often leads to additional soil organic carbon storage, and we have sought to assess the biogeochemical stability of this additional carbon. To achieve this, we implemented a multi-method approach using particle size and density fractionation, Rock-Eval® (RE) thermal analyses and long-term incubation (484 d), which we applied to topsoil samples (0–30 cm) from temperate Luvisols that had been subjected in >20-year-long experiments in France to conservation agriculture (CA), organic agriculture (ORG) and conventional agriculture (CON-LC) in the La Cage experiment and to organic waste product (OWP) applications in the QualiAgro experiment, including biowaste compost (BIOW), residual municipal solid waste compost (MSW), farmyard manure (FYM) and conventional agriculture without organic inputs (CON-QA). The additional carbon resulting from agroecological practices is the difference between the carbon stock of the bulk soil and physical fractions or carbon pools in the soil affected by agroecological practices and that of the same soil affected by a conventional practice used as control. The incubations provided information on the additional carbon stability in the short term (i.e. mean residence time, MRT, of <2 years) and showed that the additional soil organic carbon mineralized faster than the carbon in the conventional control at La Cage but slower at QualiAgro. In OWP-treated plots at QualiAgro, 60 %–66 % of the additional carbon was stored as mineral-associated organic matter (MAOM-C) and 34 %–40 % as particulate organic matter (POM-C). In CA and ORG systems at La Cage, 77 %–84 % of the additional carbon was stored as MAOM-C, whereas 16 %–23 % was stored as POM-C. Management practices hence influenced the distribution of additional carbon in physical fractions. Utilizing the PARTYSOC model with Rock-Eval® thermal analysis parameters, we found that most, if not all, of the additional carbon belonged to the active carbon pool (MRT∼30–40 years). In summary, our comprehensive multi-method evaluation indicates that the additional soil organic carbon is less stable over decadal and pluri-decadal timescales compared to soil carbon under conventional control conditions. Our results show that particle size and density fractions can be heterogenous in their biogeochemical stability. On the other hand, although the additional carbon is mainly associated with MAOM, the high proportion of this carbon in the active pool suggests that it has a mean residence time which does not exceed ∼50 years. Furthermore, agroecological practices with equivalent additional carbon stocks (MSW, FYM and CA) exhibited a higher proportion of additional carbon in POM-C under MSW (40 %) and FYM (34 %) compared to CA (16 %), which suggests a high chemical recalcitrance of POM-C under OWP management relative to conservation agriculture. Additional soil organic carbon derived from organic waste, i.e. biomass that has partially d
{"title":"What is the stability of additional organic carbon stored thanks to alternative cropping systems and organic waste product application? A multi-method evaluation","authors":"Tchodjowiè P. I. Kpemoua, Pierre Barré, Sabine Houot, François Baudin, Cédric Plessis, Claire Chenu","doi":"10.5194/soil-10-533-2024","DOIUrl":"https://doi.org/10.5194/soil-10-533-2024","url":null,"abstract":"Abstract. The implementation of agroecological practices often leads to additional soil organic carbon storage, and we have sought to assess the biogeochemical stability of this additional carbon. To achieve this, we implemented a multi-method approach using particle size and density fractionation, Rock-Eval® (RE) thermal analyses and long-term incubation (484 d), which we applied to topsoil samples (0–30 cm) from temperate Luvisols that had been subjected in >20-year-long experiments in France to conservation agriculture (CA), organic agriculture (ORG) and conventional agriculture (CON-LC) in the La Cage experiment and to organic waste product (OWP) applications in the QualiAgro experiment, including biowaste compost (BIOW), residual municipal solid waste compost (MSW), farmyard manure (FYM) and conventional agriculture without organic inputs (CON-QA). The additional carbon resulting from agroecological practices is the difference between the carbon stock of the bulk soil and physical fractions or carbon pools in the soil affected by agroecological practices and that of the same soil affected by a conventional practice used as control. The incubations provided information on the additional carbon stability in the short term (i.e. mean residence time, MRT, of <2 years) and showed that the additional soil organic carbon mineralized faster than the carbon in the conventional control at La Cage but slower at QualiAgro. In OWP-treated plots at QualiAgro, 60 %–66 % of the additional carbon was stored as mineral-associated organic matter (MAOM-C) and 34 %–40 % as particulate organic matter (POM-C). In CA and ORG systems at La Cage, 77 %–84 % of the additional carbon was stored as MAOM-C, whereas 16 %–23 % was stored as POM-C. Management practices hence influenced the distribution of additional carbon in physical fractions. Utilizing the PARTYSOC model with Rock-Eval® thermal analysis parameters, we found that most, if not all, of the additional carbon belonged to the active carbon pool (MRT∼30–40 years). In summary, our comprehensive multi-method evaluation indicates that the additional soil organic carbon is less stable over decadal and pluri-decadal timescales compared to soil carbon under conventional control conditions. Our results show that particle size and density fractions can be heterogenous in their biogeochemical stability. On the other hand, although the additional carbon is mainly associated with MAOM, the high proportion of this carbon in the active pool suggests that it has a mean residence time which does not exceed ∼50 years. Furthermore, agroecological practices with equivalent additional carbon stocks (MSW, FYM and CA) exhibited a higher proportion of additional carbon in POM-C under MSW (40 %) and FYM (34 %) compared to CA (16 %), which suggests a high chemical recalcitrance of POM-C under OWP management relative to conservation agriculture. Additional soil organic carbon derived from organic waste, i.e. biomass that has partially d","PeriodicalId":48610,"journal":{"name":"Soil","volume":"4 1","pages":""},"PeriodicalIF":6.8,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141904216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-06DOI: 10.5194/egusphere-2024-2253
Marliana Tri Widyastuti, José Padarian, Budiman Minasny, Mathew Webb, Muh Taufik, Darren Kidd
