Zahoor Ullah, Mohamad Azmi Bustam, Mohib Ullah, Mamoon-Ur-Rashid, Amir Sada Khan, Syed Nasir Shah, Mansoor Ul Hassan Shah, Pervaiz Ahmad, Muhammad Sohail, Khalid Ali Khan
An environmentally responsible and sustainable replacement for finite fossil fuels is biodiesel. Because of its amazing qualities, biodiesel is becoming more and more popular as a renewable fuel around the globe. The many approaches, feedstocks, catalysts, comparison standards, reaction kinetics, final product analysis, and final product characterization of biodiesel are covered in this review article. Researchers have used a variety of techniques to produce biodiesel throughout history, with transesterification emerging as the most effective approach in more recent times. Numerous studies on biodiesel feedstock and catalysts to produce high biodiesel yields have been published; nevertheless, it should be highlighted that the type of feedstock must be considered while choosing a catalyst. The review paper highlights the significance of several parameters that are crucial to the manufacture of biodiesel, without which achieving a high yield would be challenging. The literature has also discussed the limitations and advantages of different catalysts, and scientists are currently working to identify the ideal catalyst within certain optimal parameters for the manufacture of biodiesel. Homogeneous reaction-based biodiesel synthesis has a number of drawbacks, though, such as water content, a laborious purification procedure, and a low tolerance for free fatty acids. To address these issues, scientists have started investigating heterogeneous reactions involving solid catalysts. A large pore network, a moderate-to-high density of strong acid sites, a hydrophobic surface, and the ability to control surface hydrophobicity to avoid deactivation are all desirable characteristics of an ideal solid catalyst. Ion exchange resins, sulfated oxides, heterogeneous base catalysts, boron group-based heterogeneous catalysts, alkaline earth metal oxides, mixed metal oxides, alkali metal oxides, heterogeneous catalysts derived from waste materials, and different approaches to biodiesel synthesis that employ enzymes, carbon-based heterogeneous catalysts, and ionic liquids as catalysts are among the categories of catalysts that can be used in the production of biodiesel. The finest benchmarks to compare the quality of biodiesel with European and American Society for Testing Material standards. For detailed characterization of the finished product, gas chromatography and nuclear magnetic resonance are the most effective methods.
{"title":"Unveiling Biodiesel Production: Exploring Reaction Protocols, Catalysts, and Influential Factors","authors":"Zahoor Ullah, Mohamad Azmi Bustam, Mohib Ullah, Mamoon-Ur-Rashid, Amir Sada Khan, Syed Nasir Shah, Mansoor Ul Hassan Shah, Pervaiz Ahmad, Muhammad Sohail, Khalid Ali Khan","doi":"10.1002/cben.202400028","DOIUrl":"https://doi.org/10.1002/cben.202400028","url":null,"abstract":"<p>An environmentally responsible and sustainable replacement for finite fossil fuels is biodiesel. Because of its amazing qualities, biodiesel is becoming more and more popular as a renewable fuel around the globe. The many approaches, feedstocks, catalysts, comparison standards, reaction kinetics, final product analysis, and final product characterization of biodiesel are covered in this review article. Researchers have used a variety of techniques to produce biodiesel throughout history, with transesterification emerging as the most effective approach in more recent times. Numerous studies on biodiesel feedstock and catalysts to produce high biodiesel yields have been published; nevertheless, it should be highlighted that the type of feedstock must be considered while choosing a catalyst. The review paper highlights the significance of several parameters that are crucial to the manufacture of biodiesel, without which achieving a high yield would be challenging. The literature has also discussed the limitations and advantages of different catalysts, and scientists are currently working to identify the ideal catalyst within certain optimal parameters for the manufacture of biodiesel. Homogeneous reaction-based biodiesel synthesis has a number of drawbacks, though, such as water content, a laborious purification procedure, and a low tolerance for free fatty acids. To address these issues, scientists have started investigating heterogeneous reactions involving solid catalysts. A large pore network, a moderate-to-high density of strong acid sites, a hydrophobic surface, and the ability to control surface hydrophobicity to avoid deactivation are all desirable characteristics of an ideal solid catalyst. Ion exchange resins, sulfated oxides, heterogeneous base catalysts, boron group-based heterogeneous catalysts, alkaline earth metal oxides, mixed metal oxides, alkali metal oxides, heterogeneous catalysts derived from waste materials, and different approaches to biodiesel synthesis that employ enzymes, carbon-based heterogeneous catalysts, and ionic liquids as catalysts are among the categories of catalysts that can be used in the production of biodiesel. The finest benchmarks to compare the quality of biodiesel with European and American Society for Testing Material standards. For detailed characterization of the finished product, gas chromatography and nuclear magnetic resonance are the most effective methods.</p>","PeriodicalId":48623,"journal":{"name":"ChemBioEng Reviews","volume":"11 6","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142868426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Muhammad Islam, Irfan Ahmad, Hafiz Abdullah Shakir, Muhammad Khan, Marcelo Franco, Muhammad Irfan
The world population is expected to increase up to 9.6 billion by 2050. This triggers the demand for food security and its nutritional value. Despite the advancements in the field of medicine, current research focuses on investigating natural-origin functional foods with tremendous health-supporting properties. It includes various natural sources such as animals, plants, algae, fungi, and bacteria. The Algae group is still under investigation to find the best alternative to other previously explored sources. Algae possess remarkable potential for synthesizing natural metabolites, including primary metabolites (polysaccharides, proteins, and lipids) and secondary metabolites (Flavonoids, bromophenols, phenolic compounds, and polyphenols). These bioactive compounds have enormous anticancer, antimicrobial, and neuroprotection applications. This provokes researcher interest in exploring algae strains to optimize their metabolite production to utilize them as a functional food. Metabolomics techniques can be utilized to investigate biological samples. It will create new ways to explore algae strains that have not yet been investigated. A closed pond cultivation system is attractive to enhance algae growth in highly controlled conditions. This review emphasizes algae metabolism, cultivation methods, metabolomics analysis, genetic engineering, and advanced genome editing tools such as the CRISPR CAS9 system, which can be utilized to manipulate the algae genome for increased production.
