T. Katayama, S. Nozawa, Y. Umena, Sung-Hak Lee, T. Togashi, S. Owada, M. Yabashi
An experimental system, SPINETT (SACLA Pump-probe INstrumEnt for Tracking Transient dynamics), dedicated for ultrafast pump-probe experiments using X-ray free-electron lasers has been developed. SPINETT consists of a chamber operated under 1 atm helium pressure, two Von Hamos spectrometers, and a large two-dimensional detector having a short work distance. This platform covers complementary X-ray techniques; one can perform time-resolved X-ray absorption spectroscopy, time-resolved X-ray emission spectroscopy, and time-resolved X-ray diffuse scattering. Two types of liquid injectors have been prepared for low-viscosity chemical solutions and for protein microcrystals embedded in a matrix. We performed a test experiment at SPring-8 Angstrom Compact free-electron LAser and demonstrated the capability of SPINETT to obtain the local electronic structure and geometrical information simultaneously.
{"title":"A versatile experimental system for tracking ultrafast chemical reactions with X-ray free-electron lasers","authors":"T. Katayama, S. Nozawa, Y. Umena, Sung-Hak Lee, T. Togashi, S. Owada, M. Yabashi","doi":"10.1063/1.5111795","DOIUrl":"https://doi.org/10.1063/1.5111795","url":null,"abstract":"An experimental system, SPINETT (SACLA Pump-probe INstrumEnt for Tracking Transient dynamics), dedicated for ultrafast pump-probe experiments using X-ray free-electron lasers has been developed. SPINETT consists of a chamber operated under 1 atm helium pressure, two Von Hamos spectrometers, and a large two-dimensional detector having a short work distance. This platform covers complementary X-ray techniques; one can perform time-resolved X-ray absorption spectroscopy, time-resolved X-ray emission spectroscopy, and time-resolved X-ray diffuse scattering. Two types of liquid injectors have been prepared for low-viscosity chemical solutions and for protein microcrystals embedded in a matrix. We performed a test experiment at SPring-8 Angstrom Compact free-electron LAser and demonstrated the capability of SPINETT to obtain the local electronic structure and geometrical information simultaneously.","PeriodicalId":48683,"journal":{"name":"Structural Dynamics-Us","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1063/1.5111795","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44252937","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-08-28eCollection Date: 2019-09-01DOI: 10.1063/1.5116878
Jason C Cole, Seth Wiggin, Francesca Stanzione
The Cambridge Structural Database (CSD) is the world's largest and most comprehensive collection of organic, organometallic, and metal-organic crystal structure information. Analyses using the data have wide impact across the chemical sciences in allowing understanding of structural preferences. In this short review, we illustrate the more common methods by which CSD data influence molecular design. We show how more data could lead to more refined insights into the future using a simple example of trifluoromethylphenyl fragments, highlighting how with sufficient data one can build a reasonable model of geometric change in a chemical fragment with torsional rotation, and show some recent examples where the CSD has been used in conjunction with other methods to provide design ideas and more computationally tractable workflows for derivation of useful insights into structural design.
{"title":"New insights and innovation from a million crystal structures in the Cambridge Structural Database.","authors":"Jason C Cole, Seth Wiggin, Francesca Stanzione","doi":"10.1063/1.5116878","DOIUrl":"https://doi.org/10.1063/1.5116878","url":null,"abstract":"<p><p>The Cambridge Structural Database (CSD) is the world's largest and most comprehensive collection of organic, organometallic, and metal-organic crystal structure information. Analyses using the data have wide impact across the chemical sciences in allowing understanding of structural preferences. In this short review, we illustrate the more common methods by which CSD data influence molecular design. We show how more data could lead to more refined insights into the future using a simple example of trifluoromethylphenyl fragments, highlighting how with sufficient data one can build a reasonable model of geometric change in a chemical fragment with torsional rotation, and show some recent examples where the CSD has been used in conjunction with other methods to provide design ideas and more computationally tractable workflows for derivation of useful insights into structural design.</p>","PeriodicalId":48683,"journal":{"name":"Structural Dynamics-Us","volume":"6 5","pages":"054301"},"PeriodicalIF":2.8,"publicationDate":"2019-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1063/1.5116878","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41216716","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-08-27eCollection Date: 2019-07-01DOI: 10.1063/1.5118005
Constant Schouder, Adam S Chatterley, Florent Calvo, Lars Christiansen, Henrik Stapelfeldt
Dimers of tetracene molecules are formed inside helium nanodroplets and identified through covariance analysis of the emission directions of kinetic tetracene cations stemming from femtosecond laser-induced Coulomb explosion. Next, the dimers are aligned in either one or three dimensions under field-free conditions by a nonresonant, moderately intense laser pulse. The experimental angular covariance maps of the tetracene ions are compared to calculated covariance maps for seven different dimer conformations and found to be consistent with four of these. Additional measurements of the alignment-dependent strong-field ionization yield of the dimer narrow the possible conformations down to either a slipped-parallel or parallel-slightly rotated structure. According to our quantum chemistry calculations, these are the two most stable gas-phase conformations of the dimer and one of them is favorable for singlet fission.
