首页 > 最新文献

IEEE Transactions on Human-Machine Systems最新文献

英文 中文
IEEE Transactions on Human-Machine Systems Information for Authors 电气和电子工程师学会《人机系统学报》(IEEE Transactions on Human-Machine Systems)为作者提供的信息
IF 3.6 3区 计算机科学 Q1 Social Sciences Pub Date : 2024-01-31 DOI: 10.1109/THMS.2024.3356020
{"title":"IEEE Transactions on Human-Machine Systems Information for Authors","authors":"","doi":"10.1109/THMS.2024.3356020","DOIUrl":"https://doi.org/10.1109/THMS.2024.3356020","url":null,"abstract":"","PeriodicalId":48916,"journal":{"name":"IEEE Transactions on Human-Machine Systems","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10418063","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139654667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Systems, Man, and Cybernetics Society Information 电气和电子工程师学会系统、人和控制论学会信息
IF 3.6 3区 计算机科学 Q1 Social Sciences Pub Date : 2024-01-31 DOI: 10.1109/THMS.2024.3356018
{"title":"IEEE Systems, Man, and Cybernetics Society Information","authors":"","doi":"10.1109/THMS.2024.3356018","DOIUrl":"https://doi.org/10.1109/THMS.2024.3356018","url":null,"abstract":"","PeriodicalId":48916,"journal":{"name":"IEEE Transactions on Human-Machine Systems","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10418066","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139654774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Share Your Preprint Research with the World! 与世界分享您的预印本研究成果
IF 3.6 3区 计算机科学 Q1 Social Sciences Pub Date : 2024-01-31 DOI: 10.1109/THMS.2024.3356022
{"title":"Share Your Preprint Research with the World!","authors":"","doi":"10.1109/THMS.2024.3356022","DOIUrl":"https://doi.org/10.1109/THMS.2024.3356022","url":null,"abstract":"","PeriodicalId":48916,"journal":{"name":"IEEE Transactions on Human-Machine Systems","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10418065","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139654930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Present a World of Opportunity 呈现一个充满机遇的世界
IF 3.6 3区 计算机科学 Q1 Social Sciences Pub Date : 2024-01-31 DOI: 10.1109/THMS.2024.3356024
{"title":"Present a World of Opportunity","authors":"","doi":"10.1109/THMS.2024.3356024","DOIUrl":"https://doi.org/10.1109/THMS.2024.3356024","url":null,"abstract":"","PeriodicalId":48916,"journal":{"name":"IEEE Transactions on Human-Machine Systems","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10418070","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139654372","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Systems, Man, and Cybernetics Society Information 电气和电子工程师学会系统、人和控制论学会信息
IF 3.6 3区 计算机科学 Q1 Social Sciences Pub Date : 2024-01-31 DOI: 10.1109/THMS.2024.3356016
{"title":"IEEE Systems, Man, and Cybernetics Society Information","authors":"","doi":"10.1109/THMS.2024.3356016","DOIUrl":"https://doi.org/10.1109/THMS.2024.3356016","url":null,"abstract":"","PeriodicalId":48916,"journal":{"name":"IEEE Transactions on Human-Machine Systems","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10418061","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139654894","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Deep Learning Based Lightweight Human Activity Recognition System Using Reconstructed WiFi CSI 利用重构 WiFi CSI 的基于深度学习的轻量级人类活动识别系统
IF 3.6 3区 计算机科学 Q1 Social Sciences Pub Date : 2024-01-30 DOI: 10.1109/THMS.2023.3348694
Xingcan Chen;Yi Zou;Chenglin Li;Wendong Xiao
Human activity recognition (HAR) is a key technology in the field of human–computer interaction. Unlike systems using sensors or special devices, the WiFi channel state information (CSI)-based HAR systems are noncontact and low cost, but they are limited by high computational complexity and poor cross-domain generalization performance. In order to address the above problems, a reconstructed WiFi CSI tensor and deep learning based lightweight HAR system (Wisor-DL) is proposed, which firstly reconstructs WiFi CSI signals with a sparse signal representation algorithm, and a CSI tensor construction and decomposition algorithm. Then, gated temporal convolutional network with residual connections is designed to enhance and fuse the features of the reconstructed WiFi CSI signals. Finally, dendrite network makes the final decision of activity instead of the traditional dense layer. Experimental results show that Wisor-DL is a lightweight HAR system with high recognition accuracy and satisfactory cross-domain generalization ability.