Abstract. Soil moisture, an essential parameter for hydroclimatic studies, exhibits significant spatial and temporal variability, making it challenging to map at fine spatiotemporal resolutions. Although current remote sensing products provide global soil moisture estimate at a fine temporal resolution, they are mostly at a coarse spatial resolution. In recent years, deep learning (DL) has been applied to generate high-resolution maps of various soil properties, but DL requires a large amount of training data. This study aimed to map daily soil moisture across Tasmania, Australia at 80 meters resolution based on a limited set of training data. We assessed three modelling strategies: DL models calibrated using an Australian dataset (51,411 observation points), models calibrated using the Tasmanian dataset (9,825 observation points), and a transfer learning technique that transferred information from Australian models to Tasmania. We also evaluated two DL approaches, i.e. Multilayer perceptron (MLP) and Long Short-Term Memory (LSTM). Our models included data of Soil Moisture Active Passive (SMAP) dataset, weather data, elevation map, land cover and multilevel soil properties maps as inputs to generate soil moisture at the surface (0–30 cm) and subsurface (30–60 cm) layers. Results showed that (1) models calibrated from the Australia dataset performed worse than Tasmanian models regardless of the type of DL approaches; (2) Tasmanian models, calibrated solely using Tasmanian data, resulted in shortcomings in predicting soil moisture; and (3) Transfer learning exhibited remarkable performance improvements (error reductions of up to 45 % and a 50 % increase in correlation) and resolved the drawbacks of the Tasmanian models. The LSTM models with transfer learning had the highest overall performance with an average mean absolute error (MAE) of 0.07 m3m-3 and a correlation coefficient (r) of 0.77 across stations for surface layer and MAE = 0.07 m3m-3, and r = 0.69 for subsurface layer. The fine-resolution soil moisture maps captured the detailed landscape variation as well as temporal variation according to four distinct seasons in Tasmania. The best performance of soil moisture models were made available live to predict near-real-time daily soil moisture of Tasmania, assisting agricultural decision making.
{"title":"Mapping near real-time soil moisture dynamics over Tasmania with transfer learning","authors":"Marliana Tri Widyastuti, José Padarian, Budiman Minasny, Mathew Webb, Muh Taufik, Darren Kidd","doi":"10.5194/egusphere-2024-2253","DOIUrl":"https://doi.org/10.5194/egusphere-2024-2253","url":null,"abstract":"<strong>Abstract.</strong> Soil moisture, an essential parameter for hydroclimatic studies, exhibits significant spatial and temporal variability, making it challenging to map at fine spatiotemporal resolutions. Although current remote sensing products provide global soil moisture estimate at a fine temporal resolution, they are mostly at a coarse spatial resolution. In recent years, deep learning (DL) has been applied to generate high-resolution maps of various soil properties, but DL requires a large amount of training data. This study aimed to map daily soil moisture across Tasmania, Australia at 80 meters resolution based on a limited set of training data. We assessed three modelling strategies: DL models calibrated using an Australian dataset (51,411 observation points), models calibrated using the Tasmanian dataset (9,825 observation points), and a transfer learning technique that transferred information from Australian models to Tasmania. We also evaluated two DL approaches, i.e. Multilayer perceptron (MLP) and Long Short-Term Memory (LSTM). Our models included data of Soil Moisture Active Passive (SMAP) dataset, weather data, elevation map, land cover and multilevel soil properties maps as inputs to generate soil moisture at the surface (0–30 cm) and subsurface (30–60 cm) layers. Results showed that (1) models calibrated from the Australia dataset performed worse than Tasmanian models regardless of the type of DL approaches; (2) Tasmanian models, calibrated solely using Tasmanian data, resulted in shortcomings in predicting soil moisture; and (3) Transfer learning exhibited remarkable performance improvements (error reductions of up to 45 % and a 50 % increase in correlation) and resolved the drawbacks of the Tasmanian models. The LSTM models with transfer learning had the highest overall performance with an average mean absolute error (MAE) of 0.07 m<sup>3</sup>m<sup>-3 </sup>and a correlation coefficient (r) of 0.77 across stations for surface layer and MAE = 0.07 m<sup>3</sup>m<sup>-3</sup>, and r = 0.69 for subsurface layer. The fine-resolution soil moisture maps captured the detailed landscape variation as well as temporal variation according to four distinct seasons in Tasmania. The best performance of soil moisture models were made available live to predict near-real-time daily soil moisture of Tasmania, assisting agricultural decision making.","PeriodicalId":48610,"journal":{"name":"Soil","volume":"98 1","pages":""},"PeriodicalIF":6.8,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141895461","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-05DOI: 10.5194/egusphere-2024-2082
Guillaume Blanchy, Waldo Deroo, Tom De Swaef, Peter Lootens, Paul Quataert, Isabel Roldán-Ruíz, Sarah Garré
Abstract. Breeding climate-robust crops is one of the needed pathways for adaptation to the changing climate. To speed up the breeding process, it is important to understand how plants react to extreme weather events such as drought or waterlogging in their production environment, i.e. under field conditions in real soils. Whereas a number of techniques exist for above-ground field phenotyping, simultaneous non-invasive belowground phenotyping remains difficult. In this paper, we present the first dataset of the new HYDRAS open access field phenotyping infrastructure, bringing electrical resistivity tomography, alongside drone imagery and environmental monitoring, to a technology readiness level closer to what breeders and researchers need. This paper investigates whether electrical resistivity tomography (ERT) provides sufficient precision and accuracy to distinguish between belowground plant traits of different genotypes of the same crop species. The proof-of-concept experiment was conducted in 2023 with three distinct soybean genotypes known for their contrasting reactions to drought stress. We illustrate how this new infrastructure addresses the issues of depth resolution, automated data processing, and phenotyping indicator extraction. The work shows that electrical resistivity tomography is ready to complement drone-based field phenotyping techniques to accomplish whole plant high-throughput field phenotyping.
