Pub Date : 2024-01-31DOI: 10.1109/THMS.2024.3356020
{"title":"IEEE Transactions on Human-Machine Systems Information for Authors","authors":"","doi":"10.1109/THMS.2024.3356020","DOIUrl":"https://doi.org/10.1109/THMS.2024.3356020","url":null,"abstract":"","PeriodicalId":48916,"journal":{"name":"IEEE Transactions on Human-Machine Systems","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10418063","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139654667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-31DOI: 10.1109/THMS.2024.3356018
{"title":"IEEE Systems, Man, and Cybernetics Society Information","authors":"","doi":"10.1109/THMS.2024.3356018","DOIUrl":"https://doi.org/10.1109/THMS.2024.3356018","url":null,"abstract":"","PeriodicalId":48916,"journal":{"name":"IEEE Transactions on Human-Machine Systems","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10418066","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139654774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-31DOI: 10.1109/THMS.2024.3356022
{"title":"Share Your Preprint Research with the World!","authors":"","doi":"10.1109/THMS.2024.3356022","DOIUrl":"https://doi.org/10.1109/THMS.2024.3356022","url":null,"abstract":"","PeriodicalId":48916,"journal":{"name":"IEEE Transactions on Human-Machine Systems","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10418065","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139654930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-31DOI: 10.1109/THMS.2024.3356024
{"title":"Present a World of Opportunity","authors":"","doi":"10.1109/THMS.2024.3356024","DOIUrl":"https://doi.org/10.1109/THMS.2024.3356024","url":null,"abstract":"","PeriodicalId":48916,"journal":{"name":"IEEE Transactions on Human-Machine Systems","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10418070","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139654372","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-31DOI: 10.1109/THMS.2024.3356016
{"title":"IEEE Systems, Man, and Cybernetics Society Information","authors":"","doi":"10.1109/THMS.2024.3356016","DOIUrl":"https://doi.org/10.1109/THMS.2024.3356016","url":null,"abstract":"","PeriodicalId":48916,"journal":{"name":"IEEE Transactions on Human-Machine Systems","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10418061","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139654894","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-30DOI: 10.1109/THMS.2023.3348694
Xingcan Chen;Yi Zou;Chenglin Li;Wendong Xiao
Human activity recognition (HAR) is a key technology in the field of human–computer interaction. Unlike systems using sensors or special devices, the WiFi channel state information (CSI)-based HAR systems are noncontact and low cost, but they are limited by high computational complexity and poor cross-domain generalization performance. In order to address the above problems, a reconstructed WiFi CSI tensor and deep learning based lightweight HAR system (Wisor-DL) is proposed, which firstly reconstructs WiFi CSI signals with a sparse signal representation algorithm, and a CSI tensor construction and decomposition algorithm. Then, gated temporal convolutional network with residual connections is designed to enhance and fuse the features of the reconstructed WiFi CSI signals. Finally, dendrite network makes the final decision of activity instead of the traditional dense layer. Experimental results show that Wisor-DL is a lightweight HAR system with high recognition accuracy and satisfactory cross-domain generalization ability.
人类活动识别(HAR)是人机交互领域的一项关键技术。与使用传感器或特殊设备的系统不同,基于 WiFi 信道状态信息(CSI)的人类活动识别系统具有非接触、成本低的特点,但受限于计算复杂度高和跨域泛化性能差。针对上述问题,本文提出了一种基于重构 WiFi CSI 张量和深度学习的轻量级 HAR 系统(Wisor-DL),该系统首先利用稀疏信号表示算法和 CSI 张量构建与分解算法重构 WiFi CSI 信号。然后,设计具有残差连接的门控时序卷积网络,以增强和融合重构的 WiFi CSI 信号的特征。最后,树突网络代替传统的密集层做出活动的最终决定。实验结果表明,Wisor-DL 是一种轻量级 HAR 系统,具有较高的识别准确率和令人满意的跨域泛化能力。
{"title":"A Deep Learning Based Lightweight Human Activity Recognition System Using Reconstructed WiFi CSI","authors":"Xingcan Chen;Yi Zou;Chenglin Li;Wendong Xiao","doi":"10.1109/THMS.2023.3348694","DOIUrl":"https://doi.org/10.1109/THMS.2023.3348694","url":null,"abstract":"Human activity recognition (HAR) is a key technology in the field of human–computer interaction. Unlike systems using sensors or special devices, the WiFi channel state information (CSI)-based HAR systems are noncontact and low cost, but they are limited by high computational complexity and poor cross-domain generalization performance. In order to address the above problems, a reconstructed WiFi CSI tensor and deep learning based lightweight HAR system (Wisor-DL) is proposed, which firstly reconstructs WiFi CSI signals with a sparse signal representation algorithm, and a CSI tensor construction and decomposition algorithm. Then, gated temporal convolutional network with residual connections is designed to enhance and fuse the features of the reconstructed WiFi CSI signals. Finally, dendrite network makes the final decision of activity instead of the traditional dense layer. Experimental results show that Wisor-DL is a lightweight HAR system with high recognition accuracy and satisfactory cross-domain generalization ability.","PeriodicalId":48916,"journal":{"name":"IEEE Transactions on Human-Machine Systems","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139654773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-26DOI: 10.1109/THMS.2024.3351138
Shu-Nung Yao;Chang-Wei Huang
Head-pose estimation plays an important role in computer vision. The head-pose estimation aims to determine the orientation of a human head by representing the yaw, pitch, and roll angles. Implementations can be achieved by different techniques depending on the type of input and training data. This article presents a simple three-dimensional (3-D) face model for estimating head poses. The personalized 3-D face model is constructed by 2-D face photographs. A frontal face photograph determines the plane coordinates of facial features. By knowing the yaw angles in the other averted face photograph, the depth coordinates can be determined. The yaw angle of the averted face is evaluated by the canthus positions. Once the 3-D face model is constructed, we can find the matching angles for a target head pose in a query 2-D photograph. The personalized 3-D face model rotates itself about the x