{"title":"Structure determination of the tetracene dimer in helium nanodroplets using femtosecond strong-field ionization.","authors":"Constant Schouder, Adam S Chatterley, Florent Calvo, Lars Christiansen, Henrik Stapelfeldt","doi":"10.1063/1.5118005","DOIUrl":"https://doi.org/10.1063/1.5118005","url":null,"abstract":"<p><p>Dimers of tetracene molecules are formed inside helium nanodroplets and identified through covariance analysis of the emission directions of kinetic tetracene cations stemming from femtosecond laser-induced Coulomb explosion. Next, the dimers are aligned in either one or three dimensions under field-free conditions by a nonresonant, moderately intense laser pulse. The experimental angular covariance maps of the tetracene ions are compared to calculated covariance maps for seven different dimer conformations and found to be consistent with four of these. Additional measurements of the alignment-dependent strong-field ionization yield of the dimer narrow the possible conformations down to either a slipped-parallel or parallel-slightly rotated structure. According to our quantum chemistry calculations, these are the two most stable gas-phase conformations of the dimer and one of them is favorable for singlet fission.</p>","PeriodicalId":48683,"journal":{"name":"Structural Dynamics-Us","volume":"6 4","pages":"044301"},"PeriodicalIF":2.8,"publicationDate":"2019-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1063/1.5118005","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41216718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-07-29eCollection Date: 2019-07-01DOI: 10.1063/1.5111501
L Foglia, F Capotondi, H Höppner, A Gessini, L Giannessi, G Kurdi, I Lopez Quintas, C Masciovecchio, M Kiskinova, R Mincigrucci, D Naumenko, I P Nikolov, E Pedersoli, G M Rossi, A Simoncig, F Bencivenga
The rapid development of extreme ultraviolet (EUV) and x-ray ultrafast coherent light sources such as free electron lasers (FELs) has triggered the extension of wave-mixing techniques to short wavelengths. This class of experiments, based on the interaction of matter with multiple light pulses through the Nth order susceptibility, holds the promise of combining intrinsic ultrafast time resolution and background-free signal detection with nanometer spatial resolution and chemical specificity. A successful approach in this direction has been the combination of the unique characteristics of the seeded FEL FERMI with dedicated four-wave-mixing (FWM) setups, which leads to the demonstration of EUV-based transient grating (TG) spectroscopy. In this perspective paper, we discuss how the TG approach can be extended toward more general FWM spectroscopies by exploring the intrinsic multiparameter nature of nonlinear processes, which derives from the ability of controlling the properties of each field independently.
