Pub Date : 2024-08-17DOI: 10.1007/s12155-024-10794-9
C. Sanjurjo, E. Rodríguez, M. Bartolomé, R. González, A. Hernández Battez
Haematococcus pluvialis microalgae have emerged as a prevalent source of antioxidants in cosmetics and nutritional products. Additionally, numerous researchers have posited the potential of this microalgae to produce fatty acid methyl esters (FAME). Nevertheless, the optimization of the production of FAME from H. pluvialis oil has not been investigated. In this study, the transesterification reaction of H. pluvialis bio-oil was optimized using the response surface methodology, resulting in optimal experimental conditions for an oil to methanol ratio of 1:4.17, at a temperature of 80 °C, with a reaction time of 47 min. The resulting FAME was found to not comply with the biodiesel standard in terms of the content of polyunsaturated fatty acids (6.02%), as well as kinematic viscosity (7.02 mm2/s). Further study is required to reduce these parameters in order to ensure biodiesel quality and compliance with the standard. Nevertheless, its high flash point value of 150 °C and its high thermal stability within the temperature range of 211–290 °C suggest the potential for utilization as a biolubricant.
血球藻微藻已成为化妆品和营养品中抗氧化剂的主要来源。此外,许多研究人员都认为这种微藻具有生产脂肪酸甲酯(FAME)的潜力。然而,关于如何优化利用 H. pluvialis 油生产 FAME 的问题还没有进行过研究。在本研究中,利用响应面方法优化了 H. pluvialis 生物油的酯交换反应,得出了最佳实验条件:油与甲醇的比例为 1:4.17,温度为 80 °C,反应时间为 47 分钟。结果发现,FAME 的多不饱和脂肪酸含量(6.02%)和运动粘度(7.02 mm2/s)不符合生物柴油标准。需要进一步研究如何降低这些参数,以确保生物柴油的质量和符合标准。不过,生物柴油 150 °C 的高闪点值和 211-290 °C 温度范围内的高热稳定性表明,生物柴油具有用作生物润滑剂的潜力。
{"title":"Optimizing the Conversion of Bio-Oil from Haematococcus pluvialis to Fatty Acid Methyl Esters","authors":"C. Sanjurjo, E. Rodríguez, M. Bartolomé, R. González, A. Hernández Battez","doi":"10.1007/s12155-024-10794-9","DOIUrl":"10.1007/s12155-024-10794-9","url":null,"abstract":"<div><p><i>Haematococcus pluvialis</i> microalgae have emerged as a prevalent source of antioxidants in cosmetics and nutritional products. Additionally, numerous researchers have posited the potential of this microalgae to produce fatty acid methyl esters (FAME). Nevertheless, the optimization of the production of FAME from <i>H. pluvialis</i> oil has not been investigated. In this study, the transesterification reaction of <i>H. pluvialis</i> bio-oil was optimized using the response surface methodology, resulting in optimal experimental conditions for an oil to methanol ratio of 1:4.17, at a temperature of 80 °C, with a reaction time of 47 min. The resulting FAME was found to not comply with the biodiesel standard in terms of the content of polyunsaturated fatty acids (6.02%), as well as kinematic viscosity (7.02 mm<sup>2</sup>/s). Further study is required to reduce these parameters in order to ensure biodiesel quality and compliance with the standard. Nevertheless, its high flash point value of 150 °C and its high thermal stability within the temperature range of 211–290 °C suggest the potential for utilization as a biolubricant.\u0000</p></div>","PeriodicalId":487,"journal":{"name":"BioEnergy Research","volume":"17 4","pages":"2374 - 2383"},"PeriodicalIF":3.1,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12155-024-10794-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142184409","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-16DOI: 10.1007/s12155-024-10797-6
Mudasir Akbar Shah, Wasif Farooq, Tasrin Shahnaz, Muthumariappan Akilarasan
Electrocatalytic upgradation of biomass for chemicals and energy production is an emerging approach to address the environmental issues related to chemicals and energy production. If coupled with renewable energy, this approach will further enhance the sustainability goals for the future energy and chemical sector. This work critically reviews the progress on oxidative and reductive electrocatalytic upgrading of biomass-derived chemicals such as glycerol, sorbitol, levulinic acid, 5-hydroxymethylfurfural, furfural, and bio-oil to value-added products, including 2.5-dimethyl tetrahydrofuran, 2.5-dihydroxy methyl tetrahydro furan, 2-hydroxymethyl-5-(methyl amino methyl) furan, and 2,5-furan dicarboxylic acid with simulations production of hydrogen (H2) energy. The role of the mediator in electrocatalytic upgradation serves as a high-efficiency catalytic platform for oxidation and reduction reactions. Pd and Ru exhibit promising attributes such as durability and superior electrocatalytic hydrogenation performance. Additionally, this review discusses various methods for enhancing biofuel through a multitude of approaches, such as hydrocracking, hydrotreatment, supercritical fluid processing, steam reforming, catalytic cracking, esterification, emulsification, hydrodeoxygenation, and electrocatalytic hydrogenation. Techno-economic assessment of electrocatalytic conversion of biomass to chemicals and energy are explored to identify the key contributing factors toward the economic viability of electrocatalytic upgradation of biomass for chemical and energy. Finally, research gaps are identified for further work along with economic assessment of electrocatalytic upgradation of biomass technology with and without integration of renewable energy.
