Abstract In terms of soil conditions, clay minerals infrequently occur as homogenous mixtures of single constituents, gatherings, stages, or types of minerals. Rather, they contain intricate arrays of essential minerals and rippling intermediates of numerous basic and synergistic mixtures. There is also the possibility that a discrete mineral grain is composed of more than one clay type or has sections that are intermediate amongst two chosen minerals. Such minerals are alluded to as inter-stratified or mixed-layer minerals. The structures of clay minerals are the most researched compound in contemporary materials science. Tetrahedral sheets of clay minerals (TSCM) are one of the most well-known structures concentrated in materials science. QSPR/QSAR of the TSCM compounds requires articulations for the topological characteristic of these substances. Topological descriptors are indispensable gadgets for exploring chemical substances to understand the basic geography or physical properties of such chemical structures. In this article, we determine the edge-vertex-degree and vertex-edge-degree topological indices for TSCM.
{"title":"Computation of edge- and vertex-degree-based topological indices for tetrahedral sheets of clay minerals","authors":"A. Ahmad, A. Ahmad, Muhammad Azeem","doi":"10.1515/mgmc-2022-0007","DOIUrl":"https://doi.org/10.1515/mgmc-2022-0007","url":null,"abstract":"Abstract In terms of soil conditions, clay minerals infrequently occur as homogenous mixtures of single constituents, gatherings, stages, or types of minerals. Rather, they contain intricate arrays of essential minerals and rippling intermediates of numerous basic and synergistic mixtures. There is also the possibility that a discrete mineral grain is composed of more than one clay type or has sections that are intermediate amongst two chosen minerals. Such minerals are alluded to as inter-stratified or mixed-layer minerals. The structures of clay minerals are the most researched compound in contemporary materials science. Tetrahedral sheets of clay minerals (TSCM) are one of the most well-known structures concentrated in materials science. QSPR/QSAR of the TSCM compounds requires articulations for the topological characteristic of these substances. Topological descriptors are indispensable gadgets for exploring chemical substances to understand the basic geography or physical properties of such chemical structures. In this article, we determine the edge-vertex-degree and vertex-edge-degree topological indices for TSCM.","PeriodicalId":48891,"journal":{"name":"Main Group Metal Chemistry","volume":"45 1","pages":"26 - 34"},"PeriodicalIF":1.8,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47062779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract In this study, a novel magnetic MCM-41-type mesoporous silica-supported Fe/Cu (Fe3O4@Fe–Cu/MCM-41) was prepared, characterized, and used as a heterogeneous catalyst for the synthesis of symmetric biaryls by Ullmann cross-coupling reaction. This nanocomposite was characterized using Fourier transform infrared spectroscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, and nitrogen adsorption–desorption isotherm. The Fe3O4@Fe–Cu/MCM-41 was applied as an efficient catalyst in the synthesis of biaryls under optimum conditions. This nanocatalyst was recovered and reused several times without significant loss of activity. Graphical abstract
{"title":"Core–shell structured magnetic MCM-41-type mesoporous silica-supported Cu/Fe: A novel recyclable nanocatalyst for Ullmann-type homocoupling reactions","authors":"M. Abdollahi-Alibeik, Zahra Ramazani","doi":"10.1515/mgmc-2022-0018","DOIUrl":"https://doi.org/10.1515/mgmc-2022-0018","url":null,"abstract":"Abstract In this study, a novel magnetic MCM-41-type mesoporous silica-supported Fe/Cu (Fe3O4@Fe–Cu/MCM-41) was prepared, characterized, and used as a heterogeneous catalyst for the synthesis of symmetric biaryls by Ullmann cross-coupling reaction. This nanocomposite was characterized using Fourier transform infrared spectroscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, and nitrogen adsorption–desorption isotherm. The Fe3O4@Fe–Cu/MCM-41 was applied as an efficient catalyst in the synthesis of biaryls under optimum conditions. This nanocatalyst was recovered and reused several times without significant loss of activity. Graphical abstract","PeriodicalId":48891,"journal":{"name":"Main Group Metal Chemistry","volume":"45 1","pages":"190 - 201"},"PeriodicalIF":1.8,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49568390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Quantitative structure property research works, which are the essential part in chemical information and modelling, give basic underlying topological properties for chemical substances. This information enables conducting more feasible studies between theory and practice. Connectivity concept in chemical graph theory gives information about underlying topology of chemical structures, fault tolerance of molecules, and vulnerability of chemical networks. In this study we first defined two novel types of conditional connectivity measures based on regularity notion: k-regular edge connectivity and almost k-regular edge connectivity in chemical graph theory literature. We computed these new graph invariants for cycles, complete graphs, and Cartesian product of cycles. Our results will be applied to calculate k-regular edge connectivity of some nanotubes which are stated as Cartesian product of cycles. These calculations give information about fault tolerance capacity and vulnerability of these chemical structures.
