Pub Date : 2024-08-17DOI: 10.1007/s12155-024-10798-5
Nogueira Cleitiane da Costa, Mariza Gabryella Brito dos Santos, Francisco Bruno Ferreira de Freitas, Glória Louine Vital da Costa, Gleyson Batista de Oliveira, Isabela Oliveira Costa, Domingos Fabiano de Santana Souza, Everaldo Silvino dos Santos, Carlos Eduardo de Araújo Padilha
Saponins are surface-active glycosides successfully applied to produce sugars via enzymatic hydrolysis and fermentation. However, there are several reports that saponins compromise the integrity of yeast cells, which would limit ethanol titers. In this context, the present study evaluated the role of saponins from sisal (Agave sisalana) on the action of cellulases and yeast within the context of cellulosic ethanol. Microcrystalline cellulose, pretreated coconut fiber samples, and pretreated corncob samples were evaluated as cellulose sources. Sisal saponins increased cellulolytic activity in adsorption (from 20.9 to 46.4%) and enzymatic hydrolysis (33.5 to 63.0%, using alkaline-pretreated coconut fiber as substrate). However, the amount of released sugars remained unchanged in tests with pretreated biomasses. Glucose released in the hydrolysis of microcrystalline cellulose reduced from 22.03 to 19.09 g/L using 10% (w/w) saponins. One percent (w/w) saponins caused an abrupt decrease in the viability of Saccharomyces cerevisiae cells within a few minutes (from 98.07 to 29.57% in 240 min), and ethanol was not produced in the simultaneous saccharification and fermentation. For this reason, sisal saponins have not replicated the success of other types of saponins and are unsuitable for cellulosic ethanol production.
{"title":"Effects of Sisal Saponins on Enzymatic Hydrolysis and Fermentation of Lignocellulosic Biomass","authors":"Nogueira Cleitiane da Costa, Mariza Gabryella Brito dos Santos, Francisco Bruno Ferreira de Freitas, Glória Louine Vital da Costa, Gleyson Batista de Oliveira, Isabela Oliveira Costa, Domingos Fabiano de Santana Souza, Everaldo Silvino dos Santos, Carlos Eduardo de Araújo Padilha","doi":"10.1007/s12155-024-10798-5","DOIUrl":"10.1007/s12155-024-10798-5","url":null,"abstract":"<div><p>Saponins are surface-active glycosides successfully applied to produce sugars via enzymatic hydrolysis and fermentation. However, there are several reports that saponins compromise the integrity of yeast cells, which would limit ethanol titers. In this context, the present study evaluated the role of saponins from sisal (<i>Agave sisalana</i>) on the action of cellulases and yeast within the context of cellulosic ethanol. Microcrystalline cellulose, pretreated coconut fiber samples, and pretreated corncob samples were evaluated as cellulose sources. Sisal saponins increased cellulolytic activity in adsorption (from 20.9 to 46.4%) and enzymatic hydrolysis (33.5 to 63.0%, using alkaline-pretreated coconut fiber as substrate). However, the amount of released sugars remained unchanged in tests with pretreated biomasses. Glucose released in the hydrolysis of microcrystalline cellulose reduced from 22.03 to 19.09 g/L using 10% (w/w) saponins. One percent (w/w) saponins caused an abrupt decrease in the viability of <i>Saccharomyces cerevisiae</i> cells within a few minutes (from 98.07 to 29.57% in 240 min), and ethanol was not produced in the simultaneous saccharification and fermentation. For this reason, sisal saponins have not replicated the success of other types of saponins and are unsuitable for cellulosic ethanol production.\u0000</p></div>","PeriodicalId":487,"journal":{"name":"BioEnergy Research","volume":"17 4","pages":"2200 - 2212"},"PeriodicalIF":3.1,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142184406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-17DOI: 10.1007/s12155-024-10794-9
C. Sanjurjo, E. Rodríguez, M. Bartolomé, R. González, A. Hernández Battez
Haematococcus pluvialis microalgae have emerged as a prevalent source of antioxidants in cosmetics and nutritional products. Additionally, numerous researchers have posited the potential of this microalgae to produce fatty acid methyl esters (FAME). Nevertheless, the optimization of the production of FAME from H. pluvialis oil has not been investigated. In this study, the transesterification reaction of H. pluvialis bio-oil was optimized using the response surface methodology, resulting in optimal experimental conditions for an oil to methanol ratio of 1:4.17, at a temperature of 80 °C, with a reaction time of 47 min. The resulting FAME was found to not comply with the biodiesel standard in terms of the content of polyunsaturated fatty acids (6.02%), as well as kinematic viscosity (7.02 mm2/s). Further study is required to reduce these parameters in order to ensure biodiesel quality and compliance with the standard. Nevertheless, its high flash point value of 150 °C and its high thermal stability within the temperature range of 211–290 °C suggest the potential for utilization as a biolubricant.
