首页 > 最新文献

Crystal Research and Technology最新文献

英文 中文
Issue Information: Crystal Research and Technology 11'2024 发行信息:晶体研究与技术 11'2024
IF 1.5 4区 材料科学 Q3 Chemistry Pub Date : 2024-11-11 DOI: 10.1002/crat.202470044
{"title":"Issue Information: Crystal Research and Technology 11'2024","authors":"","doi":"10.1002/crat.202470044","DOIUrl":"https://doi.org/10.1002/crat.202470044","url":null,"abstract":"","PeriodicalId":48935,"journal":{"name":"Crystal Research and Technology","volume":"59 11","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/crat.202470044","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142664917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preparation and Growth Mechanism of Pyramid-Shaped Cu2ZnSnS4 Monocrystal and the Simulation of Its Monograin Layer Solar Cells 锥形Cu2ZnSnS4单晶的制备、生长机理及其单晶层太阳能电池的模拟
IF 1.5 4区 材料科学 Q3 Chemistry Pub Date : 2024-11-09 DOI: 10.1002/crat.202400151
Wenfeng Fu, Xupeng Zhu, Jun Liao, Qiang Ru, Shuwen Xue, Jun Zhang

The Cu2ZnSnS4(CZTS) monocrystal as an important component of the optical absorption layer in monograin layer solar cells, has excellent crystallization characteristics and adjustable photogenerated carrier concentration. The shape of the CZTS monocrystal directly affects the utilization of incident light and the contact area during the preparation of the back electrode when they are densely packed to form a single-layer absorption layer. Herein, a kesterite-phase pyramid-shaped CZTS monocrystal prepared by the molten salt method is reported, which can improve the efficiency of incident light utilization and increase the contact area during back electrode preparation. The X-Ray diffraction, Raman spectroscopy, transmission electron microscopy, and scanning electron microscopy are used to characterize the crystallinity and crystal shape of pyramid-shaped CZTS monocrystal. Besides, Finite-Difference simulation calculation is employed to reveal the optical response and corresponding monograin layer solar cells performance of densely packed CZTS. The results show that the pyramid-shaped structure exhibited excellent incident light trapping ability, and the simulated device achieves a cell efficiency with above 13.6% after parameter optimization. The work provides a method for preparing pyramid-shaped CZTS monocrystal, and a new strategy to further improve the efficiency of CZTS-based monograin layer solar cells.

Cu2ZnSnS4(CZTS)单晶具有优良的结晶特性和可调节的光生载流子浓度,是单晶太阳能电池中光学吸收层的重要组成部分。当CZTS单晶密集堆积形成单层吸收层时,其形状直接影响到背电极制备过程中入射光的利用率和接触面积。本文报道了一种采用熔盐法制备的kesterte相金字塔型CZTS单晶,该单晶可以提高入射光的利用效率,增加背电极制备过程中的接触面积。利用x射线衍射、拉曼光谱、透射电子显微镜和扫描电子显微镜对金字塔形CZTS单晶的结晶度和晶体形状进行了表征。此外,利用有限差分模拟计算揭示了密集堆积CZTS的光学响应和相应的单粒层太阳能电池性能。结果表明,金字塔形结构具有良好的入射光捕获能力,经过参数优化后,模拟器件的电池效率达到13.6%以上。本研究提供了一种制备金字塔形CZTS单晶的方法,并为进一步提高CZTS单晶太阳能电池的效率提供了新的策略。
{"title":"Preparation and Growth Mechanism of Pyramid-Shaped Cu2ZnSnS4 Monocrystal and the Simulation of Its Monograin Layer Solar Cells","authors":"Wenfeng Fu,&nbsp;Xupeng Zhu,&nbsp;Jun Liao,&nbsp;Qiang Ru,&nbsp;Shuwen Xue,&nbsp;Jun Zhang","doi":"10.1002/crat.202400151","DOIUrl":"https://doi.org/10.1002/crat.202400151","url":null,"abstract":"<p>The Cu<sub>2</sub>ZnSnS<sub>4</sub>(CZTS) monocrystal as an important component of the optical absorption layer in monograin layer solar cells, has excellent crystallization characteristics and adjustable photogenerated carrier concentration. The shape of the CZTS monocrystal directly affects the utilization of incident light and the contact area during the preparation of the back electrode when they are densely packed to form a single-layer absorption layer. Herein, a kesterite-phase pyramid-shaped CZTS monocrystal prepared by the molten salt method is reported, which can improve the efficiency of incident light utilization and increase the contact area during back electrode preparation. The X-Ray diffraction, Raman spectroscopy, transmission electron microscopy, and scanning electron microscopy are used to characterize the crystallinity and crystal shape of pyramid-shaped CZTS monocrystal. Besides, Finite-Difference simulation calculation is employed to reveal the optical response and corresponding monograin layer solar cells performance of densely packed CZTS. The results show that the pyramid-shaped structure exhibited excellent incident light trapping ability, and the simulated device achieves a cell efficiency with above 13.6% after parameter optimization. The work provides a method for preparing pyramid-shaped CZTS monocrystal, and a new strategy to further improve the efficiency of CZTS-based monograin layer solar cells.</p>","PeriodicalId":48935,"journal":{"name":"Crystal Research and Technology","volume":"59 12","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142860576","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterization of PbMo0.3W0.7O4 Crystal: A Potential Material for Photocatalysis and Optoelectronic Applications PbMo0.3W0.7O4晶体的表征:一种潜在的光催化和光电子应用材料
IF 1.5 4区 材料科学 Q3 Chemistry Pub Date : 2024-11-09 DOI: 10.1002/crat.202400189
Mehmet Isik, Nizami Mamed Gasanly