{"title":"Bioenergy and Value-Added Chemicals Derived Through Electrocatalytic Upgradation of Biomass: a Critical Review","authors":"Mudasir Akbar Shah, Wasif Farooq, Tasrin Shahnaz, Muthumariappan Akilarasan","doi":"10.1007/s12155-024-10797-6","DOIUrl":"10.1007/s12155-024-10797-6","url":null,"abstract":"<div><p>Electrocatalytic upgradation of biomass for chemicals and energy production is an emerging approach to address the environmental issues related to chemicals and energy production. If coupled with renewable energy, this approach will further enhance the sustainability goals for the future energy and chemical sector. This work critically reviews the progress on oxidative and reductive electrocatalytic upgrading of biomass-derived chemicals such as glycerol, sorbitol, levulinic acid, 5-hydroxymethylfurfural, furfural, and bio-oil to value-added products, including 2.5-dimethyl tetrahydrofuran, 2.5-dihydroxy methyl tetrahydro furan, 2-hydroxymethyl-5-(methyl amino methyl) furan, and 2,5-furan dicarboxylic acid with simulations production of hydrogen (H<sub>2</sub>) energy. The role of the mediator in electrocatalytic upgradation serves as a high-efficiency catalytic platform for oxidation and reduction reactions. Pd and Ru exhibit promising attributes such as durability and superior electrocatalytic hydrogenation performance. Additionally, this review discusses various methods for enhancing biofuel through a multitude of approaches, such as hydrocracking, hydrotreatment, supercritical fluid processing, steam reforming, catalytic cracking, esterification, emulsification, hydrodeoxygenation, and electrocatalytic hydrogenation. Techno-economic assessment of electrocatalytic conversion of biomass to chemicals and energy are explored to identify the key contributing factors toward the economic viability of electrocatalytic upgradation of biomass for chemical and energy. Finally, research gaps are identified for further work along with economic assessment of electrocatalytic upgradation of biomass technology with and without integration of renewable energy.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":487,"journal":{"name":"BioEnergy Research","volume":"17 4","pages":"2029 - 2049"},"PeriodicalIF":3.1,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142184407","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Effective pretreatment is essential for successfully utilizing renewable resources such as lignocellulosic biomass in the production of bioethanol. In this study, ternary deep eutectic solvents (DESs), namely choline chloride/lactic acid/glycerol (ChCl/LA/Gly), choline chloride/oxalic acid/glycerol (ChCl/OA/Gly), choline chloride/lactic acid/ethylene glycol (ChCl/LA/EG), and choline chloride/oxalic acid/ethylene glycol (ChCl/OA/EG) were prepared and employed for the pretreatment of cellulose-rich Napier grass (NG). Post treatment, the NG hydrolysate was subjected to enzymatic saccharification followed by ethanol fermentation. The results showed effective delignification of NG after treatment with the prepared ternary DESs, with ChCl/LA/EG removing a maximum of 92.89% lignin. The efficiency of the prepared DESs is attributed to their low densities, pH, and viscosity. Enzymatic saccharification of ChCl/LA/EG-treated NG resulted in a 1.68 fold increase in reducing sugar yield compared to that of untreated NG. All pretreated NG produced more bioethanol via a separate hydrolysis and fermentation (SHF) process than untreated NG after Saccharomyces cerevisiae fermentation. A maximum of 0.37 g bioethanol/g of biomass was obtained from the one-pot process using ChCl/LA/Gly pretreatment. FTIR and XRD analyses of untreated and pretreated NG corroborated the efficacy of the ternary DESs on cellulose recovery and delignification. Also, enzymatic and microbial inhibition studies on the prepared DESs show their potential to be employed in a one-pot process for biorefinery. The results of the present investigation show the potential of utilizing eco-friendly DESs and renewable resources for the production of bioethanol, a viable option to fossil fuels.