{"title":"Exploring the Remarkable Potential of Algal Biomass for the Production of Nutraceutical Compounds and Their Applications","authors":"Muhammad Islam, Irfan Ahmad, Hafiz Abdullah Shakir, Muhammad Khan, Marcelo Franco, Muhammad Irfan","doi":"10.1002/cben.202400018","DOIUrl":"https://doi.org/10.1002/cben.202400018","url":null,"abstract":"<p>The world population is expected to increase up to 9.6 billion by 2050. This triggers the demand for food security and its nutritional value. Despite the advancements in the field of medicine, current research focuses on investigating natural-origin functional foods with tremendous health-supporting properties. It includes various natural sources such as animals, plants, algae, fungi, and bacteria. The Algae group is still under investigation to find the best alternative to other previously explored sources. Algae possess remarkable potential for synthesizing natural metabolites, including primary metabolites (polysaccharides, proteins, and lipids) and secondary metabolites (Flavonoids, bromophenols, phenolic compounds, and polyphenols). These bioactive compounds have enormous anticancer, antimicrobial, and neuroprotection applications. This provokes researcher interest in exploring algae strains to optimize their metabolite production to utilize them as a functional food. Metabolomics techniques can be utilized to investigate biological samples. It will create new ways to explore algae strains that have not yet been investigated. A closed pond cultivation system is attractive to enhance algae growth in highly controlled conditions. This review emphasizes algae metabolism, cultivation methods, metabolomics analysis, genetic engineering, and advanced genome editing tools such as the CRISPR CAS9 system, which can be utilized to manipulate the algae genome for increased production.</p>","PeriodicalId":48623,"journal":{"name":"ChemBioEng Reviews","volume":"11 6","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142860482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Implants are essential in medical treatments, as they offer restored function, quality of life enhancement, and long-term solutions. The global demand for implants is increasing due to the aging population, medical innovation, and improved medical payment capacity. 3D printing, also known as additive manufacturing, has revolutionized the fabrication of implants due to its ability to produce complex geometries and customizable designs. The superior biocompatibility, corrosion resistance, and mechanical properties of titanium (Ti) and its alloys make them ideal and common for orthopedic and dental implants. Materials are the basis of 3D-printed implants. Ti-based materials for 3D printing are summarized, including commercial pure titanium, binary Ti alloys, ternary Ti alloys, quaternary Ti alloys, and multicomponent Ti alloys. Post-processing is necessary to ensure the desired performance of 3D-printed implants. Post-processing methods for 3D-printed implants are reviewed from the perspective of improving the performance of the mechanical property, osseointegrative property, antibacterial property, and multiple properties. In this review, the published literatures related to the materials and post-processing of 3D-printed Ti-based implants are collected and discussed. The current challenges and future trends are also analyzed. It is expected to provide a basis for the application of 3D-printed Ti-based implants.
{"title":"Review of 3D-Printed Titanium-Based Implants: Materials and Post-Processing","authors":"Dr. Yasi Li, Prof. Fengtao Wang","doi":"10.1002/cben.202400032","DOIUrl":"https://doi.org/10.1002/cben.202400032","url":null,"abstract":"<p>Implants are essential in medical treatments, as they offer restored function, quality of life enhancement, and long-term solutions. The global demand for implants is increasing due to the aging population, medical innovation, and improved medical payment capacity. 3D printing, also known as additive manufacturing, has revolutionized the fabrication of implants due to its ability to produce complex geometries and customizable designs. The superior biocompatibility, corrosion resistance, and mechanical properties of titanium (Ti) and its alloys make them ideal and common for orthopedic and dental implants. Materials are the basis of 3D-printed implants. Ti-based materials for 3D printing are summarized, including commercial pure titanium, binary Ti alloys, ternary Ti alloys, quaternary Ti alloys, and multicomponent Ti alloys. Post-processing is necessary to ensure the desired performance of 3D-printed implants. Post-processing methods for 3D-printed implants are reviewed from the perspective of improving the performance of the mechanical property, osseointegrative property, antibacterial property, and multiple properties. In this review, the published literatures related to the materials and post-processing of 3D-printed Ti-based implants are collected and discussed. The current challenges and future trends are also analyzed. It is expected to provide a basis for the application of 3D-printed Ti-based implants.</p>","PeriodicalId":48623,"journal":{"name":"ChemBioEng Reviews","volume":"11 6","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142860450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gas–solid cyclones are broadly employed in the industrial sector. Even though numerical methods are currently a strong tool for predicting the characteristics of flow patterns inside cyclone separators, they should be validated using experimental data. On the other hand, several practical aspects must be considered to analyze the operating circumstances of cyclones and their design optimization. This paper summarizes cyclone working principles and measurement techniques utilized in experimental analysis. Besides, experimental aspects, including various geometries, surface roughness, erosion rate, external electric field, particle properties, etc., are discussed. Eventually, research gaps and future directions are introduced.