PbMo0.3W0.7O4 semiconductor crystal, which contains the balanced ratios of Mo and W, is grown for the first time by Czochralski method. The structural and optical properties of the crystal are investigated in detail in the present study. Structural analysis shows that crystal has tetragonal structure like PbMoO4 and PbWO4 compounds. The optical characteristics are studied by transmission, Raman, FTIR and photoluminescence methods. The bandgap energy is found to be 3.18 eV, and the positions of the conduction and valence bands are determined. The vibrational characteristics are studied by means of Raman and FTIR spectroscopy techniques. Photoluminescence spectrum presents three peaks around 486, 529, and 544 nm which fall into the green emission spectral range. Taking into account the properties of the compound, it is stated that PbMo0.3W0.7O4 (or Pb(MoO4)0.3(WO4)0.7) has the potential to be used in water splitting applications and optoelectronic devices that emit green light.

首次用Czochralski法生长出Mo和W配比平衡的PbMo0.3W0.7O4半导体晶体。本文对晶体的结构和光学性质进行了详细的研究。结构分析表明,该晶体具有与PbMoO4和PbWO4化合物类似的四方结构。通过透射、拉曼、FTIR和光致发光等方法研究了其光学特性。发现带隙能量为3.18 eV,并确定了导价带的位置。利用拉曼光谱和傅里叶红外光谱技术对其振动特性进行了研究。光致发光光谱在486nm、529 nm和544 nm附近有三个峰,属于绿色发射光谱范围。考虑到化合物的性质,指出PbMo0.3W0.7O4(或Pb(MoO4)0.3(WO4)0.7)具有用于水分解应用和发出绿光的光电器件的潜力。
{"title":"Characterization of PbMo0.3W0.7O4 Crystal: A Potential Material for Photocatalysis and Optoelectronic Applications","authors":"Mehmet Isik,&nbsp;Nizami Mamed Gasanly","doi":"10.1002/crat.202400189","DOIUrl":"https://doi.org/10.1002/crat.202400189","url":null,"abstract":"<p>PbMo<sub>0.3</sub>W<sub>0.7</sub>O<sub>4</sub> semiconductor crystal, which contains the balanced ratios of Mo and W, is grown for the first time by Czochralski method. The structural and optical properties of the crystal are investigated in detail in the present study. Structural analysis shows that crystal has tetragonal structure like PbMoO<sub>4</sub> and PbWO<sub>4</sub> compounds. The optical characteristics are studied by transmission, Raman, FTIR and photoluminescence methods. The bandgap energy is found to be 3.18 eV, and the positions of the conduction and valence bands are determined. The vibrational characteristics are studied by means of Raman and FTIR spectroscopy techniques. Photoluminescence spectrum presents three peaks around 486, 529, and 544 nm which fall into the green emission spectral range. Taking into account the properties of the compound, it is stated that PbMo<sub>0.3</sub>W<sub>0.7</sub>O<sub>4</sub> (or Pb(MoO<sub>4</sub>)<sub>0.3</sub>(WO<sub>4</sub>)<sub>0.7</sub>) has the potential to be used in water splitting applications and optoelectronic devices that emit green light.</p>","PeriodicalId":48935,"journal":{"name":"Crystal Research and Technology","volume":"59 12","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142860577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study on the Effect of Cations on Morphology in the Preparation of Vaterite Calcium Carbonate from Dolomite 阳离子对白云石制备水晶石型碳酸钙形貌影响的研究
IF 1.5 4区 材料科学 Q3 Chemistry Pub Date : 2024-11-09 DOI: 10.1002/crat.202400161
Tianbo Fan, Xin'ai Zhang, Qiutong Li, Liqiang Jiao, Hongfan Guo, Xue Li