{"title":"On k-regular edge connectivity of chemical graphs","authors":"S. Ediz, İdris Çiftçi","doi":"10.1515/mgmc-2022-0014","DOIUrl":"https://doi.org/10.1515/mgmc-2022-0014","url":null,"abstract":"Abstract Quantitative structure property research works, which are the essential part in chemical information and modelling, give basic underlying topological properties for chemical substances. This information enables conducting more feasible studies between theory and practice. Connectivity concept in chemical graph theory gives information about underlying topology of chemical structures, fault tolerance of molecules, and vulnerability of chemical networks. In this study we first defined two novel types of conditional connectivity measures based on regularity notion: k-regular edge connectivity and almost k-regular edge connectivity in chemical graph theory literature. We computed these new graph invariants for cycles, complete graphs, and Cartesian product of cycles. Our results will be applied to calculate k-regular edge connectivity of some nanotubes which are stated as Cartesian product of cycles. These calculations give information about fault tolerance capacity and vulnerability of these chemical structures.","PeriodicalId":48891,"journal":{"name":"Main Group Metal Chemistry","volume":"45 1","pages":"106 - 110"},"PeriodicalIF":1.8,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67036059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract In this study, three types of ferrites nanoparticles including CoFe2O4, NiFe2O4, and ZnFe2O4 were synthesized by microwave-assisted hydrothermal method. The X-ray diffraction analysis (XRD), Fourier transform infrared spectroscopy (FTIR), and field emission scanning electron microscopy (FESEM) were employed to analyze synthesized nanoparticles and fabricated membranes. The morphology of membrane surface was investigated by surface images. The ability of ferrite nanoparticles was evaluated to the separation of sodium salt and heavy metals such as Cr2+, Pb2+, and Cu2+ from aqueous solutions. The modified membrane showed the enhancement of membrane surface hydrophilicity, porosity, and mean pore size. The results revealed a significant increase in pure water flux: 152.27, 178, and 172.68 L·m−2·h−1 for PES/0.001 wt% of CoFe2O4, PES/0.001 wt% NiFe2O4, and PES/0.001 wt% ZnFe2O4 NPs, respectively. Moreover, Na2SO4 rejection was reached 78% at 0.1 wt% of CoFe2O4 NPs. The highest Cr (II) rejection obtained 72% for PES/0.001 wt% of NiFe2O4 NPs while it was 46% for the neat PES membrane. The Pb(II) rejection reached above 75% at 0.1 wt% of CoFe2O4 NPs. The Cu(II) rejection was obtained 75% at 0.1 wt% of CoFe2O4 NPs. The ferrite NPs revealed the high potential of heavy metal removal in the filtration membranes.