{"title":"Exploring the multiparameter nature of EUV-visible wave mixing at the FERMI FEL.","authors":"L Foglia, F Capotondi, H Höppner, A Gessini, L Giannessi, G Kurdi, I Lopez Quintas, C Masciovecchio, M Kiskinova, R Mincigrucci, D Naumenko, I P Nikolov, E Pedersoli, G M Rossi, A Simoncig, F Bencivenga","doi":"10.1063/1.5111501","DOIUrl":"https://doi.org/10.1063/1.5111501","url":null,"abstract":"<p><p>The rapid development of extreme ultraviolet (EUV) and x-ray ultrafast coherent light sources such as free electron lasers (FELs) has triggered the extension of wave-mixing techniques to short wavelengths. This class of experiments, based on the interaction of matter with multiple light pulses through the <i>N</i>th order susceptibility, holds the promise of combining intrinsic ultrafast time resolution and background-free signal detection with nanometer spatial resolution and chemical specificity. A successful approach in this direction has been the combination of the unique characteristics of the seeded FEL FERMI with dedicated four-wave-mixing (FWM) setups, which leads to the demonstration of EUV-based transient grating (TG) spectroscopy. In this perspective paper, we discuss how the TG approach can be extended toward more general FWM spectroscopies by exploring the intrinsic multiparameter nature of nonlinear processes, which derives from the ability of controlling the properties of each field independently.</p>","PeriodicalId":48683,"journal":{"name":"Structural Dynamics-Us","volume":"6 4","pages":"040901"},"PeriodicalIF":2.8,"publicationDate":"2019-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1063/1.5111501","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41216717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A publication is an important narrative of the work done and interpretations made by researchers securing a scientific discovery. As The Royal Society neatly states though, “Nullius in verba” (“Take nobody's word for it”), whereby the role of the underpinning data is paramount. Therefore, the objectivity that preserving that data within the article provides is due to readers being able to check the calculation decisions of the authors. But how to achieve full data archiving? This is the raw data archiving challenge, in size and need for correct metadata. Processed diffraction data and final derived molecular coordinates archiving in crystallography have achieved an exemplary state of the art relative to most fields. One can credit IUCr with developing exemplary peer review procedures, of narrative, underpinning structure factors and coordinate data and validation report, through its checkcif development and submission system introduced for Acta Cryst. C and subsequently developed for its other chemistry journals. The crystallographic databases likewise have achieved amazing success and sustainability these last 50 years or so. The wider science data scene is celebrating the FAIR data accord, namely, that data be Findable, Accessible, Interoperable, and Reusable [Wilkinson et al., “Comment: The FAIR guiding principles for scientific data management and stewardship,” Sci. Data 3, 160018 (2016)]. Some social scientists also emphasize more than FAIR being needed, the data should be “FACT,” which is an acronym meaning Fair, Accurate, Confidential, and Transparent [van der Aalst et al., “Responsible data science,” Bus Inf. Syst. Eng. 59(5), 311–313 (2017)], this being the issue of ensuring reproducibility not just reusability. (Confidentiality of data not likely being relevant to our data obviously.) Acta Cryst. B, C, E, and IUCrData are the closest I know to being both FACT and FAIR where I repeat for due emphasis: the narrative, the automatic “general” validation checks, and the underpinning data are checked thoroughly by subject specialists (i.e., the specialist referees). IUCr Journals are also the best that I know of for encouraging and then expediting the citation of the DOI for a raw diffraction dataset in a publication; examples can be found in IUCrJ, Acta Cryst D, and Acta Cryst F. The wish for a checkcif for raw diffraction data has been championed by the IUCr Diffraction Data Deposition Working Group and its successor, the IUCr Committee on Data.
出版物是对研究人员为确保科学发现所做工作和所做解释的重要叙述。然而,正如英国皇家学会巧妙地指出的那样,“Nullius in verba”(“不相信任何人的话”),即基础数据的作用至关重要。因此,在文章中保留这些数据所提供的客观性是因为读者能够检查作者的计算决策。但是如何实现完整的数据归档呢?这是原始数据归档的难题,在大小和对正确元数据的需求方面都是如此。晶体学中经过处理的衍射数据和最终导出的分子坐标存档已经实现了相对于大多数领域的示例性技术状态。通过为Acta Cryst引入的checkcif开发和提交系统,IUCr开发了示例性的同行评审程序,包括叙述、基础结构因素以及协调数据和验证报告。C,随后为其其他化学期刊开发。在过去的50年里,晶体学数据库同样取得了惊人的成功和可持续性 更广泛的科学数据领域正在庆祝FAIR数据协议,即数据是可查找、可访问、可互操作和可重复使用的[Wilkinson等人,“评论:科学数据管理和管理的FAIR指导原则”,《科学数据》316018(2016)]。一些社会科学家还强调,除了需要FAIR之外,数据还应该是“FACT”,这是一个缩写词,意思是公平、准确、机密和透明[van der Aalst et al.,“负责任的数据科学”,Bus Inf.Syst.Eng.59(5),311-313(2017)],这是确保再现性而不仅仅是可重用性的问题。(数据的保密性显然与我们的数据无关。)《晶体报》。B、 C、E和IUCrData是我所知道的最接近FACT和FAIR的数据,我在这里重复强调:叙述、自动“一般”验证检查和基础数据由主题专家(即专家裁判)彻底检查。IUCr期刊也是我所知道的最好的期刊,它鼓励并加快了出版物中原始衍射数据集的DOI引用;实例可在IUCrJ、Acta Cryst D和Acta Crystal F中找到。IUCr衍射数据沉积工作组及其继任者IUCr数据委员会一直支持对原始衍射数据进行核对。