人类活动识别(HAR)是人机交互领域的一项关键技术。与使用传感器或特殊设备的系统不同,基于 WiFi 信道状态信息(CSI)的人类活动识别系统具有非接触、成本低的特点,但受限于计算复杂度高和跨域泛化性能差。针对上述问题,本文提出了一种基于重构 WiFi CSI 张量和深度学习的轻量级 HAR 系统(Wisor-DL),该系统首先利用稀疏信号表示算法和 CSI 张量构建与分解算法重构 WiFi CSI 信号。然后,设计具有残差连接的门控时序卷积网络,以增强和融合重构的 WiFi CSI 信号的特征。最后,树突网络代替传统的密集层做出活动的最终决定。实验结果表明,Wisor-DL 是一种轻量级 HAR 系统,具有较高的识别准确率和令人满意的跨域泛化能力。
{"title":"A Deep Learning Based Lightweight Human Activity Recognition System Using Reconstructed WiFi CSI","authors":"Xingcan Chen;Yi Zou;Chenglin Li;Wendong Xiao","doi":"10.1109/THMS.2023.3348694","DOIUrl":"https://doi.org/10.1109/THMS.2023.3348694","url":null,"abstract":"Human activity recognition (HAR) is a key technology in the field of human–computer interaction. Unlike systems using sensors or special devices, the WiFi channel state information (CSI)-based HAR systems are noncontact and low cost, but they are limited by high computational complexity and poor cross-domain generalization performance. In order to address the above problems, a reconstructed WiFi CSI tensor and deep learning based lightweight HAR system (Wisor-DL) is proposed, which firstly reconstructs WiFi CSI signals with a sparse signal representation algorithm, and a CSI tensor construction and decomposition algorithm. Then, gated temporal convolutional network with residual connections is designed to enhance and fuse the features of the reconstructed WiFi CSI signals. Finally, dendrite network makes the final decision of activity instead of the traditional dense layer. Experimental results show that Wisor-DL is a lightweight HAR system with high recognition accuracy and satisfactory cross-domain generalization ability.","PeriodicalId":48916,"journal":{"name":"IEEE Transactions on Human-Machine Systems","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139654773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Head-Pose Estimation Based on Lateral Canthus Localizations in 2-D Images 基于二维图像中侧眦定位的头部姿势估计
IF 3.6 3区 计算机科学 Q1 Social Sciences Pub Date : 2024-01-26 DOI: 10.1109/THMS.2024.3351138
Shu-Nung Yao;Chang-Wei Huang
Head-pose estimation plays an important role in computer vision. The head-pose estimation aims to determine the orientation of a human head by representing the yaw, pitch, and roll angles. Implementations can be achieved by different techniques depending on the type of input and training data. This article presents a simple three-dimensional (3-D) face model for estimating head poses. The personalized 3-D face model is constructed by 2-D face photographs. A frontal face photograph determines the plane coordinates of facial features. By knowing the yaw angles in the other averted face photograph, the depth coordinates can be determined. The yaw angle of the averted face is evaluated by the canthus positions. Once the 3-D face model is constructed, we can find the matching angles for a target head pose in a query 2-D photograph. The personalized 3-D face model rotates itself about the x-, y-, and z-axes and then projects its facial features onto plane coordinates. If the rotation angles are correct, the disparities between the 2-D facial features and those in the query face photograph are supposed to be at their minimum. The personalized 3-D face model is validated with the University of South Florida human-identification database. The performance of the proposed head-pose estimation is evaluated on the Biwi Kinect head-pose database and Pointing’04 head-pose image database. The results show that the proposed method outperforms state-of-the-art technologies on both benchmark databases.