In this paper, the effect of trace components in dolomite on the morphology of vaterite calcium carbonate is studied in the CaCl2-NH3-CO2 system, with a focus on the effect of cations (Mg2+, Fe3+, Si4+, and Al3+) in the solution. Ca2+, NH4+, Mg2+, Fe3+, Si4+, and Al3+ in the digestion solution are proportionally prepared into a solution by analyzing the calcium rich digestion solution which is obtained by digesting dolomite with ammonium chloride solution. Under the optimal conditions, NH3 is introduced at a rate of 0.5 L min−1 for 1 h, CO2 is introduced at a rate of 0.5 L min−1 for 1 h and rotation speed of 500 r min−1 to prepare the vaterite calcium carbonate. The results show that the addition of Mg2+, Fe3+, Si4+, and Al3+ can promote the growth of vaterite calcium carbonate. Among them, adding Mg2+ and Si4+ can promote the dispersion of vaterite, Fe3+ and Al3+ can cause agglomeration of vaterite. Material Studio software is used to predict the crystal morphology of vaterite calcium carbonate under ideal conditions, and the calculation results are basically consistent with the experimental results.

本文在CaCl2-NH3-CO2体系中研究了白云岩中微量组分对水晶石型碳酸钙形貌的影响,重点研究了溶液中阳离子(Mg2+、Fe3+、Si4+、Al3+)的影响。通过分析氯化铵消解白云石得到的富钙消解液,将消解液中的Ca2+、NH4+、Mg2+、Fe3+、Si4+、Al3+按比例配制成溶液。在最佳条件下,NH3以0.5 L min - 1的速率引入1 h, CO2以0.5 L min - 1的速率引入1 h,转速为500 r min - 1,制备水晶石型碳酸钙。结果表明,Mg2+、Fe3+、Si4+和Al3+的加入均能促进钙矾石型碳酸钙的生长。其中,添加Mg2+和Si4+能促进水晶石的分散,添加Fe3+和Al3+能引起水晶石的团聚。利用Material Studio软件对理想条件下的水晶石型碳酸钙晶体形态进行了预测,计算结果与实验结果基本一致。
{"title":"Study on the Effect of Cations on Morphology in the Preparation of Vaterite Calcium Carbonate from Dolomite","authors":"Tianbo Fan,&nbsp;Xin'ai Zhang,&nbsp;Qiutong Li,&nbsp;Liqiang Jiao,&nbsp;Hongfan Guo,&nbsp;Xue Li","doi":"10.1002/crat.202400161","DOIUrl":"https://doi.org/10.1002/crat.202400161","url":null,"abstract":"<p>In this paper, the effect of trace components in dolomite on the morphology of vaterite calcium carbonate is studied in the CaCl<sub>2</sub>-NH<sub>3</sub>-CO<sub>2</sub> system, with a focus on the effect of cations (Mg<sup>2+</sup>, Fe<sup>3+</sup>, Si<sup>4+</sup>, and Al<sup>3+</sup>) in the solution. Ca<sup>2+</sup>, NH<sub>4</sub><sup>+</sup>, Mg<sup>2+</sup>, Fe<sup>3+</sup>, Si<sup>4+</sup>, and Al<sup>3+</sup> in the digestion solution are proportionally prepared into a solution by analyzing the calcium rich digestion solution which is obtained by digesting dolomite with ammonium chloride solution. Under the optimal conditions, NH<sub>3</sub> is introduced at a rate of 0.5 L min<sup>−1</sup> for 1 h, CO<sub>2</sub> is introduced at a rate of 0.5 L min<sup>−1</sup> for 1 h and rotation speed of 500 r min<sup>−1</sup> to prepare the vaterite calcium carbonate. The results show that the addition of Mg<sup>2+</sup>, Fe<sup>3+</sup>, Si<sup>4+</sup>, and Al<sup>3+</sup> can promote the growth of vaterite calcium carbonate. Among them, adding Mg<sup>2+</sup> and Si<sup>4+</sup> can promote the dispersion of vaterite, Fe<sup>3+</sup> and Al<sup>3+</sup> can cause agglomeration of vaterite. Material Studio software is used to predict the crystal morphology of vaterite calcium carbonate under ideal conditions, and the calculation results are basically consistent with the experimental results.</p>","PeriodicalId":48935,"journal":{"name":"Crystal Research and Technology","volume":"59 12","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142860578","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ca(Mo,W)O4 Solid Solutions Formation in CaMoO4-CaWO4 System CaMoO4-CaWO4 体系中 Ca(Mo,W)O4 固溶体的形成
IF 1.5 4区 材料科学 Q3 Chemistry Pub Date : 2024-10-25 DOI: 10.1002/crat.202400127
D.M. Khramtsova, A.B. Kuznetsov, V.D. Grigorieva, A.A. Ryadun, A.E. Musikhin, K.A. Kokh