{"title":"FACT and FAIR with Big Data allows objectivity in science: The view of crystallography","authors":"J. Helliwell","doi":"10.1063/1.5124439","DOIUrl":"https://doi.org/10.1063/1.5124439","url":null,"abstract":"A publication is an important narrative of the work done and interpretations made by researchers securing a scientific discovery. As The Royal Society neatly states though, “Nullius in verba” (“Take nobody's word for it”), whereby the role of the underpinning data is paramount. Therefore, the objectivity that preserving that data within the article provides is due to readers being able to check the calculation decisions of the authors. But how to achieve full data archiving? This is the raw data archiving challenge, in size and need for correct metadata. Processed diffraction data and final derived molecular coordinates archiving in crystallography have achieved an exemplary state of the art relative to most fields. One can credit IUCr with developing exemplary peer review procedures, of narrative, underpinning structure factors and coordinate data and validation report, through its checkcif development and submission system introduced for Acta Cryst. C and subsequently developed for its other chemistry journals. The crystallographic databases likewise have achieved amazing success and sustainability these last 50 years or so. The wider science data scene is celebrating the FAIR data accord, namely, that data be Findable, Accessible, Interoperable, and Reusable [Wilkinson et al., “Comment: The FAIR guiding principles for scientific data management and stewardship,” Sci. Data 3, 160018 (2016)]. Some social scientists also emphasize more than FAIR being needed, the data should be “FACT,” which is an acronym meaning Fair, Accurate, Confidential, and Transparent [van der Aalst et al., “Responsible data science,” Bus Inf. Syst. Eng. 59(5), 311–313 (2017)], this being the issue of ensuring reproducibility not just reusability. (Confidentiality of data not likely being relevant to our data obviously.) Acta Cryst. B, C, E, and IUCrData are the closest I know to being both FACT and FAIR where I repeat for due emphasis: the narrative, the automatic “general” validation checks, and the underpinning data are checked thoroughly by subject specialists (i.e., the specialist referees). IUCr Journals are also the best that I know of for encouraging and then expediting the citation of the DOI for a raw diffraction dataset in a publication; examples can be found in IUCrJ, Acta Cryst D, and Acta Cryst F. The wish for a checkcif for raw diffraction data has been championed by the IUCr Diffraction Data Deposition Working Group and its successor, the IUCr Committee on Data.","PeriodicalId":48683,"journal":{"name":"Structural Dynamics-Us","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2019-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1063/1.5124439","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46383757","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
François Auvray, D. Dennetiere, A. Giuliani, F. Jamme, F. Wien, B. Nay, S. Zirah, F. Polack, C. Menneglier, B. Lagarde, J. Hirst, M. Réfrégiers
Ultraviolet (UV) synchrotron radiation circular dichroism (SRCD) spectroscopy has made an important contribution to the determination and understanding of the structure of bio-molecules. In this paper, we report an innovative approach that we term time-resolved SRCD (tr-SRCD), which overcomes the limitations of current broadband UV SRCD setups. This technique allows accessing ultrafast time scales (down to nanoseconds), previously measurable only by other methods, such as infrared (IR), nuclear magnetic resonance (NMR), fluorescence and absorbance spectroscopies, and small angle X-ray scattering (SAXS). The tr-SRCD setup takes advantage of the natural polarization of the synchrotron radiation emitted by a bending magnet to record broadband UV CD faster than any current SRCD setup, improving the acquisition speed from 10 mHz to 130 Hz and the accessible temporal resolution by several orders of magnitude. We illustrate the new approach by following the isomer concentration changes of an azopeptide after a photoisomerization. This breakthrough in SRCD spectroscopy opens up a wide range of potential applications to the detailed characterization of biological processes, such as protein folding and protein-ligand binding.