{"title":"Embedded three spinel ferrite nanoparticles in PES-based nano filtration membranes with enhanced separation properties","authors":"D. Ghanbari, S. Bandehali, A. Moghadassi","doi":"10.1515/mgmc-2022-0001","DOIUrl":"https://doi.org/10.1515/mgmc-2022-0001","url":null,"abstract":"Abstract In this study, three types of ferrites nanoparticles including CoFe2O4, NiFe2O4, and ZnFe2O4 were synthesized by microwave-assisted hydrothermal method. The X-ray diffraction analysis (XRD), Fourier transform infrared spectroscopy (FTIR), and field emission scanning electron microscopy (FESEM) were employed to analyze synthesized nanoparticles and fabricated membranes. The morphology of membrane surface was investigated by surface images. The ability of ferrite nanoparticles was evaluated to the separation of sodium salt and heavy metals such as Cr2+, Pb2+, and Cu2+ from aqueous solutions. The modified membrane showed the enhancement of membrane surface hydrophilicity, porosity, and mean pore size. The results revealed a significant increase in pure water flux: 152.27, 178, and 172.68 L·m−2·h−1 for PES/0.001 wt% of CoFe2O4, PES/0.001 wt% NiFe2O4, and PES/0.001 wt% ZnFe2O4 NPs, respectively. Moreover, Na2SO4 rejection was reached 78% at 0.1 wt% of CoFe2O4 NPs. The highest Cr (II) rejection obtained 72% for PES/0.001 wt% of NiFe2O4 NPs while it was 46% for the neat PES membrane. The Pb(II) rejection reached above 75% at 0.1 wt% of CoFe2O4 NPs. The Cu(II) rejection was obtained 75% at 0.1 wt% of CoFe2O4 NPs. The ferrite NPs revealed the high potential of heavy metal removal in the filtration membranes.","PeriodicalId":48891,"journal":{"name":"Main Group Metal Chemistry","volume":"45 1","pages":"1 - 10"},"PeriodicalIF":1.8,"publicationDate":"2021-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48931071","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yongsheng Rao, Ammarah Kanwal, Riffat Abbas, Saima Noureen, A. Fahad, M. I. Qureshi
Abstract In the modern era of the chemical science, the chemical graph theory has contributed significantly to exploring the properties of the chemical compounds. Currently, the computation of the topological indices is one of the most active directions of the research in the area of the chemical graph theory. The main feature of the study of the topological indices is its its ability of predicting the various physio-chemical properties. In this article, we compute several degree-based topological indices for the caboxy-terminated dendritic macromolecule. We compute Harmonic index, atom-bond connectivity index, geometric arithmetic index, sum connectivity index, inverse sum index, symmetric division degree, and Zagreb indices for caboxy-terminated dendritic macromolecule. The obtained results have potential to predict biochemical properties such as viscosity, entropy, and boiling point.
{"title":"Some degree-based topological indices of caboxy-terminated dendritic macromolecule","authors":"Yongsheng Rao, Ammarah Kanwal, Riffat Abbas, Saima Noureen, A. Fahad, M. I. Qureshi","doi":"10.1515/mgmc-2021-0016","DOIUrl":"https://doi.org/10.1515/mgmc-2021-0016","url":null,"abstract":"Abstract In the modern era of the chemical science, the chemical graph theory has contributed significantly to exploring the properties of the chemical compounds. Currently, the computation of the topological indices is one of the most active directions of the research in the area of the chemical graph theory. The main feature of the study of the topological indices is its its ability of predicting the various physio-chemical properties. In this article, we compute several degree-based topological indices for the caboxy-terminated dendritic macromolecule. We compute Harmonic index, atom-bond connectivity index, geometric arithmetic index, sum connectivity index, inverse sum index, symmetric division degree, and Zagreb indices for caboxy-terminated dendritic macromolecule. The obtained results have potential to predict biochemical properties such as viscosity, entropy, and boiling point.","PeriodicalId":48891,"journal":{"name":"Main Group Metal Chemistry","volume":"44 1","pages":"165 - 172"},"PeriodicalIF":1.8,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/mgmc-2021-0016","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45288586","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Syed Ahtsham Ul Haq Bokhary, M. Imran, S. Akhter, S. Manzoor
Abstract Topological descriptors are the graph invariants that are used to explore the molecular topology of the molecular/chemical graphs. In QSAR/QSPR research, physico-chemical characteristics and topological invariants including Randić, atom-bond connectivity, and geometric arithmetic invariants are utilized to corelate and estimate the structure relationship and bioactivity of certain chemical compounds. Graph theory and discrete mathematics have discovered an impressive utilization in the area of research. In this article, we investigate the valency-depended invariants for certain chemical networks like generalized Aztec diamonds and tetrahedral diamond lattice. Moreover, the exact values of invariants for these categories of chemical networks are derived.