有效的预处理对于成功利用木质纤维素生物质等可再生资源生产生物乙醇至关重要。本研究制备了三元深共晶溶剂(DES),即氯化胆碱/乳酸/甘油(ChCl/LA/Gly)、氯化胆碱/草酸/甘油(ChCl/OA/Gly)、氯化胆碱/乳酸/乙二醇(ChCl/LA/EG)和氯化胆碱/草酸/乙二醇(ChCl/OA/EG),并将其用于富含纤维素的拿坡里草(NG)的预处理。处理后的拿坡里草水解物先进行酶糖化,然后进行乙醇发酵。结果表明,使用所制备的三元 DESs 处理 NG 后,可有效去除木质素,其中 ChCl/LA/EG 的木质素去除率最高达 92.89%。所制备的 DESs 的高效性归功于其较低的密度、pH 值和粘度。经 ChCl/LA/EG 处理的 NG 酶促糖化后,还原糖产量比未经处理的 NG 增加了 1.68 倍。所有经过预处理的 NG 在经过酿酒酵母发酵后,通过单独的水解和发酵(SHF)过程比未经处理的 NG 产生更多的生物乙醇。使用 ChCl/LA/Gly 预处理的单锅工艺最多可获得 0.37 克生物乙醇/克生物质。未处理和预处理 NG 的傅立叶变换红外光谱(FTIR)和 XRD 分析证实了三元 DES 在纤维素回收和木质素化方面的功效。此外,对所制备的 DESs 进行的酶抑制和微生物抑制研究表明,它们具有在生物精炼的单锅工艺中应用的潜力。本研究的结果表明,利用生态友好型 DESs 和可再生资源生产生物乙醇是一种可行的化石燃料替代方案。
{"title":"Exploring Ternary Deep Eutectic Solvent Pretreatment in a One-Pot Process with Napier Grass for Bioethanol Production","authors":"Kalyani Narayanan, Ponnusami Venkatachalam, Elizabeth Jayex Panakkal, Prapakorn Tantayotai, Atittaya Tandhanskul, Rangabhashiyam Selvasembian, Santi Chuetor, Malinee Sriariyanun","doi":"10.1007/s12155-024-10791-y","DOIUrl":"10.1007/s12155-024-10791-y","url":null,"abstract":"<div><p>Effective pretreatment is essential for successfully utilizing renewable resources such as lignocellulosic biomass in the production of bioethanol. In this study, ternary deep eutectic solvents (DESs), namely choline chloride/lactic acid/glycerol (ChCl/LA/Gly), choline chloride/oxalic acid/glycerol (ChCl/OA/Gly), choline chloride/lactic acid/ethylene glycol (ChCl/LA/EG), and choline chloride/oxalic acid/ethylene glycol (ChCl/OA/EG) were prepared and employed for the pretreatment of cellulose-rich Napier grass (NG). Post treatment, the NG hydrolysate was subjected to enzymatic saccharification followed by ethanol fermentation. The results showed effective delignification of NG after treatment with the prepared ternary DESs, with ChCl/LA/EG removing a maximum of 92.89% lignin. The efficiency of the prepared DESs is attributed to their low densities, pH, and viscosity. Enzymatic saccharification of ChCl/LA/EG-treated NG resulted in a 1.68 fold increase in reducing sugar yield compared to that of untreated NG. All pretreated NG produced more bioethanol via a separate hydrolysis and fermentation (SHF) process than untreated NG after <i>Saccharomyces cerevisiae</i> fermentation. A maximum of 0.37 g bioethanol/g of biomass was obtained from the one-pot process using ChCl/LA/Gly pretreatment. FTIR and XRD analyses of untreated and pretreated NG corroborated the efficacy of the ternary DESs on cellulose recovery and delignification. Also, enzymatic and microbial inhibition studies on the prepared DESs show their potential to be employed in a one-pot process for biorefinery. The results of the present investigation show the potential of utilizing eco-friendly DESs and renewable resources for the production of bioethanol, a viable option to fossil fuels.</p></div>","PeriodicalId":487,"journal":{"name":"BioEnergy Research","volume":"17 4","pages":"2213 - 2225"},"PeriodicalIF":3.1,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142184408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-11DOI: 10.1007/s12155-024-10793-w
Ajinath Dukare, Krishna Prasad, G. T. Senthilkumar, Kirti Jalgaonkar, Sujata Saxena
The study aimed to assess the efficiency of higher xylanase and lower cellulase-producing bacteria as a whole-cell biocatalyst for surface modification of banana pseudostem fibers in an eco-friendly and cost-effective manner. The ability of bacterial biocatalysts to alter fibers’ surface during fiber-biocatalyst interaction in liquid media was determined by analyzing fibers' chemical composition (cellulose, hemicellulose, and lignin), surface color, thickness, surface morphology, and spectral attributes. Results indicated that the production of xylanase by Bacillus licheniformis (1.23 IU/mg of protein) and Bacillus pumilus (1.29 IU/mg of protein) was almost 15 times more than cellulase produced by them. The content of alpha-cellulose (46.7%), hemicelluloses (21.6%), and lignin (11.7%) was slightly decreased in B. licheniformis-treated BPFs. The surface color (whiteness index) was positively improved, indicating color changes (ΔE) of 6.37 and 8.28 for B. pumilus and B. licheniformis-treated fibers, respectively. The thickness of fibers pretreated with B. lichenifiormis (160.75 ± 22.43 mm) and B. pumilus (202.655 ± 24.83) was reduced by 31.90 and 14.14%, respectively. Scanning electron micrograph studies revealed the increased roughness and grooves on the biocatalysts-treated fiber surface. Spectral analysis confirmed the stretching and deformation of inter and intra-molecular bonds of components of banana fibers. Briefly, the study highlights the effectiveness of whole-cell bacterial biocatalysts as a greener and cheaper tool for the surface modification of banana pseudostem fibers.