{"title":"Time resolved transient circular dichroism spectroscopy using synchrotron natural polarization","authors":"François Auvray, D. Dennetiere, A. Giuliani, F. Jamme, F. Wien, B. Nay, S. Zirah, F. Polack, C. Menneglier, B. Lagarde, J. Hirst, M. Réfrégiers","doi":"10.1063/1.5120346","DOIUrl":"https://doi.org/10.1063/1.5120346","url":null,"abstract":"Ultraviolet (UV) synchrotron radiation circular dichroism (SRCD) spectroscopy has made an important contribution to the determination and understanding of the structure of bio-molecules. In this paper, we report an innovative approach that we term time-resolved SRCD (tr-SRCD), which overcomes the limitations of current broadband UV SRCD setups. This technique allows accessing ultrafast time scales (down to nanoseconds), previously measurable only by other methods, such as infrared (IR), nuclear magnetic resonance (NMR), fluorescence and absorbance spectroscopies, and small angle X-ray scattering (SAXS). The tr-SRCD setup takes advantage of the natural polarization of the synchrotron radiation emitted by a bending magnet to record broadband UV CD faster than any current SRCD setup, improving the acquisition speed from 10 mHz to 130 Hz and the accessible temporal resolution by several orders of magnitude. We illustrate the new approach by following the isomer concentration changes of an azopeptide after a photoisomerization. This breakthrough in SRCD spectroscopy opens up a wide range of potential applications to the detailed characterization of biological processes, such as protein folding and protein-ligand binding.","PeriodicalId":48683,"journal":{"name":"Structural Dynamics-Us","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2019-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1063/1.5120346","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42006560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Khadijeh Khalili, L. Inhester, C. Arnold, R. Welsch, J. W. Andreasen, R. Santra
Theoretical and experimental methodologies that can characterize electronic and nuclear dynamics, and the coupling between the two, are needed to understand photoinduced charge transfer in molecular building blocks used in organic photovoltaics. Ongoing developments in ultrafast pump-probe techniques such as time-resolved X-ray absorption spectroscopy, using an X-ray free electron laser in combination with an ultraviolet femtosecond laser, present desirable probes of coupled electronic and nuclear dynamics. In this work, we investigate the charge transfer dynamics of a donor-acceptor pair, which is widely used as a building block in low bandgap block copolymers for organic photovoltaics. We simulate the dynamics of the benzothiadiazole-thiophene molecule upon photoionization with a vacuum ultraviolet (VUV) pulse and study the potential of probing the subsequent charge dynamics using time-resolved X-ray absorption spectroscopy. The photoinduced dynamics are calculated using on-the-fly nonadiabatic molecular dynamics simulations based on Tully's Fewest Switches Surface Hopping approach. We calculate the X-ray absorption spectrum as a function of time after ionization at the Hartree-Fock level. The changes in the time-resolved X-ray absorption spectrum at the sulfur K-edge reveal the ultrafast charge carrier dynamics in the molecule occurring on a femtosecond time scale. These theoretical findings anticipate that ultrafast time-resolved X-ray absorption spectroscopy using an X-ray probe in combination with a VUV pump offers a new approach to investigate the detailed dynamics of organic photovoltaic materials.
{"title":"Hole dynamics in a photovoltaic donor-acceptor couple revealed by simulated time-resolved X-ray absorption spectroscopy","authors":"Khadijeh Khalili, L. Inhester, C. Arnold, R. Welsch, J. W. Andreasen, R. Santra","doi":"10.1063/1.5097653","DOIUrl":"https://doi.org/10.1063/1.5097653","url":null,"abstract":"Theoretical and experimental methodologies that can characterize electronic and nuclear dynamics, and the coupling between the two, are needed to understand photoinduced charge transfer in molecular building blocks used in organic photovoltaics. Ongoing developments in ultrafast pump-probe techniques such as time-resolved X-ray absorption spectroscopy, using an X-ray free electron laser in combination with an ultraviolet femtosecond laser, present desirable probes of coupled electronic and nuclear dynamics. In this work, we investigate the charge transfer dynamics of a donor-acceptor pair, which is widely used as a building block in low bandgap block copolymers for organic photovoltaics. We simulate the dynamics of the benzothiadiazole-thiophene molecule upon photoionization with a vacuum ultraviolet (VUV) pulse and study the potential of probing the subsequent charge dynamics using time-resolved X-ray absorption spectroscopy. The photoinduced dynamics are calculated using on-the-fly nonadiabatic molecular dynamics simulations based on Tully's Fewest Switches Surface Hopping approach. We calculate the X-ray absorption spectrum as a function of time after ionization at the Hartree-Fock level. The changes in the time-resolved X-ray absorption spectrum at the sulfur K-edge reveal the ultrafast charge carrier dynamics in the molecule occurring on a femtosecond time scale. These theoretical findings anticipate that ultrafast time-resolved X-ray absorption spectroscopy using an X-ray probe in combination with a VUV pump offers a new approach to investigate the detailed dynamics of organic photovoltaic materials.","PeriodicalId":48683,"journal":{"name":"Structural Dynamics-Us","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1063/1.5097653","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46409219","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The prospect of single particle imaging with atomic resolution is one of the scientific drivers for the development of X-ray free-electron lasers. The assumption since the beginning has been that damage to the sample caused by intense X-ray pulses is one of the limiting factors for achieving subnanometer X-ray imaging of single particles and that X-ray pulses need to be as short as possible. Based on the molecular dynamics simulations of proteins in X-ray fields of various durations (5 fs, 25 fs, and 50 fs), we show that the noise in the diffracted signal caused by radiation damage is less than what can be expected from other sources, such as sample inhomogeneity and X-ray shot-to-shot variations. These findings show a different aspect of the feasibility of high-resolution single particle imaging using free-electron lasers, where employing X-ray pulses of longer durations could still provide a useful diffraction signal above the noise due to the Coulomb explosion.
