Pub Date : 2024-09-18DOI: 10.1007/s13399-024-06156-2
Saleh Al Arni, Attilio Converti, Mahmoud Elwaheidi, Sami Elmadssia, Sufian A. Badawi
Alcohol fermentation in batch culture was carried out to determine the behavior of biomass transport phenomena along the bioreactor. The applied methodology utilized both a one-dimensional theoretical modeling of biomass transfer in a tubular bioreactor associated with alcohol fermentation in batch culture and an experimental approach based on a triplicate run. The model’s predictions are validated against experimental data obtained from a real bioreactor system, demonstrating its accuracy and reliability for practical applications. Furthermore, the model solution demonstrated that the converging of biomass concentration in the 5-point nodal bioreactor depends on the values of the model parameters, namely the maximum specific growth rate (μmax), the diffusivity coefficient (D), dimensionless coefficient (α) and reciprocal of doubling time (β). The experimental results show that distribution of biomass concentration along the reactor column is in the range between 3.40 and 3.62 gDW L−1 with an average value of about 3.52 gDW L−1. Furthermore, the average final ethanol concentration is about 58 g L−1 after an average fermentation time of about 35 h and an average starting sugar concentration of about 65 g L−1.
{"title":"Mathematical modeling of an isothermal tubular bioreactor coupled with batch culture for ethanol production: a one-dimensional approach","authors":"Saleh Al Arni, Attilio Converti, Mahmoud Elwaheidi, Sami Elmadssia, Sufian A. Badawi","doi":"10.1007/s13399-024-06156-2","DOIUrl":"https://doi.org/10.1007/s13399-024-06156-2","url":null,"abstract":"<p>Alcohol fermentation in batch culture was carried out to determine the behavior of biomass transport phenomena along the bioreactor. The applied methodology utilized both a one-dimensional theoretical modeling of biomass transfer in a tubular bioreactor associated with alcohol fermentation in batch culture and an experimental approach based on a triplicate run. The model’s predictions are validated against experimental data obtained from a real bioreactor system, demonstrating its accuracy and reliability for practical applications. Furthermore, the model solution demonstrated that the converging of biomass concentration in the 5-point nodal bioreactor depends on the values of the model parameters, namely the maximum specific growth rate (<i>μ</i><sub>max</sub>), the diffusivity coefficient (<i>D</i>), dimensionless coefficient (α) and reciprocal of doubling time (β). The experimental results show that distribution of biomass concentration along the reactor column is in the range between 3.40 and 3.62 g<sub>DW</sub> L<sup>−1</sup> with an average value of about 3.52 g<sub>DW</sub> L<sup>−1</sup>. Furthermore, the average final ethanol concentration is about 58 g L<sup>−1</sup> after an average fermentation time of about 35 h and an average starting sugar concentration of about 65 g L<sup>−1</sup>.</p>","PeriodicalId":488,"journal":{"name":"Biomass Conversion and Biorefinery","volume":"48 1","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142257508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
To deal with the high lignin content of horse manure in the methanization process, eco-fractionation and chemical modification strategies of lignin have been proposed, opening up prospects for new lignin-based thermoplastic materials. Firstly, a strategy inspired by the biochemical pathway and based on ionic liquid pretreatment, with appropriate recyclability and biodegradability characteristics, was implemented. A sugar-enriched fraction was recovered after enzymatic hydrolysis and a lignin-enriched fraction was isolated (80% w/w). The second strategy was an organosolv process, using the easily biodegradable 2-methyltetrahydrofurane-3-one, allowing selective extraction of a lignin-enriched fraction (> 80% w/w almost sugar-free) and a partially delignified sugar solid fraction. H/G/S ratios and aryl-ether linkages showed little difference for the two isolated lignins, which may be responsible for the more successful palladium-catalyzed telomerization of 1,3-butadiene on the phenolic and carboxylic hydroxyls of organosolv lignin. Whatever the strategy used, carbohydrate fractions showed competitive biochemical methane potential for methanization.