头部姿态估计在计算机视觉中发挥着重要作用。头部姿态估计旨在通过表示偏航角、俯仰角和滚动角来确定人类头部的方向。根据输入和训练数据类型的不同,可以通过不同的技术来实现。本文介绍了一种用于估计头部姿势的简单三维(3-D)人脸模型。个性化三维人脸模型由二维人脸照片构建。面部正面照片可确定面部特征的平面坐标。通过了解另一张偏转脸部照片的偏航角,可以确定深度坐标。偏转脸部的偏航角是通过眼角位置来评估的。一旦构建了三维人脸模型,我们就可以在查询的二维照片中找到目标头部姿势的匹配角度。个性化三维人脸模型围绕 x、y 和 z 轴旋转,然后将其面部特征投射到平面坐标上。如果旋转角度正确,2-D 脸部特征与查询的脸部照片中的特征之间的差异应该是最小的。个性化三维人脸模型通过南佛罗里达大学人类识别数据库进行了验证。在 Biwi Kinect 头部姿态数据库和 Pointing'04 头部姿态图像数据库中评估了所提出的头部姿态估计的性能。结果表明,在这两个基准数据库上,所提出的方法都优于最先进的技术。
{"title":"Head-Pose Estimation Based on Lateral Canthus Localizations in 2-D Images","authors":"Shu-Nung Yao;Chang-Wei Huang","doi":"10.1109/THMS.2024.3351138","DOIUrl":"10.1109/THMS.2024.3351138","url":null,"abstract":"Head-pose estimation plays an important role in computer vision. The head-pose estimation aims to determine the orientation of a human head by representing the yaw, pitch, and roll angles. Implementations can be achieved by different techniques depending on the type of input and training data. This article presents a simple three-dimensional (3-D) face model for estimating head poses. The personalized 3-D face model is constructed by 2-D face photographs. A frontal face photograph determines the plane coordinates of facial features. By knowing the yaw angles in the other averted face photograph, the depth coordinates can be determined. The yaw angle of the averted face is evaluated by the canthus positions. Once the 3-D face model is constructed, we can find the matching angles for a target head pose in a query 2-D photograph. The personalized 3-D face model rotates itself about the \u0000<italic>x</i>\u0000-, \u0000<italic>y</i>\u0000-, and \u0000<italic>z</i>\u0000-axes and then projects its facial features onto plane coordinates. If the rotation angles are correct, the disparities between the 2-D facial features and those in the query face photograph are supposed to be at their minimum. The personalized 3-D face model is validated with the University of South Florida human-identification database. The performance of the proposed head-pose estimation is evaluated on the Biwi Kinect head-pose database and Pointing’04 head-pose image database. The results show that the proposed method outperforms state-of-the-art technologies on both benchmark databases.","PeriodicalId":48916,"journal":{"name":"IEEE Transactions on Human-Machine Systems","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139950559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lightweight Whole-Body Human Pose Estimation With Two-Stage Refinement Training Strategy 采用两阶段细化训练策略的轻量级全身人体姿态估计
IF 3.6 3区 计算机科学 Q1 Social Sciences Pub Date : 2024-01-19 DOI: 10.1109/THMS.2024.3349652
Zhewei Zhang;Mingen Liu;Junyu Shen;Yujun Cheng;Shengjin Wang
Human whole-body pose estimation is a challenging task since the model needs to learn more keypoints than the body-only case. To meet the needs of real-time performance while maintaining accuracy is also a hard issue in whole-body pose estimation due to the learning capability of lightweight networks. In order to solve the above problems to a large extent, we propose a light whole-body pose estimation method with an optimized training strategy. The model is designed based on bottom-up architecture as a base network followed by a refinement network. We propose a two-stage training process, which learns rough features in the first stage and then improves estimation precision in the second stage. An online data augmentation procedure is proposed in the second stage to improve refinement performance. We also introduce a separate learning refinement structure that fine-tunes for body, foot, and hand part independently. Experimental results show that our method improves over 8%–10% average precision compared with other lightweight state-of-the-art approaches in the whole-body pose estimation task, with nearly a quarter (25%) size of model parameters saved.
人体全身姿态估计是一项具有挑战性的任务,因为模型需要学习的关键点要多于纯身体的情况。由于轻量级网络的学习能力有限,如何在保证精度的同时满足实时性的需求也是全身姿态估计的一个难点。为了在很大程度上解决上述问题,我们提出了一种具有优化训练策略的轻量级全身姿态估计方法。该模型的设计基于自下而上的架构,先是一个基础网络,然后是一个细化网络。我们提出了一个两阶段训练过程,在第一阶段学习粗略特征,然后在第二阶段提高估计精度。在第二阶段,我们提出了一个在线数据增强程序,以提高细化性能。我们还引入了一个单独的学习细化结构,可对身体、脚部和手部进行独立细化。实验结果表明,在全身姿态估计任务中,我们的方法与其他最先进的轻量级方法相比,平均精度提高了 8%-10%,模型参数节省了近四分之一(25%)。
