This work reports on the determination of the heat conductivity of high temperature stable carbon materials in the temperature range well above 2000 °C where classic material characterization methods fail. Dense graphite (DG) materials as well as rigid and soft felt isolation (RFI/SFI) components have been investigated which are used during crystal growth of SiC by the physical vapor transport method (PVT) in the temperature regime of 2000 and 2400 °C. The applied materials characterization methods include low temperature physical heat conductivity measurements using laser flash analysis (LFA) in the temperature range 25–1200 °C, data extrapolation to elevated temperatures up to 2400 °C, and a correlation of heating processes and computer simulation of the temperature field of different hot zone designs. Using this approach, the calculated temperatures and experimentally determined values with an error of less than ± 2% at 2400 °C can be merged.
{"title":"Determination of Thermal Properties of Carbon Materials above 2000 °C for Application in High Temperature Crystal Growth","authors":"Jonas Ihle, Peter J. Wellmann","doi":"10.1002/crat.202400080","DOIUrl":"10.1002/crat.202400080","url":null,"abstract":"<p>This work reports on the determination of the heat conductivity of high temperature stable carbon materials in the temperature range well above 2000 °C where classic material characterization methods fail. Dense graphite (DG) materials as well as rigid and soft felt isolation (RFI/SFI) components have been investigated which are used during crystal growth of SiC by the physical vapor transport method (PVT) in the temperature regime of 2000 and 2400 °C. The applied materials characterization methods include low temperature physical heat conductivity measurements using laser flash analysis (LFA) in the temperature range 25–1200 °C, data extrapolation to elevated temperatures up to 2400 °C, and a correlation of heating processes and computer simulation of the temperature field of different hot zone designs. Using this approach, the calculated temperatures and experimentally determined values with an error of less than ± 2% at 2400 °C can be merged.</p>","PeriodicalId":48935,"journal":{"name":"Crystal Research and Technology","volume":"60 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/crat.202400080","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141947253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sabah. E. Algarni, Atef F. Qasrawi, Najla. M. Khusayfan
In this study, semitransparent lead films serve as substrates for depositing niobium pentoxide thin films, forming versatile electro-optical devices. Using vacuum evaporation and ion sputtering techniques at ≈10−5 mbar, stacked layers of crystalline Pb and amorphous Nb2O5 are created. This process reduces free carrier absorption in Nb2O5 and forms Urbach tail states with a width of 0.91 eV. Pb/Nb2O5 thin films exhibit remarkable broadband absorption, exceeding 440% in the visible and 98% in the infrared. Moreover, Pb substrates induce a redshift in Nb2O5’s energy bandgap. Electrical analysis using impedance spectroscopy on Pb/Nb2O5/Ag structures reveals their series/parallel resonance and bandstop filter properties. Notably, the bandstop filters exhibit reflection coefficient minima at a notch frequency of 1.66 GHz, with a bandwidth of 280 MHz, return loss of 26 dB, and voltage standing wave ratio of 1.13. These findings underscore the device's potential for wide-ranging electro-optical applications across the electromagnetic spectrum.
{"title":"High Broadband Optical Absorption and Bandstop Filter Characteristics of Pb/Nb2O5 Interfaces","authors":"Sabah. E. Algarni, Atef F. Qasrawi, Najla. M. Khusayfan","doi":"10.1002/crat.202400136","DOIUrl":"10.1002/crat.202400136","url":null,"abstract":"<p>In this study, semitransparent lead films serve as substrates for depositing niobium pentoxide thin films, forming versatile electro-optical devices. Using vacuum evaporation and ion sputtering techniques at ≈10<sup>−5</sup> mbar, stacked layers of crystalline Pb and amorphous Nb<sub>2</sub>O<sub>5</sub> are created. This process reduces free carrier absorption in Nb<sub>2</sub>O<sub>5</sub> and forms Urbach tail states with a width of 0.91 eV. Pb/Nb<sub>2</sub>O<sub>5</sub> thin films exhibit remarkable broadband absorption, exceeding 440% in the visible and 98% in the infrared. Moreover, Pb substrates induce a redshift in Nb<sub>2</sub>O<sub>5</sub>’s energy bandgap. Electrical analysis using impedance spectroscopy on Pb/Nb<sub>2</sub>O<sub>5</sub>/Ag structures reveals their series/parallel resonance and bandstop filter properties. Notably, the bandstop filters exhibit reflection coefficient minima at a notch frequency of 1.66 GHz, with a bandwidth of 280 MHz, return loss of 26 dB, and voltage standing wave ratio of 1.13. These findings underscore the device's potential for wide-ranging electro-optical applications across the electromagnetic spectrum.</p>","PeriodicalId":48935,"journal":{"name":"Crystal Research and Technology","volume":"59 9","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141947251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cover image provided courtesy of Jianguang Zhou, Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, China.