{"title":"Closing the phenotyping gap with non-invasive belowground field phenotyping","authors":"Guillaume Blanchy, Waldo Deroo, Tom De Swaef, Peter Lootens, Paul Quataert, Isabel Roldán-Ruíz, Sarah Garré","doi":"10.5194/egusphere-2024-2082","DOIUrl":"https://doi.org/10.5194/egusphere-2024-2082","url":null,"abstract":"<strong>Abstract.</strong> Breeding climate-robust crops is one of the needed pathways for adaptation to the changing climate. To speed up the breeding process, it is important to understand how plants react to extreme weather events such as drought or waterlogging in their production environment, i.e. under field conditions in real soils. Whereas a number of techniques exist for above-ground field phenotyping, simultaneous non-invasive belowground phenotyping remains difficult. In this paper, we present the first dataset of the new HYDRAS open access field phenotyping infrastructure, bringing electrical resistivity tomography, alongside drone imagery and environmental monitoring, to a technology readiness level closer to what breeders and researchers need. This paper investigates whether electrical resistivity tomography (ERT) provides sufficient precision and accuracy to distinguish between belowground plant traits of different genotypes of the same crop species. The proof-of-concept experiment was conducted in 2023 with three distinct soybean genotypes known for their contrasting reactions to drought stress. We illustrate how this new infrastructure addresses the issues of depth resolution, automated data processing, and phenotyping indicator extraction. The work shows that electrical resistivity tomography is ready to complement drone-based field phenotyping techniques to accomplish whole plant high-throughput field phenotyping.","PeriodicalId":48610,"journal":{"name":"Soil","volume":"98 1","pages":""},"PeriodicalIF":6.8,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141892068","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-02DOI: 10.5194/egusphere-2024-2248
Aelis Spiller, Cynthia M. Kallenbach, Melanie S. Burnett, David Olefeldt, Christopher Schulze, Roxane Maranger, Peter M. J. Douglas
Abstract. Permafrost thawing of northern peatlands can cause local collapse of peat plateaus into much wetter thermokarst bogs and fens, dominated by Sphagnum mosses and graminoids, respectively. However, permafrost thaw can also improve landscape drainage and thus lead to regional drying of peatlands. How gradual drying of these thawing permafrost peatlands affects the subsequent microbial production of carbon dioxide (CO2) and nitrous oxide (N2O) is uncertain because of landscape heterogeneity in moisture, peat quality, and vegetation. Here, we collected near-surface peat samples (5–20 cm) from Alberta, Canada, across transects representing a thaw gradient from peat plateaus to a fen or bog. We incubated the samples for two weeks at either field moisture conditions or under gradual drying, which reduced moisture by ~80 %. Only the fen sites, which had high moisture and % total N, produced N2O (0.06−6.7 μg N2O-N g-1 dry peat) but were unaffected by the drying treatments. Peat CO2 production was greatest from the fen and the youngest stage of the thermokarst bog despite having the most water-saturated field conditions, likely reflecting their more labile plant inputs and, thus more decomposable peat. We found that CO2 respiration was enhanced by drying in relatively wet sites like the fens and young bog but was suppressed by drying in relatively drier peat plateaus. Further, gradual drying increased 13C-CO2 respiration, suggesting a possible shift to more decomposed, older C being lost with peat drying. Our study thus suggests that future peat CO2 and N2O production from peatlands will depend on whether peat plateaus thaw into fens or bogs and on their diverging responses of peat respiration to more moisture-limited conditions.