{"title":"High Xylanase and Low Cellulase Producing Bacteria as a Whole Cell Biocatalyst for Eco-Friendly Surface Modification of Banana Pseudostem Fibers","authors":"Ajinath Dukare, Krishna Prasad, G. T. Senthilkumar, Kirti Jalgaonkar, Sujata Saxena","doi":"10.1007/s12155-024-10793-w","DOIUrl":"10.1007/s12155-024-10793-w","url":null,"abstract":"<div><p>The study aimed to assess the efficiency of higher xylanase and lower cellulase-producing bacteria as a whole-cell biocatalyst for surface modification of banana pseudostem fibers in an eco-friendly and cost-effective manner. The ability of bacterial biocatalysts to alter fibers’ surface during fiber-biocatalyst interaction in liquid media was determined by analyzing fibers' chemical composition (cellulose, hemicellulose, and lignin), surface color, thickness, surface morphology, and spectral attributes. Results indicated that the production of xylanase by <i>Bacillus licheniformis</i> (1.23 IU/mg of protein) and <i>Bacillus pumilus</i> (1.29 IU/mg of protein) was almost 15 times more than cellulase produced by them. The content of alpha-cellulose (46.7%), hemicelluloses (21.6%), and lignin (11.7%) was slightly decreased in <i>B. licheniformis</i>-treated BPFs. The surface color (whiteness index) was positively improved, indicating color changes (<i>ΔE</i>) of 6.37 and 8.28 for <i>B. pumilus</i> and <i>B. licheniformis-</i>treated fibers, respectively. The thickness of fibers pretreated with <i>B. lichenifiormis</i> (160.75 ± 22.43 mm) and <i>B. pumilus</i> (202.655 ± 24.83) was reduced by 31.90 and 14.14%, respectively. Scanning electron micrograph studies revealed the increased roughness and grooves on the biocatalysts-treated fiber surface. Spectral analysis confirmed the stretching and deformation of inter and intra-molecular bonds of components of banana fibers. Briefly, the study highlights the effectiveness of whole-cell bacterial biocatalysts as a greener and cheaper tool for the surface modification of banana pseudostem fibers.\u0000</p></div>","PeriodicalId":487,"journal":{"name":"BioEnergy Research","volume":"17 4","pages":"2190 - 2199"},"PeriodicalIF":3.1,"publicationDate":"2024-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141930576","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-10DOI: 10.1007/s12155-024-10796-7
Ahmet Coşgun, Burcu Oral, M. Erdem Günay, Ramazan Yıldırım
Biochar production from biomass sources is a highly complex, multistep process that depends on several factors, including feedstock composition (e.g., type of biomass, particle size) and operating conditions (e.g., reaction temperature, pressure, residence time). However, the optimal set of variables for producing the maximum amount of biochar with the required characteristics can be determined by using machine learning (ML). In light of this, the purpose of this paper is to examine ML applications in biochar processes for the production of sustainable fuels. First, recent developments in the field are summarized, and then, a detailed review of ML applications in biochar production is presented. Following that, a bibliometric analysis is done to illustrate the major trends and construct a comprehensive perspective for future studies. It is found that biochar yield is the most common target variable for ML applications in biochar production. It is then concluded that ML can help to detect hidden patterns and make accurate predictions for determining the combination of variables that results in the desired properties of biochar which can be later used for decision-making, resource allocation, and fuel production.
从生物质来源生产生物炭是一个非常复杂的多步骤过程,取决于多个因素,包括原料成分(如生物质类型、颗粒大小)和操作条件(如反应温度、压力、停留时间)。不过,利用机器学习(ML)可以确定一组最佳变量,以生产出具有所需特性的最大量生物炭。有鉴于此,本文旨在研究 ML 在生物炭工艺中的应用,以生产可持续燃料。首先,总结了该领域的最新发展,然后详细回顾了 ML 在生物炭生产中的应用。随后,进行了文献计量分析,以说明主要趋势并为未来研究构建一个全面的视角。研究发现,生物炭产量是生物炭生产中应用 ML 的最常见目标变量。最后得出的结论是,ML 可以帮助发现隐藏的模式,并进行准确预测,以确定变量组合,从而获得所需的生物炭特性,随后可用于决策、资源分配和燃料生产。
{"title":"Machine Learning–Based Analysis of Sustainable Biochar Production Processes","authors":"Ahmet Coşgun, Burcu Oral, M. Erdem Günay, Ramazan Yıldırım","doi":"10.1007/s12155-024-10796-7","DOIUrl":"10.1007/s12155-024-10796-7","url":null,"abstract":"<div><p>Biochar production from biomass sources is a highly complex, multistep process that depends on several factors, including feedstock composition (e.g., type of biomass, particle size) and operating conditions (e.g., reaction temperature, pressure, residence time). However, the optimal set of variables for producing the maximum amount of biochar with the required characteristics can be determined by using machine learning (ML). In light of this, the purpose of this paper is to examine ML applications in biochar processes for the production of sustainable fuels. First, recent developments in the field are summarized, and then, a detailed review of ML applications in biochar production is presented. Following that, a bibliometric analysis is done to illustrate the major trends and construct a comprehensive perspective for future studies. It is found that biochar yield is the most common target variable for ML applications in biochar production. It is then concluded that ML can help to detect hidden patterns and make accurate predictions for determining the combination of variables that results in the desired properties of biochar which can be later used for decision-making, resource allocation, and fuel production.</p></div>","PeriodicalId":487,"journal":{"name":"BioEnergy Research","volume":"17 4","pages":"2311 - 2327"},"PeriodicalIF":3.1,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141921469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-08DOI: 10.1007/s12155-024-10795-8
