Implants are essential in medical treatments, as they offer restored function, quality of life enhancement, and long-term solutions. The global demand for implants is increasing due to the aging population, medical innovation, and improved medical payment capacity. 3D printing, also known as additive manufacturing, has revolutionized the fabrication of implants due to its ability to produce complex geometries and customizable designs. The superior biocompatibility, corrosion resistance, and mechanical properties of titanium (Ti) and its alloys make them ideal and common for orthopedic and dental implants. Materials are the basis of 3D-printed implants. Ti-based materials for 3D printing are summarized, including commercial pure titanium, binary Ti alloys, ternary Ti alloys, quaternary Ti alloys, and multicomponent Ti alloys. Post-processing is necessary to ensure the desired performance of 3D-printed implants. Post-processing methods for 3D-printed implants are reviewed from the perspective of improving the performance of the mechanical property, osseointegrative property, antibacterial property, and multiple properties. In this review, the published literatures related to the materials and post-processing of 3D-printed Ti-based implants are collected and discussed. The current challenges and future trends are also analyzed. It is expected to provide a basis for the application of 3D-printed Ti-based implants.
{"title":"Review of 3D-Printed Titanium-Based Implants: Materials and Post-Processing","authors":"Dr. Yasi Li, Prof. Fengtao Wang","doi":"10.1002/cben.202400032","DOIUrl":"https://doi.org/10.1002/cben.202400032","url":null,"abstract":"<p>Implants are essential in medical treatments, as they offer restored function, quality of life enhancement, and long-term solutions. The global demand for implants is increasing due to the aging population, medical innovation, and improved medical payment capacity. 3D printing, also known as additive manufacturing, has revolutionized the fabrication of implants due to its ability to produce complex geometries and customizable designs. The superior biocompatibility, corrosion resistance, and mechanical properties of titanium (Ti) and its alloys make them ideal and common for orthopedic and dental implants. Materials are the basis of 3D-printed implants. Ti-based materials for 3D printing are summarized, including commercial pure titanium, binary Ti alloys, ternary Ti alloys, quaternary Ti alloys, and multicomponent Ti alloys. Post-processing is necessary to ensure the desired performance of 3D-printed implants. Post-processing methods for 3D-printed implants are reviewed from the perspective of improving the performance of the mechanical property, osseointegrative property, antibacterial property, and multiple properties. In this review, the published literatures related to the materials and post-processing of 3D-printed Ti-based implants are collected and discussed. The current challenges and future trends are also analyzed. It is expected to provide a basis for the application of 3D-printed Ti-based implants.</p>","PeriodicalId":48623,"journal":{"name":"ChemBioEng Reviews","volume":"11 6","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142860450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gas–solid cyclones are broadly employed in the industrial sector. Even though numerical methods are currently a strong tool for predicting the characteristics of flow patterns inside cyclone separators, they should be validated using experimental data. On the other hand, several practical aspects must be considered to analyze the operating circumstances of cyclones and their design optimization. This paper summarizes cyclone working principles and measurement techniques utilized in experimental analysis. Besides, experimental aspects, including various geometries, surface roughness, erosion rate, external electric field, particle properties, etc., are discussed. Eventually, research gaps and future directions are introduced.
{"title":"A Review of the Experimental Analysis of Gas–Solid Cyclone Separators","authors":"Morteza Bayareh","doi":"10.1002/cben.202400036","DOIUrl":"https://doi.org/10.1002/cben.202400036","url":null,"abstract":"<p>Gas–solid cyclones are broadly employed in the industrial sector. Even though numerical methods are currently a strong tool for predicting the characteristics of flow patterns inside cyclone separators, they should be validated using experimental data. On the other hand, several practical aspects must be considered to analyze the operating circumstances of cyclones and their design optimization. This paper summarizes cyclone working principles and measurement techniques utilized in experimental analysis. Besides, experimental aspects, including various geometries, surface roughness, erosion rate, external electric field, particle properties, etc., are discussed. Eventually, research gaps and future directions are introduced.</p>","PeriodicalId":48623,"journal":{"name":"ChemBioEng Reviews","volume":"11 6","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142860483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Prokaryotic cells are pivotal in meeting the global demand for biopharmaceuticals. However, challenges such as the absence of advanced technology for real-time monitoring, standardized testing methodologies, and quality risk assessment of microbial activity have led to increased production costs, delays, and shortages of biopharmaceutical products. A thorough understanding of how biomolecule production interacts with microbial population structure and function is vital for improving continuous manufacturing and process automation. In this review, we discuss the current microbiological techniques that meet good manufacturing practice requirements in industrial settings, explore the advantages of monitoring and measuring biomass growth efficiency and turnover rates beyond regulatory criteria for product release, and provide a critical assessment of the current state of knowledge on bioassays and engineering tools for biomolecule yield measurement and monitoring. Furthermore, we identify areas for future development, potential applications, and the need for interdisciplinary innovation to drive future research, including advancing bioassays for biopharmaceutical wastewater risk.
{"title":"Microbial Dynamics and Quality Monitoring in Biopharmaceutical Production","authors":"Rosha Pashang, Kimberley A. Gilbride, Jannis Wenk","doi":"10.1002/cben.202400022","DOIUrl":"https://doi.org/10.1002/cben.202400022","url":null,"abstract":"<p>Prokaryotic cells are pivotal in meeting the global demand for biopharmaceuticals. However, challenges such as the absence of advanced technology for real-time monitoring, standardized testing methodologies, and quality risk assessment of microbial activity have led to increased production costs, delays, and shortages of biopharmaceutical products. A thorough understanding of how biomolecule production interacts with microbial population structure and function is vital for improving continuous manufacturing and process automation. In this review, we discuss the current microbiological techniques that meet good manufacturing practice requirements in industrial settings, explore the advantages of monitoring and measuring biomass growth efficiency and turnover rates beyond regulatory criteria for product release, and provide a critical assessment of the current state of knowledge on bioassays and engineering tools for biomolecule yield measurement and monitoring. Furthermore, we identify areas for future development, potential applications, and the need for interdisciplinary innovation to drive future research, including advancing bioassays for biopharmaceutical wastewater risk.</p>","PeriodicalId":48623,"journal":{"name":"ChemBioEng Reviews","volume":"11 6","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cben.202400022","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142860242","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Effective biobased thermally insulating materials are crucial to addressing the escalating concerns surrounding climate change and plastic waste. Numerous experimental biobased foams have demonstrated properties that are either equal to or superior to those of traditional foams employed in the construction sector. The comprehensive review titled “Recent Advances in Biobased Foams and Foam Composites for Construction Applications” by DSouza et al. (DOI: https://doi.org/10.1002/cben.202300014) specifically focuses on the fabrication methods, advancements, and future prospects of biobased polyurethanes (BPU), biobased phenol formaldehyde (BPF), and cellulose nanofibers (CNF) foams for application in residential construction. To be a suitable material for construction, a biobased foam must be an excellent thermal insulator (possessing low thermal conductivity), a fire retardant (with high limiting oxygen index) and possess remarkable mechanical properties. The cover image thus depicts forest waste-based foams that meet the design criteria for construction applications. [Credits: Riddhi Gadre for the initial design and InMyWork Studio team for the final design]
Biobased Foams for Construction Applications. Copyright: Glen Cletus DSouza, Harrison Ng, Paul Charpentier, Chunbao Charles Xu