{"title":"Molecular topological invariants of certain chemical networks","authors":"Syed Ahtsham Ul Haq Bokhary, M. Imran, S. Akhter, S. Manzoor","doi":"10.1515/mgmc-2021-0010","DOIUrl":"https://doi.org/10.1515/mgmc-2021-0010","url":null,"abstract":"Abstract Topological descriptors are the graph invariants that are used to explore the molecular topology of the molecular/chemical graphs. In QSAR/QSPR research, physico-chemical characteristics and topological invariants including Randić, atom-bond connectivity, and geometric arithmetic invariants are utilized to corelate and estimate the structure relationship and bioactivity of certain chemical compounds. Graph theory and discrete mathematics have discovered an impressive utilization in the area of research. In this article, we investigate the valency-depended invariants for certain chemical networks like generalized Aztec diamonds and tetrahedral diamond lattice. Moreover, the exact values of invariants for these categories of chemical networks are derived.","PeriodicalId":48891,"journal":{"name":"Main Group Metal Chemistry","volume":"44 1","pages":"141 - 149"},"PeriodicalIF":1.8,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/mgmc-2021-0010","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48028459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Zinc borate having the formula of 4ZnO·B2O3·H2O has been used as a fire retardant for polymers requiring high processing temperatures since it has a high dehydration temperature (around 415°C). The effects of reaction time, reaction temperature were investigated on the heterogeneous reaction between solid zinc oxide and boric acid solution. A stoichiometric amount of zinc oxide and 5.0% excess boric acid were used in experiments and the other parameters, mixing speed (1700 rpm), the solid-liquid ratio of 20%, and the amount of seed crystal (3.9% wt) were kept constant for all experiments. A 91.1% conversion was obtained at 120°C for 5 h of reaction time. Precipitated product was filtered and washed by hot water to remove the excess boric acid. Finally it was dried until reaching to a constant mass in an air circulating oven at 105°C. Powder products were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). FTIR spectrum and XRD pattern of powders are consistent with data of the zinc borate given in the literature. According to SEM analysis, whiskers are less than 1 μm in diameter and their lengths are in the range of 1–10 μm.
{"title":"A novel approach for the production of zinc borate (4ZnO·B2O3·H2O) using a single-step hydrothermal method","authors":"A. Yalçın, M. Gönen","doi":"10.1515/mgmc-2021-0001","DOIUrl":"https://doi.org/10.1515/mgmc-2021-0001","url":null,"abstract":"Abstract Zinc borate having the formula of 4ZnO·B2O3·H2O has been used as a fire retardant for polymers requiring high processing temperatures since it has a high dehydration temperature (around 415°C). The effects of reaction time, reaction temperature were investigated on the heterogeneous reaction between solid zinc oxide and boric acid solution. A stoichiometric amount of zinc oxide and 5.0% excess boric acid were used in experiments and the other parameters, mixing speed (1700 rpm), the solid-liquid ratio of 20%, and the amount of seed crystal (3.9% wt) were kept constant for all experiments. A 91.1% conversion was obtained at 120°C for 5 h of reaction time. Precipitated product was filtered and washed by hot water to remove the excess boric acid. Finally it was dried until reaching to a constant mass in an air circulating oven at 105°C. Powder products were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). FTIR spectrum and XRD pattern of powders are consistent with data of the zinc borate given in the literature. According to SEM analysis, whiskers are less than 1 μm in diameter and their lengths are in the range of 1–10 μm.","PeriodicalId":48891,"journal":{"name":"Main Group Metal Chemistry","volume":"44 1","pages":"1 - 8"},"PeriodicalIF":1.8,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/mgmc-2021-0001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44166725","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract We report herein structural characterization of monomeric platinum complexes of the composition: Pt(η4–P4L), Pt(η4–P3SiL), Pt(η4–P2N2L), Pt(η4–P2S2L), Pt(η4–P2C2L), Pt(η4–PN3L), and Pt(η4–PN2OL). The tetradentate ligands with 10-, 11-, 12-, 14-, and 16-membered macrocycles create a variety of chelate bond angles. A distorted square-planar geometry about Pt(II) atoms with cis–configuration by far prevail. There is an example Pt(η4–P3SiL) in which the respective donor atoms build up a trigonal-pyramidal geometry about Pt(II) atom.