{"title":"Ionic liquid and organosolv pretreatments of horse manure: impact on lignin telomerization by organometallic catalysis and methanization","authors":"Lindsay Dorschner Pelcoq, Clément Dumont, Tiphaine Richard, Arash Jamali, Mathieu Sauthier, Catherine Sarazin, Eric Husson","doi":"10.1007/s13399-024-06133-9","DOIUrl":"https://doi.org/10.1007/s13399-024-06133-9","url":null,"abstract":"<p>To deal with the high lignin content of horse manure in the methanization process, eco-fractionation and chemical modification strategies of lignin have been proposed, opening up prospects for new lignin-based thermoplastic materials. Firstly, a strategy inspired by the biochemical pathway and based on ionic liquid pretreatment, with appropriate recyclability and biodegradability characteristics, was implemented. A sugar-enriched fraction was recovered after enzymatic hydrolysis and a lignin-enriched fraction was isolated (80% w/w). The second strategy was an organosolv process, using the easily biodegradable 2-methyltetrahydrofurane-3-one, allowing selective extraction of a lignin-enriched fraction (> 80% w/w almost sugar-free) and a partially delignified sugar solid fraction. H/G/S ratios and aryl-ether linkages showed little difference for the two isolated lignins, which may be responsible for the more successful palladium-catalyzed telomerization of 1,3-butadiene on the phenolic and carboxylic hydroxyls of organosolv lignin. Whatever the strategy used, carbohydrate fractions showed competitive biochemical methane potential for methanization.</p>","PeriodicalId":488,"journal":{"name":"Biomass Conversion and Biorefinery","volume":"19 1","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142257507","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The inadequate conversion of rice husk (RH) into biogas due to its recalcitrant lignocellulosic structure and high silica content necessitates the requirement of pretreatment prior to anaerobic digestion (AD) of RH. This study evaluated the impact of hydrothermal pretreatment on the solubilization of complex lignocellulosic matrix of RH and its subsequent influence on biogas and biomethane yield. The RH was pretreated at six different temperature levels between 200 and 250 °C, at an interval of 10 °C with 20% total solids (TS) loading and retention time of 10 min. The solubilization of RH at different pretreatment temperatures was evaluated by characterizing the liquid and solid fractions of the pretreated RH. The AD of untreated and pretreated RH revealed that the highest biogas and biomethane yields of 355 ± 34 mL/g VSinput and 153 ± 20 mL/g VSinput were observed for RH pretreated at 230 °C, 4.5 and 5.7 times higher than untreated RH. This increase in biogas and biomethane yield for RH230 was confirmed by observing enhanced volatile solid (VS) reduction (38.72%) and biodegradability (39.40%) compared to VS reduction (8.87%) and biodegradability (7.02%) for untreated RH. Further, correlation matrix analysis revealed a strong relation between pretreatment temperature and its severity on the fate of utilizing RH as an AD substrate and obtaining maximal biogas yield. Conclusively, pretreatment up to 230 °C could be recommended to enhance biogas and biomethane yield from RH effectively. Further investigation in pilot-scale reactors is recommended to validate these findings.