Shijie Wang, Xinyan You, Zheng Gui, Jiabin Wang, Shuyang Kang, Jin Cao, Fang Xie, Rongling Yang, Hongzhen Luo
Production of fermentable sugars from renewable lignocellulosic biomass could provide a sustainable substrate for biofuel production by microbial fermentation. However, the inherent structure of lignocellulose largely hinders enzymatic saccharification efficiency to obtain sugars, thus the development of efficient pretreatment methods to reduce biomass recalcitrance is an important issue. In this study, the effects of two typical processes including hydrothermal (HTP) and citric acid pretreatments (CAP) on the enzymatic hydrolysis yield of reed biomass were investigated. The results indicate that, when performing HTP at 180 °C for 120 min to deconstruct reed, the pretreated biomass led to a higher glucose yield of 87.1% after 72 h enzymatic hydrolysis with cellulase (10 FPU/g substrate). Furthermore, under the pretreatment conditions with 6% (w/v) citric acid, 150 °C, and 60 min, the glucose yield of pretreated reed was 63.4% after hydrolysis with cellulase (10 FPU/g substrate). In this case, adding Tween 80 (100 mg/g substrate) significantly facilitated the enzymatic saccharification activity resulting in the glucose yield of CA-pretreated reed to 84.2%. Compared with the untreated reed, the glucose yield of pretreated residues after HTP and CAP was largely improved by 4.97–5.18 folds which was mainly due to the enhanced crystallinity (50.0–53.2% vs. 45.9%). The total fermentable sugars of 34.7–34.8 g can be produced from 100 g of raw reed biomass based on the proposed HTP and CAP processes. The mechanism of enhanced enzymatic hydrolysis after pretreatments was elucidated through physicochemical characterization techniques. In summary, the proposed pretreatments show high potential application for biorefinery from renewable, abundant reed biomass.
{"title":"Efficient Production of Fermentable Sugars from Common Reed Biomass Through Hydrothermal and Citric Acid Pretreatment Processes","authors":"Shijie Wang, Xinyan You, Zheng Gui, Jiabin Wang, Shuyang Kang, Jin Cao, Fang Xie, Rongling Yang, Hongzhen Luo","doi":"10.1007/s12155-024-10795-8","DOIUrl":"10.1007/s12155-024-10795-8","url":null,"abstract":"<div><p>Production of fermentable sugars from renewable lignocellulosic biomass could provide a sustainable substrate for biofuel production by microbial fermentation. However, the inherent structure of lignocellulose largely hinders enzymatic saccharification efficiency to obtain sugars, thus the development of efficient pretreatment methods to reduce biomass recalcitrance is an important issue. In this study, the effects of two typical processes including hydrothermal (HTP) and citric acid pretreatments (CAP) on the enzymatic hydrolysis yield of reed biomass were investigated. The results indicate that, when performing HTP at 180 °C for 120 min to deconstruct reed, the pretreated biomass led to a higher glucose yield of 87.1% after 72 h enzymatic hydrolysis with cellulase (10 FPU/g substrate). Furthermore, under the pretreatment conditions with 6% (w/v) citric acid, 150 °C, and 60 min, the glucose yield of pretreated reed was 63.4% after hydrolysis with cellulase (10 FPU/g substrate). In this case, adding Tween 80 (100 mg/g substrate) significantly facilitated the enzymatic saccharification activity resulting in the glucose yield of CA-pretreated reed to 84.2%. Compared with the untreated reed, the glucose yield of pretreated residues after HTP and CAP was largely improved by 4.97–5.18 folds which was mainly due to the enhanced crystallinity (50.0–53.2% vs. 45.9%). The total fermentable sugars of 34.7–34.8 g can be produced from 100 g of raw reed biomass based on the proposed HTP and CAP processes. The mechanism of enhanced enzymatic hydrolysis after pretreatments was elucidated through physicochemical characterization techniques. In summary, the proposed pretreatments show high potential application for biorefinery from renewable, abundant reed biomass.</p></div>","PeriodicalId":487,"journal":{"name":"BioEnergy Research","volume":"17 4","pages":"2177 - 2189"},"PeriodicalIF":3.1,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141929536","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-02DOI: 10.1007/s12155-024-10789-6
Muhammad Aliyu, Umer Rashid, Wan Azlina Wan Ab Karim Ghani, Mohamad Amran Mohd Salleh, Balkis Hazmi, Fahad A. Alharthi, Elsa Antunes, Jianglong Yu