{"title":"Gradual drying of permafrost peat decreases carbon dioxide in drier peat plateaus but not in wetter fens and bogs","authors":"Aelis Spiller, Cynthia M. Kallenbach, Melanie S. Burnett, David Olefeldt, Christopher Schulze, Roxane Maranger, Peter M. J. Douglas","doi":"10.5194/egusphere-2024-2248","DOIUrl":"https://doi.org/10.5194/egusphere-2024-2248","url":null,"abstract":"<strong>Abstract.</strong> Permafrost thawing of northern peatlands can cause local collapse of peat plateaus into much wetter thermokarst bogs and fens, dominated by <em>Sphagnum </em>mosses and graminoids, respectively. However, permafrost thaw can also improve landscape drainage and thus lead to regional drying of peatlands. How gradual drying of these thawing permafrost peatlands affects the subsequent microbial production of carbon dioxide (CO<sub>2</sub>) and nitrous oxide (N<sub>2</sub>O) is uncertain because of landscape heterogeneity in moisture, peat quality, and vegetation. Here, we collected near-surface peat samples (5–20 cm) from Alberta, Canada, across transects representing a thaw gradient from peat plateaus to a fen or bog. We incubated the samples for two weeks at either field moisture conditions or under gradual drying, which reduced moisture by ~80 %. Only the fen sites, which had high moisture and % total N, produced N<sub>2</sub>O (0.06−6.7 μg N<sub>2</sub>O-N g<sup>-1</sup> dry peat) but were unaffected by the drying treatments. Peat CO<sub>2 </sub>production was greatest from the fen and the youngest stage of the thermokarst bog despite having the most water-saturated field conditions, likely reflecting their more labile plant inputs and, thus more decomposable peat. We found that CO<sub>2</sub> respiration was enhanced by drying in relatively wet sites like the fens and young bog but was suppressed by drying in relatively drier peat plateaus. Further, gradual drying increased <sup>13</sup>C-CO<sub>2</sub> respiration, suggesting a possible shift to more decomposed, older C being lost with peat drying. Our study thus suggests that future peat CO<sub>2</sub> and N<sub>2</sub>O production from peatlands will depend on whether peat plateaus thaw into fens or bogs and on their diverging responses of peat respiration to more moisture-limited conditions.","PeriodicalId":48610,"journal":{"name":"Soil","volume":"21 1","pages":""},"PeriodicalIF":6.8,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141877503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-19DOI: 10.5194/soil-10-521-2024
Jörg Schnecker, Theresa Böckle, Julia Horak, Victoria Martin, Taru Sandén, Heide Spiegel
Abstract. Microbial respiration, growth, and turnover are driving processes in the formation and decomposition of soil organic matter. In contrast to respiration and growth, microbial turnover and death currently lack distinct methods to be determined. Here we propose a new approach to determine microbial death rates and to improve measurements of microbial growth. By combining sequential DNA extraction to distinguish between intracellular and extracellular DNA and 18O incorporation into DNA, we were able to measure microbial death rates. We first evaluated methods to determine and extract intracellular and extracellular DNA separately. We then tested the method by subjecting soil from a temperate agricultural field and a deciduous beech forest to either 20, 30, or 45 °C for 24 h. Our results show that while mass-specific respiration and gross growth either increased with temperature or remained stable, microbial death rates strongly increased at 45 °C and caused a decrease in microbial biomass and thus in microbial net growth. We further found that also extracellular DNA pools decreased at 45 °C compared to lower temperatures, further indicating the enhanced uptake and recycling of extracellular DNA along with increased respiration, growth, and death rates. Additional experiments including soils from more and different ecosystems as well as testing the effects of factors other than temperature on microbial death are certainly necessary to better understand the role of microbial death in soil C cycling. We are nevertheless confident that this new approach to determine microbial death rates and dynamics of intracellular and extracellular DNA separately will help to improve concepts and models of C dynamics in soils in the future.
摘要微生物的呼吸、生长和周转是土壤有机质形成和分解的驱动过程。与呼吸和生长相比,微生物的更替和死亡目前缺乏独特的测定方法。在此,我们提出了一种新方法来确定微生物的死亡率,并改进微生物生长的测量。通过将区分细胞内和细胞外 DNA 的连续 DNA 提取与 DNA 中的 18O 结合起来,我们能够测量微生物的死亡率。我们首先评估了分别确定和提取细胞内和细胞外 DNA 的方法。我们的结果表明,虽然特定质量的呼吸作用和总生长量会随温度升高而增加或保持稳定,但微生物死亡率在 45 ° C 时会大幅增加,并导致微生物生物量下降,进而导致微生物净生长量下降。我们进一步发现,与较低温度相比,45 °C时细胞外DNA池也有所减少,这进一步表明,随着呼吸、生长和死亡率的增加,细胞外DNA的吸收和循环也得到了加强。为了更好地了解微生物死亡在土壤碳循环中的作用,我们有必要在更多不同生态系统的土壤中进行更多实验,并测试温度以外的其他因素对微生物死亡的影响。不过我们相信,这种分别测定微生物死亡率以及细胞内和细胞外 DNA 动态的新方法将有助于改进未来土壤中 C 动态的概念和模型。
{"title":"Improving measurements of microbial growth, death, and turnover by accounting for extracellular DNA in soils","authors":"Jörg Schnecker, Theresa Böckle, Julia Horak, Victoria Martin, Taru Sandén, Heide Spiegel","doi":"10.5194/soil-10-521-2024","DOIUrl":"https://doi.org/10.5194/soil-10-521-2024","url":null,"abstract":"Abstract. Microbial respiration, growth, and turnover are driving processes in the formation and decomposition of soil organic matter. In contrast to respiration and growth, microbial turnover and death currently lack distinct methods to be determined. Here we propose a new approach to determine microbial death rates and to improve measurements of microbial growth. By combining sequential DNA extraction to distinguish between intracellular and extracellular DNA and 18O incorporation into DNA, we were able to measure microbial death rates. We first evaluated methods to determine and extract intracellular and extracellular DNA separately. We then tested the method by subjecting soil from a temperate agricultural field and a deciduous beech forest to either 20, 30, or 45 °C for 24 h. Our results show that