The formation of solid solutions in the CaMoO4-CaWO4 binary system is investigated by X-ray diffraction, Raman spectroscopy, and scanning electron microscopy methods. The intermixtures of CaMoO4 and CaWO4 components are sintered in 600—1200 °C temperature range (in 100 °C increments). The solidus of the CaMoxW(1-x)O4 system is studied by the differential scanning calorimetry method in the x  =  0.3 … 1.0 range. CaMoO4-CaWO4 phase diagram is constructed up to 1550 °C. The minimal sintering temperature in order to get CaMoxW(1-x)O4 solid solution is shown to be 800 °C. Cathodoluminescence study of CaMoxW(1-x)O4 compounds showed higher intensity of molybdate luminescence type.

通过 X 射线衍射、拉曼光谱和扫描电子显微镜方法研究了 CaMoO4-CaWO4 二元体系中固溶体的形成。CaMoO4 和 CaWO4 成分的混合物在 600-1200 °C 温度范围内烧结(以 100 °C 为增量)。通过差示扫描量热法研究了 CaMoxW(1-x)O4 体系在 x = 0.3 ... 1.0 范围内的固相。绘制了高达 1550 °C 的 CaMoO4-CaWO4 相图。得到 CaMoxW(1-x)O4 固溶体的最低烧结温度为 800 ℃。对 CaMoxW(1-x)O4化合物的阴极荧光研究表明,钼酸盐类发光强度更高。
{"title":"Ca(Mo,W)O4 Solid Solutions Formation in CaMoO4-CaWO4 System","authors":"D.M. Khramtsova,&nbsp;A.B. Kuznetsov,&nbsp;V.D. Grigorieva,&nbsp;A.A. Ryadun,&nbsp;A.E. Musikhin,&nbsp;K.A. Kokh","doi":"10.1002/crat.202400127","DOIUrl":"https://doi.org/10.1002/crat.202400127","url":null,"abstract":"<p>The formation of solid solutions in the CaMoO<sub>4</sub>-CaWO<sub>4</sub> binary system is investigated by X-ray diffraction, Raman spectroscopy, and scanning electron microscopy methods. The intermixtures of CaMoO<sub>4</sub> and CaWO<sub>4</sub> components are sintered in 600—1200 °C temperature range (in 100 °C increments). The solidus of the CaMo<sub>x</sub>W<sub>(1-x)</sub>O<sub>4</sub> system is studied by the differential scanning calorimetry method in the x  =  0.3 … 1.0 range. CaMoO<sub>4</sub>-CaWO<sub>4</sub> phase diagram is constructed up to 1550 °C. The minimal sintering temperature in order to get CaMo<sub>x</sub>W<sub>(1-x)</sub>O<sub>4</sub> solid solution is shown to be 800 °C. Cathodoluminescence study of CaMo<sub>x</sub>W<sub>(1-x)</sub>O<sub>4</sub> compounds showed higher intensity of molybdate luminescence type.</p>","PeriodicalId":48935,"journal":{"name":"Crystal Research and Technology","volume":"59 11","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Research on the Heterogeneous Deformation Behavior of Nickel Base Alloy Based on CPFEM 基于 CPFEM 的镍基合金异质变形行为研究
IF 1.5 4区 材料科学 Q3 Chemistry Pub Date : 2024-10-25 DOI: 10.1002/crat.202400170
Erqiang Liu, Mengchun You, Hongwei Zhao, Jianguo Wu, Xianliang Yang, Gesheng Xiao, Jinbao Lin