Heterogeneous acid catalysis provides a sustainable and cost-effective replacement to homogeneous catalysts, as it is easily accessible and reusable. In this research, biodiesel was synthesized from palm fatty acid distillate (PFAD) by way of esterification utilizing a heterogeneous acid catalyst composed of CuO/WPLAHC-S, which was derived from waste palm leaves-based hydrochar. The catalyst was characterized using TGA, XRD, FESEM, EDX, BET, FT-IR, Raman, and acid density. The synthesized catalyst was found to have remarkable stability during the thermal test. The BET surface area, pore volume, and pore width of the synthesized catalyst were measured at 118.47 m2/g, 0.05 cm3/g, and 8.15 nm, respectively. The significant acidity density (18.57 mmol/g) facilitated the simultaneous esterification process. The investigation found that the copper-doped activated hydrochar, treated with sulfuric acid, exhibited excellent catalytic activity. A high yield of 98.34% fatty acid methyl ester (FAME) was achieved under mild conditions with the use of a catalyst concentration of 2 wt.%, a methanol-to-PFAD molar ratio of 15:1, and a reaction temperature of 80 °C for a duration of 3 h. For statistical analysis, one-way ANOVA was applied to verify the experimental data set for PFAD esterification optimization parameters by predetermining a 95% confidence interval. All of the esterification parameters met the expectation of a p-value less than 0.05 indicating its significant impact on FAME production. The catalyst exhibited excellent performance by maintaining a FAME yield of over 90% after four reaction cycles without requiring reactivation. The study demonstrates the efficacy of CuO/WPLAHC-S as a promising acid catalyst derived from waste palm leaves-based hydrochar for biodiesel production from PFAD.
{"title":"Waste Palm Leaves-Based Hydrochar Support Catalytic Esterification of Palm Fatty Acid Distillate","authors":"Muhammad Aliyu, Umer Rashid, Wan Azlina Wan Ab Karim Ghani, Mohamad Amran Mohd Salleh, Balkis Hazmi, Fahad A. Alharthi, Elsa Antunes, Jianglong Yu","doi":"10.1007/s12155-024-10789-6","DOIUrl":"10.1007/s12155-024-10789-6","url":null,"abstract":"<div><p>Heterogeneous acid catalysis provides a sustainable and cost-effective replacement to homogeneous catalysts, as it is easily accessible and reusable. In this research, biodiesel was synthesized from palm fatty acid distillate (PFAD) by way of esterification utilizing a heterogeneous acid catalyst composed of CuO/WPLAHC-S, which was derived from waste palm leaves-based hydrochar. The catalyst was characterized using TGA, XRD, FESEM, EDX, BET, FT-IR, Raman, and acid density. The synthesized catalyst was found to have remarkable stability during the thermal test. The BET surface area, pore volume, and pore width of the synthesized catalyst were measured at 118.47 m<sup>2</sup>/g, 0.05 cm<sup>3</sup>/g, and 8.15 nm, respectively. The significant acidity density (18.57 mmol/g) facilitated the simultaneous esterification process. The investigation found that the copper-doped activated hydrochar, treated with sulfuric acid, exhibited excellent catalytic activity. A high yield of 98.34% fatty acid methyl ester (FAME) was achieved under mild conditions with the use of a catalyst concentration of 2 wt.%, a methanol-to-PFAD molar ratio of 15:1, and a reaction temperature of 80 °C for a duration of 3 h. For statistical analysis, one-way ANOVA was applied to verify the experimental data set for PFAD esterification optimization parameters by predetermining a 95% confidence interval. All of the esterification parameters met the expectation of a <i>p</i>-value less than 0.05 indicating its significant impact on FAME production. The catalyst exhibited excellent performance by maintaining a FAME yield of over 90% after four reaction cycles without requiring reactivation. The study demonstrates the efficacy of CuO/WPLAHC-S as a promising acid catalyst derived from waste palm leaves-based hydrochar for biodiesel production from PFAD.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":487,"journal":{"name":"BioEnergy Research","volume":"17 4","pages":"2413 - 2428"},"PeriodicalIF":3.1,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141881867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-19DOI: 10.1007/s12155-024-10787-8
P. Muttu Pandian, K. Dharkshith, Perumalsamy Muthiah
Microalgae show great potential as a biodiesel feedstock, primarily attributed to their rapid growth rates and higher lipid content. Biomass pretreatment is a critical step in biodiesel production, as it is essential for providing unsaturated and saturated fatty acids to produce fatty acid methyl ester (FAME). The present study investigates the effect of two-stage cultivation of nutrient starvation and ultrasonic-assisted solvent extraction technique from Scenedesmus dimorphus on lipid content and productivity. Preliminary studies facilitated the identification of an appropriate range to which the variables must be optimized. Scenedesmus dimorphus was obtained from the National Repository for Microalgae and Cyanobacteria [NRMC-F]. The medium optimization resulted in a higher lipid content (38.45%) in the M4N medium under starved conditions. The generated model (R2 = 0.998) forecasted the lipid content of 0.317 g/L after 87.19 min of sonication under the sonication power (65.77 W) with a molar ratio [chloroform:methanol] (1.3:1), which was experimentally validated. Under optimized conditions, the efficiency of extraction has been improved from 64.6 to 72.5% with a maximum biodiesel yield of 25.4 wt.%. In summary, this research successfully identified the optimal growth medium and pretreatment conditions, ultimately maximizing the production of biodiesel.