{"title":"Is radiation damage the limiting factor in high-resolution single particle imaging with X-ray free-electron lasers?","authors":"C. Östlin, N. Tîmneanu, C. Caleman, A. V. Martin","doi":"10.1063/1.5098309","DOIUrl":"https://doi.org/10.1063/1.5098309","url":null,"abstract":"The prospect of single particle imaging with atomic resolution is one of the scientific drivers for the development of X-ray free-electron lasers. The assumption since the beginning has been that damage to the sample caused by intense X-ray pulses is one of the limiting factors for achieving subnanometer X-ray imaging of single particles and that X-ray pulses need to be as short as possible. Based on the molecular dynamics simulations of proteins in X-ray fields of various durations (5 fs, 25 fs, and 50 fs), we show that the noise in the diffracted signal caused by radiation damage is less than what can be expected from other sources, such as sample inhomogeneity and X-ray shot-to-shot variations. These findings show a different aspect of the feasibility of high-resolution single particle imaging using free-electron lasers, where employing X-ray pulses of longer durations could still provide a useful diffraction signal above the noise due to the Coulomb explosion.","PeriodicalId":48683,"journal":{"name":"Structural Dynamics-Us","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1063/1.5098309","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45777561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
B. Hafke, T. Witte, D. Janoschka, P. Dreher, F. Meyer Zu Heringdorf, M. Horn-von Hoegen
Strong optical irradiation of indium atomic wires on a Si(111) surface causes the nonthermal structural transition from the (8 × 2) reconstructed ground state to an excited (4 × 1) state. The immediate recovery of the system to the ground state is hindered by an energy barrier for the collective motion of the indium atoms along the reaction coordinate from the (4 × 1) to the (8 × 2) state. This metastable, supercooled state can only recover through nucleation of the ground state at defects like adsorbates or step edges. Subsequently, a recovery front propagates with constant velocity across the surface and the (8 × 2) ground state is reinstated. In a combined femtosecond electron diffraction and photoelectron emission microscopy study, we determined—based on the step morphology—a velocity of this recovery front of ∼100 m/s.
{"title":"Condensation of ground state from a supercooled phase in the Si(111)-(4 × 1) → (8 × 2)-indium atomic wire system","authors":"B. Hafke, T. Witte, D. Janoschka, P. Dreher, F. Meyer Zu Heringdorf, M. Horn-von Hoegen","doi":"10.1063/1.5111636","DOIUrl":"https://doi.org/10.1063/1.5111636","url":null,"abstract":"Strong optical irradiation of indium atomic wires on a Si(111) surface causes the nonthermal structural transition from the (8 × 2) reconstructed ground state to an excited (4 × 1) state. The immediate recovery of the system to the ground state is hindered by an energy barrier for the collective motion of the indium atoms along the reaction coordinate from the (4 × 1) to the (8 × 2) state. This metastable, supercooled state can only recover through nucleation of the ground state at defects like adsorbates or step edges. Subsequently, a recovery front propagates with constant velocity across the surface and the (8 × 2) ground state is reinstated. In a combined femtosecond electron diffraction and photoelectron emission microscopy study, we determined—based on the step morphology—a velocity of this recovery front of ∼100 m/s.","PeriodicalId":48683,"journal":{"name":"Structural Dynamics-Us","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1063/1.5111636","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41484597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-06-28DOI: 10.1002/9781119605775.ch2
{"title":"Establishment of the Structural Equation of Motion","authors":"","doi":"10.1002/9781119605775.ch2","DOIUrl":"https://doi.org/10.1002/9781119605775.ch2","url":null,"abstract":"","PeriodicalId":48683,"journal":{"name":"Structural Dynamics-Us","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2019-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/9781119605775.ch2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41779399","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}