{"title":"Impact of hydrothermal pretreatment at different temperatures on biomethane yield in anaerobic digestion of rice husk","authors":"Subodh Kumar, Tinku Casper D’ Silva, Ram Chandra, Anushree Malik, Virendra Kumar Vijay, Ashish Misra","doi":"10.1007/s13399-024-06106-y","DOIUrl":"https://doi.org/10.1007/s13399-024-06106-y","url":null,"abstract":"<p>The inadequate conversion of rice husk (RH) into biogas due to its recalcitrant lignocellulosic structure and high silica content necessitates the requirement of pretreatment prior to anaerobic digestion (AD) of RH. This study evaluated the impact of hydrothermal pretreatment on the solubilization of complex lignocellulosic matrix of RH and its subsequent influence on biogas and biomethane yield. The RH was pretreated at six different temperature levels between 200 and 250 °C, at an interval of 10 °C with 20% total solids (TS) loading and retention time of 10 min. The solubilization of RH at different pretreatment temperatures was evaluated by characterizing the liquid and solid fractions of the pretreated RH. The AD of untreated and pretreated RH revealed that the highest biogas and biomethane yields of 355 ± 34 mL/g VS<sub>input</sub> and 153 ± 20 mL/g VS<sub>input</sub> were observed for RH pretreated at 230 °C, 4.5 and 5.7 times higher than untreated RH. This increase in biogas and biomethane yield for RH230 was confirmed by observing enhanced volatile solid (VS) reduction (38.72%) and biodegradability (39.40%) compared to VS reduction (8.87%) and biodegradability (7.02%) for untreated RH. Further, correlation matrix analysis revealed a strong relation between pretreatment temperature and its severity on the fate of utilizing RH as an AD substrate and obtaining maximal biogas yield. Conclusively, pretreatment up to 230 °C could be recommended to enhance biogas and biomethane yield from RH effectively. Further investigation in pilot-scale reactors is recommended to validate these findings.</p>","PeriodicalId":488,"journal":{"name":"Biomass Conversion and Biorefinery","volume":"24 1","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142257510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-17DOI: 10.1007/s13399-024-06150-8
Taíse Amorim Ribeiro, Igor Carvalho Fontes Sampaio, Iasnaia Maria de Carvalho Tavares, Isabela Viana Lopes de Moura, Fabiane Neves Silva, Luise de Oliveira Sena, Floriatan Santos Costa, Gabriel Lucas Silva de Jesus, Iana Trevizani Emmerich, Kendria Santos Cezar, Muhammad Irfan, Marcelo Franco
Xylanolytic enzymes cleave the β-1,4-glycosidic bonds within xylan, the primary polymer found in the hemicellulosic fraction of lignocellulosic biomass, converting it into xylose. This enzymatic class holds significant applications in various biotechnological processes, particularly within the pharmaceutical, food, and bioenergy industries. This study focuses on a cost-effective method for producing a xylanolytic blend (XB) through the solid-state fermentation of the low-cost coffee husk (CH) by-product, using Penicillium roqueforti ATCC 10110. Optimal bioprocess conditions were identified at 59% humidity and 16 °C, resulting in xylanolytic activity of 13.20 U/g. The XB exhibited favorable thermostability at 40 °C, with maximum activity at 50 °C and pH 5. The effect of solvents revealed significantly enhanced activity with dichloromethane and hexane. The presence of metallic salts, including Pb(C2H3O2), Na2CO3, KCl, FeSO4, CuSO4, MgSO4, and ZnSO4, led to more than a 100% increase in enzyme activity, with Na2CO3 demonstrating an outstanding 229.9% enhancement. Similarly, other organic compounds such as EDTA, SDS, Triton X-100, and Trolox significantly increased enzymatic activity (+ 286.69% for Triton X-100), while other salts such as CaCO3, MgCl2, and Al(NO3)3 led to inhibition. These results differ from previous reports of xylanases from this microorganism and position the developed XB as a promising sustainable catalyst for the saccharification of CH. The bio-based recycling approach elevates the value of CH and proposes an alternative to conventional fertilizer use. The basis developed here serves as guidelines for further investigations exploring the XB application in high-grade pharmaceuticals, food, and bioenergy in large-scale scenarios.