while mass-specific respiration and gross growth either increased with temperature or remained stable, microbial death rates strongly increased at 45 °C and caused a decrease in microbial biomass and thus in microbial net growth. We further found that also extracellular DNA pools decreased at 45 °C compared to lower temperatures, further indicating the enhanced uptake and recycling of extracellular DNA along with increased respiration, growth, and death rates. Additional experiments including soils from more and different ecosystems as well as testing the effects of factors other than temperature on microbial death are certainly necessary to better understand the role of microbial death in soil C cycling. We are nevertheless confident that this new approach to determine microbial death rates and dynamics of intracellular and extracellular DNA separately will help to improve concepts and models of C dynamics in soils in the future.","PeriodicalId":48610,"journal":{"name":"Soil","volume":"76 1","pages":""},"PeriodicalIF":6.8,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141726043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-18DOI: 10.5194/soil-10-505-2024
Jan Frouz, Vojtěch Čemus, Jaroslava Frouzová, Alena Peterková, Vojtěch Kotecký
Abstract. Companies increasingly view soil degradation in their supply chains as a commercial risk. They have applied sustainability standards to manage environmental risks stemming from suppliers' farming operations. To examine the application of supply chain sustainability standards in soil protection, we conducted a study using global data on existing sustainability standards and their use in the food retail industry, a key sector in agrifood supply chains. Soil quality is a priority objective in retail sector sustainability efforts: 41 % of the investigated companies apply some soil-relevant standard. However, the standards lack specific and comprehensive criteria. Compliance typically requires that farmers are aware of soil damage risks and implement some mitigation measures; however, no measurable thresholds are usually assigned. This stands in contrast to some other provisions in a number of standards, such as deforestation criteria. There are two probable causes of this difference: companies and certification bodies have prioritised other environmental challenges (e.g. pesticide use, biodiversity loss in tropical biomes) over soil degradation. Also, there are practical constraints in the useful standardisation of soil sustainability. Effective soil sustainability provisions will require measurable, controllable, and scalable multidimensional interventions and compliance metrics. Often, these are not yet available. The development of necessary practical tools is a priority for future research.
{"title":"Can corporate supply chain sustainability standards contribute to soil protection?","authors":"Jan Frouz, Vojtěch Čemus, Jaroslava Frouzová, Alena Peterková, Vojtěch Kotecký","doi":"10.5194/soil-10-505-2024","DOIUrl":"https://doi.org/10.5194/soil-10-505-2024","url":null,"abstract":"Abstract. Companies increasingly view soil degradation in their supply chains as a commercial risk. They have applied sustainability standards to manage environmental risks stemming from suppliers' farming operations. To examine the application of supply chain sustainability standards in soil protection, we conducted a study using global data on existing sustainability standards and their use in the food retail industry, a key sector in agrifood supply chains. Soil quality is a priority objective in retail sector sustainability efforts: 41 % of the investigated companies apply some soil-relevant standard. However, the standards lack specific and comprehensive criteria. Compliance typically requires that farmers are aware of soil damage risks and implement some mitigation measures; however, no measurable thresholds are usually assigned. This stands in contrast to some other provisions in a number of standards, such as deforestation criteria. There are two probable causes of this difference: companies and certification bodies have prioritised other environmental challenges (e.g. pesticide use, biodiversity loss in tropical biomes) over soil degradation. Also, there are practical constraints in the useful standardisation of soil sustainability. Effective soil sustainability provisions will require measurable, controllable, and scalable multidimensional interventions and compliance metrics. Often, these are not yet available. The development of necessary practical tools is a priority for future research.","PeriodicalId":48610,"journal":{"name":"Soil","volume":"78 1","pages":""},"PeriodicalIF":6.8,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141726044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-18DOI: 10.5194/egusphere-2024-1791
Siobhan Staunton, Chiara Pistocchi
Abstract. Mineral P is an increasingly scarce resource and therefore the mobilisation of legacy soil P must be optimised to maintain soil fertility. We have used isotopic exchangeability to probe the lability of native soil P in four contrasting soils following acidification and the addition of carboxylate anions (citrate and oxalate) in soil suspension. Acidification tended to cause immobilisation of soil P, but this was attributed to a salt effect. Addition of both citrate and oxalate led to marked increases in mobilisation of soil P. This would result from both competition between carboxylate and phosphate ions at adsorption sites and chelation of charge compensating cations. The carboxylate effects were similar at each level of acidification, indicating that effects were largely additive. This is not true for the most calcareous soil where calcium oxalate may have been precipitated at the highest oxalate addition. Promoting carboxylate anions in soil by soil amendment or the use of crops that exude large amounts of such organic anions is a promising approach to improve soil P availability.