{"title":"A Review of the Experimental Analysis of Gas–Solid Cyclone Separators","authors":"Morteza Bayareh","doi":"10.1002/cben.202400036","DOIUrl":"https://doi.org/10.1002/cben.202400036","url":null,"abstract":"<p>Gas–solid cyclones are broadly employed in the industrial sector. Even though numerical methods are currently a strong tool for predicting the characteristics of flow patterns inside cyclone separators, they should be validated using experimental data. On the other hand, several practical aspects must be considered to analyze the operating circumstances of cyclones and their design optimization. This paper summarizes cyclone working principles and measurement techniques utilized in experimental analysis. Besides, experimental aspects, including various geometries, surface roughness, erosion rate, external electric field, particle properties, etc., are discussed. Eventually, research gaps and future directions are introduced.</p>","PeriodicalId":48623,"journal":{"name":"ChemBioEng Reviews","volume":"11 6","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142860483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Prokaryotic cells are pivotal in meeting the global demand for biopharmaceuticals. However, challenges such as the absence of advanced technology for real-time monitoring, standardized testing methodologies, and quality risk assessment of microbial activity have led to increased production costs, delays, and shortages of biopharmaceutical products. A thorough understanding of how biomolecule production interacts with microbial population structure and function is vital for improving continuous manufacturing and process automation. In this review, we discuss the current microbiological techniques that meet good manufacturing practice requirements in industrial settings, explore the advantages of monitoring and measuring biomass growth efficiency and turnover rates beyond regulatory criteria for product release, and provide a critical assessment of the current state of knowledge on bioassays and engineering tools for biomolecule yield measurement and monitoring. Furthermore, we identify areas for future development, potential applications, and the need for interdisciplinary innovation to drive future research, including advancing bioassays for biopharmaceutical wastewater risk.
{"title":"Microbial Dynamics and Quality Monitoring in Biopharmaceutical Production","authors":"Rosha Pashang, Kimberley A. Gilbride, Jannis Wenk","doi":"10.1002/cben.202400022","DOIUrl":"https://doi.org/10.1002/cben.202400022","url":null,"abstract":"<p>Prokaryotic cells are pivotal in meeting the global demand for biopharmaceuticals. However, challenges such as the absence of advanced technology for real-time monitoring, standardized testing methodologies, and quality risk assessment of microbial activity have led to increased production costs, delays, and shortages of biopharmaceutical products. A thorough understanding of how biomolecule production interacts with microbial population structure and function is vital for improving continuous manufacturing and process automation. In this review, we discuss the current microbiological techniques that meet good manufacturing practice requirements in industrial settings, explore the advantages of monitoring and measuring biomass growth efficiency and turnover rates beyond regulatory criteria for product release, and provide a critical assessment of the current state of knowledge on bioassays and engineering tools for biomolecule yield measurement and monitoring. Furthermore, we identify areas for future development, potential applications, and the need for interdisciplinary innovation to drive future research, including advancing bioassays for biopharmaceutical wastewater risk.</p>","PeriodicalId":48623,"journal":{"name":"ChemBioEng Reviews","volume":"11 6","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cben.202400022","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142860242","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Effective biobased thermally insulating materials are crucial to addressing the escalating concerns surrounding climate change and plastic waste. Numerous experimental biobased foams have demonstrated properties that are either equal to or superior to those of traditional foams employed in the construction sector. The comprehensive review titled “Recent Advances in Biobased Foams and Foam Composites for Construction Applications” by DSouza et al. (DOI: https://doi.org/10.1002/cben.202300014) specifically focuses on the fabrication methods, advancements, and future prospects of biobased polyurethanes (BPU), biobased phenol formaldehyde (BPF), and cellulose nanofibers (CNF) foams for application in residential construction. To be a suitable material for construction, a biobased foam must be an excellent thermal insulator (possessing low thermal conductivity), a fire retardant (with high limiting oxygen index) and possess remarkable mechanical properties. The cover image thus depicts forest waste-based foams that meet the design criteria for construction applications. [Credits: Riddhi Gadre for the initial design and InMyWork Studio team for the final design]
Biobased Foams for Construction Applications. Copyright: Glen Cletus DSouza, Harrison Ng, Paul Charpentier, Chunbao Charles Xu