In this paper, a crystal plasticity finite element method (CPFEM), considering the grain morphology and orientation, as well as the dislocation density, is used to research the tensile deformation behavior of GH4169 based on Electron Backscatter Diffraction (EBSD). The stress, plastic strain, and dislocation density distributions are obtained for different levels of deformation. Results show that the stress, plastic strain, and dislocation density exhibit obvious heterogeneous plastic deformation, and stress concentration and dislocation pileup mainly occurs near grain boundaries. The initial dislocation density mainly affects the stress–strain curve of the material, and it can obviously effect the yield strength but cannot influence the hardening ability of the material. The total dislocation density increases with plastic strain. However, the texture evolution has no evident change with increasing plastic strain, except for the increase of texture content in Cube (001)[100].

本文采用晶体塑性有限元法(CPFEM),考虑了晶粒形态和取向以及位错密度,基于电子背散射衍射(EBSD)研究了 GH4169 的拉伸变形行为。获得了不同变形水平下的应力、塑性应变和位错密度分布。结果表明,应力、塑性应变和位错密度表现出明显的异质塑性变形,应力集中和位错堆积主要发生在晶界附近。初始位错密度主要影响材料的应力-应变曲线,它能明显影响材料的屈服强度,但不能影响材料的硬化能力。总位错密度随塑性应变而增加。然而,除了立方体(001)[100] 中的纹理含量增加外,纹理演变并没有随着塑性应变的增加而发生明显变化。
{"title":"Research on the Heterogeneous Deformation Behavior of Nickel Base Alloy Based on CPFEM","authors":"Erqiang Liu,&nbsp;Mengchun You,&nbsp;Hongwei Zhao,&nbsp;Jianguo Wu,&nbsp;Xianliang Yang,&nbsp;Gesheng Xiao,&nbsp;Jinbao Lin","doi":"10.1002/crat.202400170","DOIUrl":"https://doi.org/10.1002/crat.202400170","url":null,"abstract":"<p>In this paper, a crystal plasticity finite element method (CPFEM), considering the grain morphology and orientation, as well as the dislocation density, is used to research the tensile deformation behavior of GH4169 based on Electron Backscatter Diffraction (EBSD). The stress, plastic strain, and dislocation density distributions are obtained for different levels of deformation. Results show that the stress, plastic strain, and dislocation density exhibit obvious heterogeneous plastic deformation, and stress concentration and dislocation pileup mainly occurs near grain boundaries. The initial dislocation density mainly affects the stress–strain curve of the material, and it can obviously effect the yield strength but cannot influence the hardening ability of the material. The total dislocation density increases with plastic strain. However, the texture evolution has no evident change with increasing plastic strain, except for the increase of texture content in Cube (001)[100].</p>","PeriodicalId":48935,"journal":{"name":"Crystal Research and Technology","volume":"59 11","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665146","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Growth of YAG:Nd laser crystals by Horizontal Directional Crystallization in Protective Carbon-Containing Atmosphere 在含碳保护气氛中通过水平定向结晶技术生长 YAG:Nd 激光晶体
IF 1.5 4区 材料科学 Q3 Chemistry Pub Date : 2024-10-17 DOI: 10.1002/crat.202400104
S. Nizhankovskyi, A. Romanenko, O. Serdiuk, E. Vovk, N. Sidelnikova, A. Kozlovskyi, S. Kryvonohov, O. Lukienko, S. Skorik, N. Kovalenko, K. Bryliova, I. Pritula