摘要。矿质钾是一种日益稀缺的资源,因此必须优化对遗留土壤钾的调动,以保持土壤肥力。我们利用同位素交换性探究了酸化和在土壤悬浮液中添加羧酸根阴离子(柠檬酸根和草酸根)后四种对比土壤中原生土壤钾的稳定性。酸化往往会导致土壤中 P 的固定,但这归因于盐效应。这可能是由于羧酸根离子和磷酸根离子在吸附位点上的竞争以及电荷补偿阳离子的螯合作用。在每个酸化水平下,羧酸盐的影响都是相似的,这表明影响在很大程度上是相加的。而石灰性最强的土壤则不然,在草酸盐添加量最高的情况下,草酸钙可能会沉淀。通过土壤改良或使用能释放大量羧酸根阴离子的农作物来促进土壤中的羧酸根阴离子,是一种很有前景的改善土壤钾供应的方法。
{"title":"Isotopic exchangeability reveals that soil phosphate is mobilised by carboxylate anions whereas acidification had the reverse effect","authors":"Siobhan Staunton, Chiara Pistocchi","doi":"10.5194/egusphere-2024-1791","DOIUrl":"https://doi.org/10.5194/egusphere-2024-1791","url":null,"abstract":"<strong>Abstract.</strong> Mineral P is an increasingly scarce resource and therefore the mobilisation of legacy soil P must be optimised to maintain soil fertility. We have used isotopic exchangeability to probe the lability of native soil P in four contrasting soils following acidification and the addition of carboxylate anions (citrate and oxalate) in soil suspension. Acidification tended to cause immobilisation of soil P, but this was attributed to a salt effect. Addition of both citrate and oxalate led to marked increases in mobilisation of soil P. This would result from both competition between carboxylate and phosphate ions at adsorption sites and chelation of charge compensating cations. The carboxylate effects were similar at each level of acidification, indicating that effects were largely additive. This is not true for the most calcareous soil where calcium oxalate may have been precipitated at the highest oxalate addition. Promoting carboxylate anions in soil by soil amendment or the use of crops that exude large amounts of such organic anions is a promising approach to improve soil P availability.","PeriodicalId":48610,"journal":{"name":"Soil","volume":"6 1","pages":""},"PeriodicalIF":6.8,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141726045","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-16DOI: 10.5194/egusphere-2024-1870
Qianmei Zhang, Xiuhong Peng, Hongxia Zhu
Abstract. Soil acidification poses a substantial threat to agricultural productivity by releasing salt ions, diminishing soil fertility, and increasing susceptibility to aluminum toxicity. The aim of the study was to investigate the potential improvement of acid yellow soil through the combined application of basalt powder, lime, and polyacrylamide (PAM). Herein, 0.1 g mixed basalt powder and CaO with various proportion were added to 10 g acidic yellow soil with an initial pH of 4.16 to explore the efficient of mixed soil amendments. X-ray fluorescence (XRF) analysis of basalt powder revealed its effectiveness in supplementing soil mineral nutrients. The optimal results of reduced acidification and ion leaching of soil were obtained when the addition proportion of basalt powder to lime was 8/2 and addition ratio of PAM was 0.0002 %. The addition of mixed amendments markedly increased the pH (by up to >2.0 units) and acid-damage capacity (20.3 mmol/kg) of soil, meanwhile decreased the leaching of K+(58.1 %), Na+(42.9 %), Mg2+(26.3 %), and Al3+ (below the detectable limit) as shown by the optimal tests. The basalt powder undergoes decomposition in the soil solution, resulting in the formation of some weak acids (i.e., H2SiO4), the release of OH-, and an increase in soil pH. The study reveals the underlying mechanisms of soil remediation with mixed amendment, which has potential guidance for the application of mixed soil amendment and the environment risks prediction of contaminated soil.