{"title":"Unlocking xylan’s potential: Coffee husk-derived xylanolytic blend for sustainable bioprocessing","authors":"Taíse Amorim Ribeiro, Igor Carvalho Fontes Sampaio, Iasnaia Maria de Carvalho Tavares, Isabela Viana Lopes de Moura, Fabiane Neves Silva, Luise de Oliveira Sena, Floriatan Santos Costa, Gabriel Lucas Silva de Jesus, Iana Trevizani Emmerich, Kendria Santos Cezar, Muhammad Irfan, Marcelo Franco","doi":"10.1007/s13399-024-06150-8","DOIUrl":"https://doi.org/10.1007/s13399-024-06150-8","url":null,"abstract":"<p>Xylanolytic enzymes cleave the β-1,4-glycosidic bonds within xylan, the primary polymer found in the hemicellulosic fraction of lignocellulosic biomass, converting it into xylose. This enzymatic class holds significant applications in various biotechnological processes, particularly within the pharmaceutical, food, and bioenergy industries. This study focuses on a cost-effective method for producing a xylanolytic blend (XB) through the solid-state fermentation of the low-cost coffee husk (CH) by-product, using <i>Penicillium roqueforti</i> ATCC 10110. Optimal bioprocess conditions were identified at 59% humidity and 16 °C, resulting in xylanolytic activity of 13.20 U/g. The XB exhibited favorable thermostability at 40 °C, with maximum activity at 50 °C and pH 5. The effect of solvents revealed significantly enhanced activity with dichloromethane and hexane. The presence of metallic salts, including Pb(C<sub>2</sub>H<sub>3</sub>O<sub>2</sub>), Na<sub>2</sub>CO<sub>3</sub>, KCl, FeSO<sub>4</sub>, CuSO<sub>4</sub>, MgSO<sub>4</sub>, and ZnSO<sub>4</sub>, led to more than a 100% increase in enzyme activity, with Na<sub>2</sub>CO<sub>3</sub> demonstrating an outstanding 229.9% enhancement. Similarly, other organic compounds such as EDTA, SDS, Triton X-100, and Trolox significantly increased enzymatic activity (+ 286.69% for Triton X-100), while other salts such as CaCO<sub>3</sub>, MgCl<sub>2</sub>, and Al(NO<sub>3</sub>)<sub>3</sub> led to inhibition. These results differ from previous reports of xylanases from this microorganism and position the developed XB as a promising sustainable catalyst for the saccharification of CH. The bio-based recycling approach elevates the value of CH and proposes an alternative to conventional fertilizer use. The basis developed here serves as guidelines for further investigations exploring the XB application in high-grade pharmaceuticals, food, and bioenergy in large-scale scenarios.</p>","PeriodicalId":488,"journal":{"name":"Biomass Conversion and Biorefinery","volume":"301 1","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142257506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-17DOI: 10.1007/s13399-024-06151-7
Roumaissa Boumaraf, Sami Khettaf, Fatiha Benmahdi, Rida Masmoudi, Mousaab Belarbi, Azedine Ferhati
Acetamiprid (ACMP) is a significant neonicotinoid insecticide recognized for its efficacy against various insects. The increasing use of insecticides in agriculture substantially threatens water resources and ecosystems. Thus, effectively removing pesticide residues is crucial to mitigating the adverse effects of conventional agricultural practices. This study aims to enhance the elimination of ACMP from water using a dual approach: nanofiltration and activated carbon derived from silver berry seeds. Various physicochemical parameters, including contact time, AC dose, agitation speed, and the initial pH, were examined to understand their impact on the ACMP removal process through adsorption. Remarkably, a 97% removal of ACMP was achieved under a contact time of 90 min, an agitation speed of 300 rpm, and an AC dosage of 500 mg·L−1. The adsorption equilibrium data were modeled using the Freundlich, Langmuir, and Temkin isotherm models, with the Langmuir model providing the best fit and indicating a maximum adsorption capacity of 193.92 mg·g−1. Kinetic studies with PFO and PSO models showed that the PSO model provided an excellent fit with high regression coefficients (R2). Thermodynamic analysis confirmed that the adsorption process is both endothermic and spontaneous. Concurrently, the nanofiltration process was optimized by examining the initial pH, recirculation flow rate, initial ACMP concentration, and the presence of salts. Results indicated a remarkable removal efficiency of 97.5% at a 6-bar transmembrane pressure and 750 mL·min−1 as a recirculation flow rate. This study validates nanofiltration for ACMP removal, offering insights into mitigating pesticide residues’ environmental impact