Laser-quality yttrium-aluminum garnet single crystals doped with neodymium (YAG:Nd) of a concentration up to 1 at. % is grown by the method of horizontal directional crystallization from a molybdenum crucible in the protective reducing atmosphere based on argon, СО, and hydrogen. It is found that the content of carbon impurity in the grown crystals does not exceed 5·10−3 wt %, the content of molybdenum being on the level of 1.5·10−3 wt %. The optical quality of the crystals depends on the composition of the growth atmosphere and annealing. It is shown that, besides the bands of neodymium ion absorption, the crystals are characterized by the intense absorption in the UV edge of the spectrum at 370 nm wavelength, and by the wide absorption band with a maximum at 580 nm caused by formation of F and F+-centers. The absorption at 370 and 580 nm can be eliminated by annealing. The structure perfection of the crystals is characterized by the rocking curve half-width (β) which value varies within the limits of 10–14 arc. sec for (001) plane. Laser testing demonstrates the parameters comparable with those of YAG:Nd crystals grown by the Czochralski method from iridium crucible.

掺杂了钕的激光级钇铝石榴石单晶体(YAG:Nd)浓度高达 1 at.%的激光级掺钕钇铝石榴石单晶,是在氩、СО和氢保护性还原气氛下,通过水平定向结晶法从钼坩埚中生长出来的。研究发现,生长出的晶体中碳杂质含量不超过 5-10-3 重量 %,钼含量为 1.5-10-3 重量 %。晶体的光学质量取决于生长气氛和退火的成分。研究表明,除了钕离子吸收带之外,晶体还具有在波长为 370 纳米的紫外光谱边缘的强烈吸收,以及由 F 和 F+ 中心形成的最大波长为 580 纳米的宽吸收带。退火可消除 370 和 580 纳米波长处的吸收。晶体结构的完美性体现在摇摆曲线的半宽(β)上,对于 (001) 平面,其值在 10-14 弧秒的范围内变化。激光测试表明,其参数与用铱坩埚中的 Czochralski 方法生长的 YAG:Nd 晶体相当。
{"title":"Growth of YAG:Nd laser crystals by Horizontal Directional Crystallization in Protective Carbon-Containing Atmosphere","authors":"S. Nizhankovskyi,&nbsp;A. Romanenko,&nbsp;O. Serdiuk,&nbsp;E. Vovk,&nbsp;N. Sidelnikova,&nbsp;A. Kozlovskyi,&nbsp;S. Kryvonohov,&nbsp;O. Lukienko,&nbsp;S. Skorik,&nbsp;N. Kovalenko,&nbsp;K. Bryliova,&nbsp;I. Pritula","doi":"10.1002/crat.202400104","DOIUrl":"https://doi.org/10.1002/crat.202400104","url":null,"abstract":"<p>Laser-quality yttrium-aluminum garnet single crystals doped with neodymium (YAG:Nd) of a concentration up to 1 at. % is grown by the method of horizontal directional crystallization from a molybdenum crucible in the protective reducing atmosphere based on argon, СО, and hydrogen. It is found that the content of carbon impurity in the grown crystals does not exceed 5·10<sup>−3</sup> wt %, the content of molybdenum being on the level of 1.5·10<sup>−3</sup> wt %. The optical quality of the crystals depends on the composition of the growth atmosphere and annealing. It is shown that, besides the bands of neodymium ion absorption, the crystals are characterized by the intense absorption in the UV edge of the spectrum at 370 nm wavelength, and by the wide absorption band with a maximum at 580 nm caused by formation of F and F<sup>+</sup>-centers. The absorption at 370 and 580 nm can be eliminated by annealing. The structure perfection of the crystals is characterized by the rocking curve half-width (<i>β</i>) which value varies within the limits of 10–14 arc. sec for (001) plane. Laser testing demonstrates the parameters comparable with those of YAG:Nd crystals grown by the Czochralski method from iridium crucible.</p>","PeriodicalId":48935,"journal":{"name":"Crystal Research and Technology","volume":"59 11","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665071","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preparation and Photophysical Properties of Znq2 Metallic Nanomaterials Znq2 金属纳米材料的制备与光物理性质
IF 1.5 4区 材料科学 Q3 Chemistry Pub Date : 2024-10-15 DOI: 10.1002/crat.202400116
Fulian Li, Yunshuai Long, Xin Huang, Penghui Ma, Guiyi Huang, Yumin Song