{"title":"Conquering Soil Acidification: The Synergistic Effects of Basalt Powder, Lime, and PAM","authors":"Qianmei Zhang, Xiuhong Peng, Hongxia Zhu","doi":"10.5194/egusphere-2024-1870","DOIUrl":"https://doi.org/10.5194/egusphere-2024-1870","url":null,"abstract":"<strong>Abstract.</strong> Soil acidification poses a substantial threat to agricultural productivity by releasing salt ions, diminishing soil fertility, and increasing susceptibility to aluminum toxicity. The aim of the study was to investigate the potential improvement of acid yellow soil through the combined application of basalt powder, lime, and polyacrylamide (PAM). Herein, 0.1 g mixed basalt powder and CaO with various proportion were added to 10 g acidic yellow soil with an initial pH of 4.16 to explore the efficient of mixed soil amendments. X-ray fluorescence (XRF) analysis of basalt powder revealed its effectiveness in supplementing soil mineral nutrients. The optimal results of reduced acidification and ion leaching of soil were obtained when the addition proportion of basalt powder to lime was 8/2 and addition ratio of PAM was 0.0002 %. The addition of mixed amendments markedly increased the pH (by up to >2.0 units) and acid-damage capacity (20.3 mmol/kg) of soil, meanwhile decreased the leaching of K<sup>+</sup>(58.1 %), Na<sup>+</sup>(42.9 %), Mg<sup>2+</sup>(26.3 %), and Al<sup>3+</sup> (below the detectable limit) as shown by the optimal tests. The basalt powder undergoes decomposition in the soil solution, resulting in the formation of some weak acids (i.e., H<sub>2</sub>SiO<sub>4</sub>), the release of OH<sup>-</sup>, and an increase in soil pH. The study reveals the underlying mechanisms of soil remediation with mixed amendment, which has potential guidance for the application of mixed soil amendment and the environment risks prediction of contaminated soil.","PeriodicalId":48610,"journal":{"name":"Soil","volume":"22 1","pages":""},"PeriodicalIF":6.8,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141624835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-15DOI: 10.5194/egusphere-2024-1782
Peter Martin Kopittke, Ram C. Dalal, Brigid A. McKenna, Pete Smith, Peng Wang, Zhe Weng, Frederik J. T. van der Bom, Neal W. Menzies
Abstract. It is unequivocal that human activities have increased emissions of greenhouse gases, that this is causing warming, and that these changes will be irreversible for centuries to millennia. Here, we show that our near-complete reliance on soil to produce the rapidly increasing quantities of food being demanded by humans has caused soil to release profound amounts of greenhouse gases that are threatening the future climate. Indeed, net anthropogenic emissions from soil alone account for 15 % of the entire global increase in climate warming (radiative forcing) caused by well-mixed greenhouse gases, with carbon dioxide being the most important gas emitted from soil (74 % of total soil-derived warming) followed by nitrous oxide (17 %) and methane (9 %). There is an urgent need to prevent further land-use change (including for biofuel production) to limit the release of carbon dioxide that results from loss of soil organic carbon, to develop strategies to increase nitrogen fertilizer efficiency to reduce nitrous oxide emissions, to decrease methane from rice paddies, and to ensure that the widespread thawing of permafrost is avoided. Innovative approaches are urgently required for reducing greenhouse gas emissions from soil if we are to limit global warming to 1.5 or 2.0 °C.
{"title":"Soil is a major contributor to global greenhouse gas emissions and climate change","authors":"Peter Martin Kopittke, Ram C. Dalal, Brigid A. McKenna, Pete Smith, Peng Wang, Zhe Weng, Frederik J. T. van der Bom, Neal W. Menzies","doi":"10.5194/egusphere-2024-1782","DOIUrl":"https://doi.org/10.5194/egusphere-2024-1782","url":null,"abstract":"<strong>Abstract.</strong> It is unequivocal that human activities have increased emissions of greenhouse gases, that this is causing warming, and that these changes will be irreversible for centuries to millennia. Here, we show that our near-complete reliance on soil to produce the rapidly increasing quantities of food being demanded by humans has caused soil to release profound amounts of greenhouse gases that are threatening the future climate. Indeed, net anthropogenic emissions from soil alone account for 15 % of the entire global increase in climate warming (radiative forcing) caused by well-mixed greenhouse gases, with carbon dioxide being the most important gas emitted from soil (74 % of total soil-derived warming) followed by nitrous oxide (17 %) and methane (9 %). There is an urgent need to prevent further land-use change (including for biofuel production) to limit the release of carbon dioxide that results from loss of soil organic carbon, to develop strategies to increase nitrogen fertilizer efficiency to reduce nitrous oxide emissions, to decrease methane from rice paddies, and to ensure that the widespread thawing of permafrost is avoided. Innovative approaches are urgently required for reducing greenhouse gas emissions from soil if we are to limit global warming to 1.5 or 2.0 °C.","PeriodicalId":48610,"journal":{"name":"Soil","volume":"42 1","pages":""},"PeriodicalIF":6.8,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141618291","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract. In Iran, a significant percentage of agricultural soils are contaminated with a range of potentially toxic elements (PTEs), including Ni, which need to be remediated to prevent their entry into the food chain. Silicon (Si) is a beneficial plant element that has been shown to mitigate the effects of PTEs on crops. Biochar is a soil amendment that sequesters soil carbon and that can immobilize PTEs and enhance crop growth in soils. No previous studies have examined the potentially synergistic effect of Si and biochar on the Ni concentration in soil chemical fractions and the immobilization thereof. Therefore, the aim of this study was to examine the interactive effects of Si and biochar with respect to reducing Ni bioavailability and its corresponding uptake in corn (Zea Mays) in a calcareous soil. A 90 d factorial greenhouse study with corn was conducted. Si application levels were 0 (S0), 250 (S1), and 500 (S2) mg Si kg−1 soil, and biochar treatments (3wt %) including rice husk (RH) and sheep manure (SM) biochars produced at 300 and 500 °C (SM300, SM500, RH300, and RH500) were utilized. At harvest, the Ni concentration in corn shoots, the Ni content in soil chemical fractions, and the release kinetics of DPTA (diethylenetriaminepentaacetic acid)-extractable Ni were determined. Simultaneous utilization of Si and SM biochars led to a synergistic reduction (15 %–36 %) in the Ni content in the soluble and exchangeable fractions compared with the application of Si (5 %–9 %) and SM (5 %–7 %) biochars separately. The application of Si and biochars also decreased the DPTA-extractable Ni and Ni content in corn shoots (by up to 57 %), with the combined application of SM500 + S2 being the most effective. These effects were attributed to the transfer of Ni in soil from more bioavailable fractions to more stable iron-oxide-bound fractions, related to soil pH increase. SM500 was likely the most effective biochar due to its higher alkalinity and lower acidic functional group content which enhanced Ni sorption reactions with Si. The study demonstrates the synergistic potential of Si and SM biochar for immobilizing Ni in contaminated calcareous soils.