{"title":"Improvising Biodiesel Production from Scenedesmus dimorphus via Nutrient Starvation and Optimized Pretreatment Process","authors":"P. Muttu Pandian, K. Dharkshith, Perumalsamy Muthiah","doi":"10.1007/s12155-024-10787-8","DOIUrl":"10.1007/s12155-024-10787-8","url":null,"abstract":"<div><p>Microalgae show great potential as a biodiesel feedstock, primarily attributed to their rapid growth rates and higher lipid content. Biomass pretreatment is a critical step in biodiesel production, as it is essential for providing unsaturated and saturated fatty acids to produce fatty acid methyl ester (FAME). The present study investigates the effect of two-stage cultivation of nutrient starvation and ultrasonic-assisted solvent extraction technique from <i>Scenedesmus dimorphus</i> on lipid content and productivity. Preliminary studies facilitated the identification of an appropriate range to which the variables must be optimized. <i>Scenedesmus dimorphus</i> was obtained from the National Repository for Microalgae and Cyanobacteria [NRMC-F]. The medium optimization resulted in a higher lipid content (38.45%) in the M4N medium under starved conditions. The generated model (<i>R</i><sup>2</sup> = 0.998) forecasted the lipid content of 0.317 g/L after 87.19 min of sonication under the sonication power (65.77 W) with a molar ratio [chloroform:methanol] (1.3:1), which was experimentally validated. Under optimized conditions, the efficiency of extraction has been improved from 64.6 to 72.5% with a maximum biodiesel yield of 25.4 wt.%. In summary, this research successfully identified the optimal growth medium and pretreatment conditions, ultimately maximizing the production of biodiesel.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":487,"journal":{"name":"BioEnergy Research","volume":"17 4","pages":"2400 - 2412"},"PeriodicalIF":3.1,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141743830","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-18DOI: 10.1007/s12155-024-10788-7
Kodami Badza, Kom Regonne Raïssa, Tsatsop Tsague Roli Karole, Ze Bilo’o Philemon, Ngassoum Martin Benoit
This study aims to optimize bio-oil production through microwave pyrolysis of Triplochiton scleroxylon sawdust (Ayous). After a physicochemical characterization of the sawdust, response surface methodology via centered composite design was used to investigate the influence of pyrolysis factors on bio-oil yield and determine the optimal pyrolysis conditions. The studied pyrolysis factors were microwave power (W), irradiation time (min), and biochar (%) as wave absorber. Finally, the bio-oil produced under optimal conditions was characterized by GC–MS. It emerges from this study that Ayous biomass has physicochemical properties that can be valorized for bio-oil production, with a high volatile matter content (63.2 ± 2%) and low ash content (2.8 ± 0.3%). The optimization study of bio-oil yield shows that all factors have significant effects with a statistical significance level of 5% (p < 0.05) on the measured parameters. The optimal bio-oil yield of 44.82% is obtained at optimal conditions: microwave power of 576 W, irradiation time of 28 min, and a biochar (wave absorber) input of 3.18%. The bio-oil produced under optimal conditions has a pH of 4.6 ± 0.7 and a water content of 25 ± 1.2%. Compound identification of this bio-oil by GC–MS identified families of compounds including alkanes (13.90%), esters (5.88%), alcohols (1.10%), and high molecular weight phenolic compounds (58%). The produced bio-oil can be used as biofuel or in industrial applications. Nevertheless, further processing steps are needed to lower the water content and acidity of the oil.