血球藻微藻已成为化妆品和营养品中抗氧化剂的主要来源。此外,许多研究人员都认为这种微藻具有生产脂肪酸甲酯(FAME)的潜力。然而,关于如何优化利用 H. pluvialis 油生产 FAME 的问题还没有进行过研究。在本研究中,利用响应面方法优化了 H. pluvialis 生物油的酯交换反应,得出了最佳实验条件:油与甲醇的比例为 1:4.17,温度为 80 °C,反应时间为 47 分钟。结果发现,FAME 的多不饱和脂肪酸含量(6.02%)和运动粘度(7.02 mm2/s)不符合生物柴油标准。需要进一步研究如何降低这些参数,以确保生物柴油的质量和符合标准。不过,生物柴油 150 °C 的高闪点值和 211-290 °C 温度范围内的高热稳定性表明,生物柴油具有用作生物润滑剂的潜力。
{"title":"Optimizing the Conversion of Bio-Oil from Haematococcus pluvialis to Fatty Acid Methyl Esters","authors":"C. Sanjurjo, E. Rodríguez, M. Bartolomé, R. González, A. Hernández Battez","doi":"10.1007/s12155-024-10794-9","DOIUrl":"10.1007/s12155-024-10794-9","url":null,"abstract":"<div><p><i>Haematococcus pluvialis</i> microalgae have emerged as a prevalent source of antioxidants in cosmetics and nutritional products. Additionally, numerous researchers have posited the potential of this microalgae to produce fatty acid methyl esters (FAME). Nevertheless, the optimization of the production of FAME from <i>H. pluvialis</i> oil has not been investigated. In this study, the transesterification reaction of <i>H. pluvialis</i> bio-oil was optimized using the response surface methodology, resulting in optimal experimental conditions for an oil to methanol ratio of 1:4.17, at a temperature of 80 °C, with a reaction time of 47 min. The resulting FAME was found to not comply with the biodiesel standard in terms of the content of polyunsaturated fatty acids (6.02%), as well as kinematic viscosity (7.02 mm<sup>2</sup>/s). Further study is required to reduce these parameters in order to ensure biodiesel quality and compliance with the standard. Nevertheless, its high flash point value of 150 °C and its high thermal stability within the temperature range of 211–290 °C suggest the potential for utilization as a biolubricant.\u0000</p></div>","PeriodicalId":487,"journal":{"name":"BioEnergy Research","volume":"17 4","pages":"2374 - 2383"},"PeriodicalIF":3.1,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12155-024-10794-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142184409","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-16DOI: 10.1007/s12155-024-10797-6
Mudasir Akbar Shah, Wasif Farooq, Tasrin Shahnaz, Muthumariappan Akilarasan
Electrocatalytic upgradation of biomass for chemicals and energy production is an emerging approach to address the environmental issues related to chemicals and energy production. If coupled with renewable energy, this approach will further enhance the sustainability goals for the future energy and chemical sector. This work critically reviews the progress on oxidative and reductive electrocatalytic upgrading of biomass-derived chemicals such as glycerol, sorbitol, levulinic acid, 5-hydroxymethylfurfural, furfural, and bio-oil to value-added products, including 2.5-dimethyl tetrahydrofuran, 2.5-dihydroxy methyl tetrahydro furan, 2-hydroxymethyl-5-(methyl amino methyl) furan, and 2,5-furan dicarboxylic acid with simulations production of hydrogen (H2) energy. The role of the mediator in electrocatalytic upgradation serves as a high-efficiency catalytic platform for oxidation and reduction reactions. Pd and Ru exhibit promising attributes such as durability and superior electrocatalytic hydrogenation performance. Additionally, this review discusses various methods for enhancing biofuel through a multitude of approaches, such as hydrocracking, hydrotreatment, supercritical fluid processing, steam reforming, catalytic cracking, esterification, emulsification, hydrodeoxygenation, and electrocatalytic hydrogenation. Techno-economic assessment of electrocatalytic conversion of biomass to chemicals and energy are explored to identify the key contributing factors toward the economic viability of electrocatalytic upgradation of biomass for chemical and energy. Finally, research gaps are identified for further work along with economic assessment of electrocatalytic upgradation of biomass technology with and without integration of renewable energy.