摘要。在伊朗,相当大比例的农业土壤受到包括镍在内的一系列潜在有毒元素(PTEs)的污染,需要对其进行补救,以防止其进入食物链。硅(Si)是一种有益的植物元素,已被证明可以减轻 PTEs 对作物的影响。生物炭是一种土壤改良剂,可固化土壤中的碳,并能固定 PTEs,促进土壤中作物的生长。以前的研究没有考察过 Si 和生物炭对土壤化学组分中 Ni 浓度及其固定化的潜在协同效应。因此,本研究旨在考察硅和生物炭在降低钙质土壤中玉米(玉米)对镍的生物利用率和相应吸收率方面的交互作用。在温室中对玉米进行了为期 90 天的因子研究。施硅量分别为 0(S0)、250(S1)和 500(S2)毫克硅 kg-1 土壤,生物炭处理(3wt %)包括在 300 和 500 °C 下生产的稻壳(RH)和羊粪(SM)生物炭(SM300、SM500、RH300 和 RH500)。收获时,测定了玉米芽中的镍浓度、土壤化学组分中的镍含量以及 DPTA(二乙烯三胺五乙酸)可提取镍的释放动力学。与分别施用 Si(5%-9%)和 SM(5%-7%)生物酵素相比,同时施用 Si 和 SM 生物酵素可使可溶性馏分和可交换性馏分中的镍含量协同降低(15%-36%)。施用硅和生物炭还能降低玉米嫩枝中 DPTA 可提取镍和镍的含量(降幅高达 57%),其中 SM500 + S2 的联合施用效果最好。这些影响归因于土壤中的镍从生物可利用部分转移到了更稳定的氧化铁结合部分,这与土壤 pH 值的增加有关。SM500 可能是最有效的生物炭,因为其碱度较高,酸性官能团含量较低,从而增强了镍与硅的吸附反应。这项研究证明了硅和 SM 生物炭在固定受污染钙质土壤中的镍方面的协同潜力。
{"title":"Investigating the synergistic potential of Si and biochar to immobilize Ni in a Ni-contaminated calcareous soil after Zea mays L. cultivation","authors":"Hamid Reza Boostani, Ailsa G. Hardie, Mahdi Najafi-Ghiri, Ehsan Bijanzadeh, Dariush Khalili, Esmaeil Farrokhnejad","doi":"10.5194/soil-10-487-2024","DOIUrl":"https://doi.org/10.5194/soil-10-487-2024","url":null,"abstract":"Abstract. In Iran, a significant percentage of agricultural soils are contaminated with a range of potentially toxic elements (PTEs), including Ni, which need to be remediated to prevent their entry into the food chain. Silicon (Si) is a beneficial plant element that has been shown to mitigate the effects of PTEs on crops. Biochar is a soil amendment that sequesters soil carbon and that can immobilize PTEs and enhance crop growth in soils. No previous studies have examined the potentially synergistic effect of Si and biochar on the Ni concentration in soil chemical fractions and the immobilization thereof. Therefore, the aim of this study was to examine the interactive effects of Si and biochar with respect to reducing Ni bioavailability and its corresponding uptake in corn (Zea Mays) in a calcareous soil. A 90 d factorial greenhouse study with corn was conducted. Si application levels were 0 (S0), 250 (S1), and 500 (S2) mg Si kg−1 soil, and biochar treatments (3wt %) including rice husk (RH) and sheep manure (SM) biochars produced at 300 and 500 °C (SM300, SM500, RH300, and RH500) were utilized. At harvest, the Ni concentration in corn shoots, the Ni content in soil chemical fractions, and the release kinetics of DPTA (diethylenetriaminepentaacetic acid)-extractable Ni were determined. Simultaneous utilization of Si and SM biochars led to a synergistic reduction (15 %–36 %) in the Ni content in the soluble and exchangeable fractions compared with the application of Si (5 %–9 %) and SM (5 %–7 %) biochars separately. The application of Si and biochars also decreased the DPTA-extractable Ni and Ni content in corn shoots (by up to 57 %), with the combined application of SM500 + S2 being the most effective. These effects were attributed to the transfer of Ni in soil from more bioavailable fractions to more stable iron-oxide-bound fractions, related to soil pH increase. SM500 was likely the most effective biochar due to its higher alkalinity and lower acidic functional group content which enhanced Ni sorption reactions with Si. The study demonstrates the synergistic potential of Si and SM biochar for immobilizing Ni in contaminated calcareous soils.","PeriodicalId":48610,"journal":{"name":"Soil","volume":"56 1","pages":""},"PeriodicalIF":6.8,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141561257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}