{"title":"Lightweight Whole-Body Human Pose Estimation With Two-Stage Refinement Training Strategy","authors":"Zhewei Zhang;Mingen Liu;Junyu Shen;Yujun Cheng;Shengjin Wang","doi":"10.1109/THMS.2024.3349652","DOIUrl":"https://doi.org/10.1109/THMS.2024.3349652","url":null,"abstract":"Human whole-body pose estimation is a challenging task since the model needs to learn more keypoints than the body-only case. To meet the needs of real-time performance while maintaining accuracy is also a hard issue in whole-body pose estimation due to the learning capability of lightweight networks. In order to solve the above problems to a large extent, we propose a light whole-body pose estimation method with an optimized training strategy. The model is designed based on bottom-up architecture as a base network followed by a refinement network. We propose a two-stage training process, which learns rough features in the first stage and then improves estimation precision in the second stage. An online data augmentation procedure is proposed in the second stage to improve refinement performance. We also introduce a separate learning refinement structure that fine-tunes for body, foot, and hand part independently. Experimental results show that our method improves over 8%–10% average precision compared with other lightweight state-of-the-art approaches in the whole-body pose estimation task, with nearly a quarter (25%) size of model parameters saved.","PeriodicalId":48916,"journal":{"name":"IEEE Transactions on Human-Machine Systems","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139654892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Using $B$-Spline Model on Depth Camera Data to Predict Physical Activity Energy Expenditure of Different Levels of Human Exercise 在深度相机数据上使用 B$-样条模型预测人类不同运动水平的体力活动能量消耗
IF 3.6 3区 计算机科学 Q1 Social Sciences Pub Date : 2024-01-18 DOI: 10.1109/THMS.2023.3349030
Yi-Ting Hwang;Ya-Ru Hsu;Bor-Shing Lin
Energy expenditure (EE) is often used to quantify physical activity. Currently, EE is estimated with data collected by inertial measurement units or depth cameras and verified by oxygen consumption data. Due to the different data collection time spans in this system, raw data were split into minute-by-minute windows, and summary statistics for each window were computed. However, using summary statistics to aggregate data might be influenced by redundant noise or result in the loss of valuable information. This article presents a modeling method using functional analysis to characterize the trajectory of the collected skeletal data, thus enabling the effective use of the complete data. Next, the fitted values of the skeletal data can be aligned to the overall EE data and used to predict the overall EE as well as the task-based EE. The study results revealed for metabolic equivalent of task prediction that the root-mean-square error (RMSE) derived for the proposed method was $< $0.5 and that the mean absolute error (MAE) was approximately 0.3. Models for estimating task-based EE, including EE related to standing and walking task, also exhibited low RMSE and MAE values. Accordingly, the proposed modeling approach is superior to summary statistics for estimating EE in depth camera systems.
能量消耗(EE)通常用于量化体力活动。目前,能量消耗是通过惯性测量装置或深度摄像头收集的数据进行估算,并通过耗氧量数据进行验证。由于该系统的数据收集时间跨度不同,原始数据被分割成每分钟的窗口,并计算每个窗口的汇总统计数据。然而,使用汇总统计来汇总数据可能会受到冗余噪声的影响,或导致有价值的信息丢失。本文介绍了一种使用函数分析的建模方法,以描述所收集的骨骼数据的轨迹,从而有效利用完整的数据。接下来,骨骼数据的拟合值可与整体 EE 数据相匹配,并用于预测整体 EE 以及基于任务的 EE。研究结果表明,对于新陈代谢等效任务预测,拟议方法得出的均方根误差(RMSE)为 0.5 美元,平均绝对误差(MAE)约为 0.3 美元。用于估算基于任务的 EE(包括与站立和行走任务相关的 EE)的模型也显示出较低的 RMSE 值和 MAE 值。因此,在估计深度摄像系统中的 EE 时,建议的建模方法优于汇总统计方法。
{"title":"Using $B$-Spline Model on Depth Camera Data to Predict Physical Activity Energy Expenditure of Different Levels of Human Exercise","authors":"Yi-Ting Hwang;Ya-Ru Hsu;Bor-Shing Lin","doi":"10.1109/THMS.2023.3349030","DOIUrl":"https://doi.org/10.1109/THMS.2023.3349030","url":null,"abstract":"Energy expenditure (EE) is often used to quantify physical activity. Currently, EE is estimated with data collected by inertial measurement units or depth cameras and verified by oxygen consumption data. Due to the different data collection time spans in this system, raw data were split into minute-by-minute windows, and summary statistics for each window were computed. However, using summary statistics to aggregate data might be influenced by redundant noise or result in the loss of valuable information. This article presents a modeling method using functional analysis to characterize the trajectory of the collected skeletal data, thus enabling the effective use of the complete data. Next, the fitted values of the skeletal data can be aligned to the overall EE data and used to predict the overall EE as well as the task-based EE. The study results revealed for metabolic equivalent of task prediction that the root-mean-square error (RMSE) derived for the proposed method was \u0000<inline-formula><tex-math>$&lt; $</tex-math></inline-formula>\u00000.5 and that the mean absolute error (MAE) was approximately 0.3. Models for estimating task-based EE, including EE related to standing and walking task, also exhibited low RMSE and MAE values. Accordingly, the proposed modeling approach is superior to summary statistics for estimating EE in depth camera systems.","PeriodicalId":48916,"journal":{"name":"IEEE Transactions on Human-Machine Systems","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139654928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