{"title":"Tetradentate organophosphines in Pt(η4–A4L) (A = P4, P3Si, P2X2 (X2 = N2, S2, C2), PX3 (X3 = N3, N2O)): Structural aspects","authors":"M. Melnik, P. Mikuš","doi":"10.1515/mgmc-2021-0031","DOIUrl":"https://doi.org/10.1515/mgmc-2021-0031","url":null,"abstract":"Abstract We report herein structural characterization of monomeric platinum complexes of the composition: Pt(η4–P4L), Pt(η4–P3SiL), Pt(η4–P2N2L), Pt(η4–P2S2L), Pt(η4–P2C2L), Pt(η4–PN3L), and Pt(η4–PN2OL). The tetradentate ligands with 10-, 11-, 12-, 14-, and 16-membered macrocycles create a variety of chelate bond angles. A distorted square-planar geometry about Pt(II) atoms with cis–configuration by far prevail. There is an example Pt(η4–P3SiL) in which the respective donor atoms build up a trigonal-pyramidal geometry about Pt(II) atom.","PeriodicalId":48891,"journal":{"name":"Main Group Metal Chemistry","volume":"44 1","pages":"270 - 280"},"PeriodicalIF":1.8,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43391303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Grid implementation is a principal unit in electrical and electronic engineering but it depends on the domain of these projects. For example, depending on the grid and the signal processing in that fields of electronic and electrical engineering, such as more abstract mathematics in signal conversion and e-transmission theory griding, etc. Provides transmission through grid nodes. Graph theory is very useful in research fields. As topological indices, there are more actual numbers associated with chemical composition complaints connected to the chemical grid with physical and chemical properties and reactions. In this paper, we expand the work to interconnected grid and examine the first Zagreb, the second Zagreb, Randic, sum-connectivity, harmonic, geometric, and atom bond connectivity exponents of hierarchical hypercube network based on vertex-edge and edge-vertex degree.
{"title":"On topological properties of hierarchical hypercube network based on Ve and Ev degree","authors":"N. Zahra, M. Ibrahim","doi":"10.1515/mgmc-2021-0022","DOIUrl":"https://doi.org/10.1515/mgmc-2021-0022","url":null,"abstract":"Abstract Grid implementation is a principal unit in electrical and electronic engineering but it depends on the domain of these projects. For example, depending on the grid and the signal processing in that fields of electronic and electrical engineering, such as more abstract mathematics in signal conversion and e-transmission theory griding, etc. Provides transmission through grid nodes. Graph theory is very useful in research fields. As topological indices, there are more actual numbers associated with chemical composition complaints connected to the chemical grid with physical and chemical properties and reactions. In this paper, we expand the work to interconnected grid and examine the first Zagreb, the second Zagreb, Randic, sum-connectivity, harmonic, geometric, and atom bond connectivity exponents of hierarchical hypercube network based on vertex-edge and edge-vertex degree.","PeriodicalId":48891,"journal":{"name":"Main Group Metal Chemistry","volume":"44 1","pages":"185 - 193"},"PeriodicalIF":1.8,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/mgmc-2021-0022","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42156404","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ghulam Abbas, A. Rani, M. Salman, Tahira Noreen, Usman Ali
Abstract A vast amount of information about distance based graph invariants is contained in the Hosoya polynomial. Such an information is helpful to determine well-known distance based molecular descriptors. The Hosoya index or Z-index of a graph G is the total number of its matching. The Hosoya index is a prominent example of topological indices, which are of great interest in combinatorial chemistry, and later on it applies to address several chemical properties in molecular structures. In this article, we investigate Hosoya properties (Hosoya polynomial, reciprocal Hosoya polynomial and Hosoya index) of the commuting graph associated with an algebraic structure developed by the symmetries of regular molecular gones (constructed by atoms with regular atomic-bonding).
{"title":"Hosoya properties of the commuting graph associated with the group of symmetries","authors":"Ghulam Abbas, A. Rani, M. Salman, Tahira Noreen, Usman Ali","doi":"10.1515/mgmc-2021-0017","DOIUrl":"https://doi.org/10.1515/mgmc-2021-0017","url":null,"abstract":"Abstract A vast amount of information about distance based graph invariants is contained in the Hosoya polynomial. Such an information is helpful to determine well-known distance based molecular descriptors. The Hosoya index or Z-index of a graph G is the total number of its matching. The Hosoya index is a prominent example of topological indices, which are of great interest in combinatorial chemistry, and later on it applies to address several chemical properties in molecular structures. In this article, we investigate Hosoya properties (Hosoya polynomial, reciprocal Hosoya polynomial and Hosoya index) of the commuting graph associated with an algebraic structure developed by the symmetries of regular molecular gones (constructed by atoms with regular atomic-bonding).","PeriodicalId":48891,"journal":{"name":"Main Group Metal Chemistry","volume":"44 1","pages":"173 - 184"},"PeriodicalIF":1.8,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/mgmc-2021-0017","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44199092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}