{"title":"Optimal Bio-Oil Production Using Triplochiton scleroxylon Sawdust Through Microwave-Assisted Pyrolysis","authors":"Kodami Badza, Kom Regonne Raïssa, Tsatsop Tsague Roli Karole, Ze Bilo’o Philemon, Ngassoum Martin Benoit","doi":"10.1007/s12155-024-10788-7","DOIUrl":"10.1007/s12155-024-10788-7","url":null,"abstract":"<div><p>This study aims to optimize bio-oil production through microwave pyrolysis of <i>Triplochiton scleroxylon</i> sawdust (<i>Ayous</i>). After a physicochemical characterization of the sawdust, response surface methodology via centered composite design was used to investigate the influence of pyrolysis factors on bio-oil yield and determine the optimal pyrolysis conditions. The studied pyrolysis factors were microwave power (W), irradiation time (min), and biochar (%) as wave absorber. Finally, the bio-oil produced under optimal conditions was characterized by GC–MS. It emerges from this study that <i>Ayous</i> biomass has physicochemical properties that can be valorized for bio-oil production, with a high volatile matter content (63.2 ± 2%) and low ash content (2.8 ± 0.3%). The optimization study of bio-oil yield shows that all factors have significant effects with a statistical significance level of 5% (<i>p</i> < 0.05) on the measured parameters. The optimal bio-oil yield of 44.82% is obtained at optimal conditions: microwave power of 576 W, irradiation time of 28 min, and a biochar (wave absorber) input of 3.18%. The bio-oil produced under optimal conditions has a pH of 4.6 ± 0.7 and a water content of 25 ± 1.2%. Compound identification of this bio-oil by GC–MS identified families of compounds including alkanes (13.90%), esters (5.88%), alcohols (1.10%), and high molecular weight phenolic compounds (58%). The produced bio-oil can be used as biofuel or in industrial applications. Nevertheless, further processing steps are needed to lower the water content and acidity of the oil.</p></div>","PeriodicalId":487,"journal":{"name":"BioEnergy Research","volume":"17 4","pages":"2362 - 2373"},"PeriodicalIF":3.1,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141743824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-16DOI: 10.1007/s12155-024-10785-w
Md Tausif Akram, Rameez Ahmad Aftab, Khursheed B. Ansari, Iram Arman, Mohammad Abdul Hakeem, Sadaf Zaidi, Mohammad Danish
Whey, a cheese production byproduct, can be anaerobically digested to reduce pollution and generate energy. Yet, stability is challenging due to organic content sensitivity and influent fluctuations. The present work attempts to implement the mechanistic model and machine learning (ML) models (support vector regression (SVR) and artificial neural networks (ANNs)) together to predict the concentration dataset of substrate 1 (S1) (i.e., carbohydrates and proteins), substrate 2 (S2) (i.e., glucids and amino acids), VFA, and methane (CH4) as a function of input independent variables, namely time and organic loading rate (OLR). The R2 values for S1, S2, VFA, and CH4 obtained through the mechanistic model remained as 0.953, 0.918, 0.84, and 0.976, respectively; for ANN models, 0.982, 0.928, 0.958, and 0.99; and for SVR models, 0.984, 0.939, 0.938, and 0.999, respectively. ML models have been discovered to be among the most precise and versatile compared to the mechanistic model. Moreover, other performance metrics, such as RMSE (0.022–2.177), MRE (0.007–0.100), and AARE (0.008–0.104) for ANN and RMSE (0.083–1.961), MRE (0.021–0.091), and AARE (0.037–0.089) for SVR, are obtained, indicating good prediction performances for both ML models. SVR and ANN models excel, aligning concentration curves to the optimum line when input parameters are adjusted, unlike the subpar traditional-based mechanistic model. Therefore, ML methods offer a tool to predict anaerobic digestion more effectively, enhancing design and operations.
{"title":"Innovative Approach to Characterize Cheese Whey Anaerobic Digestion Using Combined Mechanistic and Machine Learning Models","authors":"Md Tausif Akram, Rameez Ahmad Aftab, Khursheed B. Ansari, Iram Arman, Mohammad Abdul Hakeem, Sadaf Zaidi, Mohammad Danish","doi":"10.1007/s12155-024-10785-w","DOIUrl":"10.1007/s12155-024-10785-w","url":null,"abstract":"<div><p>Whey, a cheese production byproduct, can be anaerobically digested to reduce pollution and generate energy. Yet, stability is challenging due to organic content sensitivity and influent fluctuations. The present work attempts to implement the mechanistic model and machine learning (ML) models (support vector regression (SVR) and artificial neural networks (ANNs)) together to predict the concentration dataset of substrate 1 (S<sub>1</sub>) (i.e., carbohydrates and proteins), substrate 2 (S<sub>2</sub>) (i.e., glucids and amino acids), VFA, and methane (CH<sub>4</sub>) as a function of input independent variables, namely time and organic loading rate (OLR). The R<sup>2</sup> values for S<sub>1</sub>, S<sub>2</sub>, VFA, and CH<sub>4</sub> obtained through the mechanistic model remained as 0.953, 0.918, 0.84, and 0.976, respectively; for ANN models, 0.982, 0.928, 0.958, and 0.99; and for SVR models, 0.984, 0.939, 0.938, and 0.999, respectively. ML models have been discovered to be among the most precise and versatile compared to the mechanistic model. Moreover, other performance metrics, such as RMSE (0.022–2.177), MRE (0.007–0.100), and AARE (0.008–0.104) for ANN and RMSE (0.083–1.961), MRE (0.021–0.091), and AARE (0.037–0.089) for SVR, are obtained, indicating good prediction performances for both ML models. SVR and ANN models excel, aligning concentration curves to the optimum line when input parameters are adjusted, unlike the subpar traditional-based mechanistic model. Therefore, ML methods offer a tool to predict anaerobic digestion more effectively, enhancing design and operations.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":487,"journal":{"name":"BioEnergy Research","volume":"17 4","pages":"2474 - 2486"},"PeriodicalIF":3.1,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141641764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}