EMG-Based Detection of Minimum Effective Load With Robotic-Resistance Leg Extensor Training 基于肌电图的机器人阻力腿部伸展训练最小有效负荷检测
IF 3.6 3区 计算机科学 Q1 Social Sciences Pub Date : 2024-01-15 DOI: 10.1109/THMS.2023.3347404
Tamon Miyake;Hiromasa Ito;Naomi Okamura;Yo Kobayashi;Masakatsu G. Fujie;Shigeki Sugano
To promote rapid recovery and quality of life after a musculoskeletal disorder, rehabilitation exercises that are suitable for each individual's physical condition are important. In cases of disuse muscle atrophy of the quadriceps, inappropriate training can cause injury. Although resistance-training robotic systems have been developed and could adjust resistance load, a systematic detection method with appropriate force strength for automatic adjustment for each individual has not yet been established. In the current study, we developed an electromyogram (EMG) based method that determines the minimum effective resistance load for muscle growth. Using an integrated EMG (IEMG) model of incremental resistance load focused, we constructed a method to determine the minimum effective resistance load with logarithmic functions. The feasibility of our method was tested with a slow training protocol using a wire-driven leg extension training robot to measure the relationship between IEMG and resistance load by applying the incremental resistance load. The proposed model was found to be suitable for six young and four elderly subjects with different levels of muscle mass, and the load derived for each person was shown to induce effectively acute thigh circumference expansion, which is a factor leading to future muscle hypertrophy.
为了促进肌肉骨骼疾病后的快速康复并提高生活质量,适合每个人身体状况的康复训练非常重要。在股四头肌出现废用性肌肉萎缩的情况下,不适当的训练可能会造成损伤。虽然阻力训练机器人系统已经开发出来,并且可以调节阻力负荷,但目前尚未建立一套系统的检测方法,根据每个人的情况自动调节适当的力量强度。在本研究中,我们开发了一种基于肌电图(EMG)的方法,可确定肌肉生长的最小有效阻力负荷。利用增量阻力负荷集中的综合肌电图(IEMG)模型,我们构建了一种用对数函数确定最小有效阻力负荷的方法。我们使用线驱动腿部伸展训练机器人的慢速训练方案,通过施加递增阻力负荷来测量肌电图和阻力负荷之间的关系,从而测试了我们方法的可行性。结果表明,所提出的模型适用于肌肉质量水平不同的六名年轻受试者和四名老年受试者,而且为每个人得出的负荷都能有效地诱导急性大腿围度扩张,而这正是导致未来肌肉肥大的一个因素。
{"title":"EMG-Based Detection of Minimum Effective Load With Robotic-Resistance Leg Extensor Training","authors":"Tamon Miyake;Hiromasa Ito;Naomi Okamura;Yo Kobayashi;Masakatsu G. Fujie;Shigeki Sugano","doi":"10.1109/THMS.2023.3347404","DOIUrl":"https://doi.org/10.1109/THMS.2023.3347404","url":null,"abstract":"To promote rapid recovery and quality of life after a musculoskeletal disorder, rehabilitation exercises that are suitable for each individual's physical condition are important. In cases of disuse muscle atrophy of the quadriceps, inappropriate training can cause injury. Although resistance-training robotic systems have been developed and could adjust resistance load, a systematic detection method with appropriate force strength for automatic adjustment for each individual has not yet been established. In the current study, we developed an electromyogram (EMG) based method that determines the minimum effective resistance load for muscle growth. Using an integrated EMG (IEMG) model of incremental resistance load focused, we constructed a method to determine the minimum effective resistance load with logarithmic functions. The feasibility of our method was tested with a slow training protocol using a wire-driven leg extension training robot to measure the relationship between IEMG and resistance load by applying the incremental resistance load. The proposed model was found to be suitable for six young and four elderly subjects with different levels of muscle mass, and the load derived for each person was shown to induce effectively acute thigh circumference expansion, which is a factor leading to future muscle hypertrophy.","PeriodicalId":48916,"journal":{"name":"IEEE Transactions on Human-Machine Systems","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139654895","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
IEEE Transactions on Human-Machine Systems
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1