Pub Date : 2024-07-24DOI: 10.1007/s42242-024-00301-6
Jinsol Kim, Juho Jeong, Seung Hwan Ko
Point-of-care testing (POCT) is the practice of diagnosing and monitoring diseases where the patient is located, as opposed to traditional treatment conducted solely in a medical laboratory or other clinical setting. POCT has been less common in the recent past due to a lack of portable medical devices capable of facilitating effective medical testing. However, recent growth has occurred in this field due to advances in diagnostic technologies, device miniaturization, and progress in wearable electronics. Among these developments, electrochemical sensors have attracted interest in the POCT field due to their high sensitivity, compact size, and affordability. They are used in various applications, from disease diagnosis to health status monitoring. In this paper we explore recent advancements in electrochemical sensors, the methods of fabricating them, and the various types of sensing mechanisms that can be used. Furthermore, we delve into methods for immobilizing specific biorecognition elements, including enzymes, antibodies, and aptamers, onto electrode surfaces and how these sensors are used in real-world POCT settings.
{"title":"Electrochemical biosensors for point-of-care testing","authors":"Jinsol Kim, Juho Jeong, Seung Hwan Ko","doi":"10.1007/s42242-024-00301-6","DOIUrl":"https://doi.org/10.1007/s42242-024-00301-6","url":null,"abstract":"<p>Point-of-care testing (POCT) is the practice of diagnosing and monitoring diseases where the patient is located, as opposed to traditional treatment conducted solely in a medical laboratory or other clinical setting. POCT has been less common in the recent past due to a lack of portable medical devices capable of facilitating effective medical testing. However, recent growth has occurred in this field due to advances in diagnostic technologies, device miniaturization, and progress in wearable electronics. Among these developments, electrochemical sensors have attracted interest in the POCT field due to their high sensitivity, compact size, and affordability. They are used in various applications, from disease diagnosis to health status monitoring. In this paper we explore recent advancements in electrochemical sensors, the methods of fabricating them, and the various types of sensing mechanisms that can be used. Furthermore, we delve into methods for immobilizing specific biorecognition elements, including enzymes, antibodies, and aptamers, onto electrode surfaces and how these sensors are used in real-world POCT settings.</p><h3 data-test=\"abstract-sub-heading\">Graphic abstract</h3>","PeriodicalId":48627,"journal":{"name":"Bio-Design and Manufacturing","volume":"54 1","pages":""},"PeriodicalIF":7.9,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141774009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-22DOI: 10.1007/s42242-024-00300-7
Youngchan Kim, Eunseung Hwang, Chang Kai, Kaichen Xu, Heng Pan, Sukjoon Hong
Recently, the increasing interest in wearable technology for personal healthcare and smart virtual/augmented reality applications has led to the development of facile fabrication methods. Lasers have long been used to develop original solutions to such challenging technological problems due to their remote, sterile, rapid, and site-selective processing of materials. In this review, recent developments in relevant laser processes are summarized under two separate categories. First, transformative approaches, such as for laser-induced graphene, are introduced. In addition to design optimization and the alteration of a native substrate, the latest advances under a transformative approach now enable more complex material compositions and multilayer device configurations through the simultaneous transformation of heterogeneous precursors, or the sequential addition of functional layers coupled with other electronic elements. In addition, the more conventional laser techniques, such as ablation, sintering, and synthesis, can still be used to enhance the functionality of an entire system through the expansion of applicable materials and the adoption of new mechanisms. Later, various wearable device components developed through the corresponding laser processes are discussed, with an emphasis on chemical/physical sensors and energy devices. In addition, special attention is given to applications that use multiple laser sources or processes, which lay the foundation for the all-laser fabrication of wearable devices.