Bis(8-hydroxyquinolates) Zinc (Znq2) can be used as a light-emitting layer material in OLED devices to achieve its efficient electroluminescence effect. In this paper, Znq2 powder has been successfully synthesized and modified by the physical vapor deposition (PVD) method. Precursors and nano-materials are characterized by XRD, SEM, PL, and so on. The performance of the modified material has been significantly improved. The emission intensity and absorption intensity in the deposited products increased with the increase in PVD temperature. At 453 K, luminous properties such as luminous intensity reach the optimal value including its fluorescence lifetime. Fluorescence lifetime values vary from 13 to 17 ns with the increase in temperature. The luminescence mechanism is also discussed. The energy gap and absorption spectrum of HOM-LUMO are calculated by the DFT/UB3LYP method. The experimental values agree well with the theoretical values. The nanomaterial crystals modified by PVD technology are more orderly, impurities are reduced, and the luminous stability of the material is improved, which may be one of the reasons for the relatively slow decline in product life. The research combined with theoretical simulation is expected to be helpful to the research and promotion of such materials.

双(8-羟基喹啉酸盐)锌(Znq2)可用作 OLED 器件的发光层材料,以实现其高效的电致发光效果。本文采用物理气相沉积(PVD)方法成功合成并修饰了 Znq2 粉末。通过 XRD、SEM、PL 等对前驱体和纳米材料进行了表征。改性材料的性能得到了显著改善。沉积产物的发射强度和吸收强度随着 PVD 温度的升高而增加。在 453 K 时,发光强度等发光特性达到了最佳值,包括其荧光寿命。随着温度的升高,荧光寿命值从 13 ns 到 17 ns 不等。此外,还讨论了发光机制。利用 DFT/UB3LYP 方法计算了 HOM-LUMO 的能隙和吸收光谱。实验值与理论值吻合良好。通过 PVD 技术修饰的纳米材料晶体更加有序,杂质减少,发光稳定性提高,这可能是产品寿命下降相对较慢的原因之一。该研究结合理论模拟,有望对此类材料的研究和推广有所帮助。
{"title":"Preparation and Photophysical Properties of Znq2 Metallic Nanomaterials","authors":"Fulian Li,&nbsp;Yunshuai Long,&nbsp;Xin Huang,&nbsp;Penghui Ma,&nbsp;Guiyi Huang,&nbsp;Yumin Song","doi":"10.1002/crat.202400116","DOIUrl":"https://doi.org/10.1002/crat.202400116","url":null,"abstract":"<p>Bis(8-hydroxyquinolates) Zinc (Znq<sub>2</sub>) can be used as a light-emitting layer material in OLED devices to achieve its efficient electroluminescence effect. In this paper, Znq<sub>2</sub> powder has been successfully synthesized and modified by the physical vapor deposition (PVD) method. Precursors and nano-materials are characterized by XRD, SEM, PL, and so on. The performance of the modified material has been significantly improved. The emission intensity and absorption intensity in the deposited products increased with the increase in PVD temperature. At 453 K, luminous properties such as luminous intensity reach the optimal value including its fluorescence lifetime. Fluorescence lifetime values vary from 13 to 17 ns with the increase in temperature. The luminescence mechanism is also discussed. The energy gap and absorption spectrum of HOM-LUMO are calculated by the DFT/UB3LYP method. The experimental values agree well with the theoretical values. The nanomaterial crystals modified by PVD technology are more orderly, impurities are reduced, and the luminous stability of the material is improved, which may be one of the reasons for the relatively slow decline in product life. The research combined with theoretical simulation is expected to be helpful to the research and promotion of such materials.</p>","PeriodicalId":48935,"journal":{"name":"Crystal Research and Technology","volume":"59 11","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142664814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Issue Information: Crystal Research and Technology 10'2024 发行信息:晶体研究与技术 10'2024
IF 1.5 4区 材料科学 Q3 Chemistry Pub Date : 2024-10-09 DOI: 10.1002/crat.202470043
{"title":"Issue Information: Crystal Research and Technology 10'2024","authors":"","doi":"10.1002/crat.202470043","DOIUrl":"https://doi.org/10.1002/crat.202470043","url":null,"abstract":"","PeriodicalId":48935,"journal":{"name":"Crystal Research and Technology","volume":"59 10","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/crat.202470043","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142435270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Green Conversion of Epoxides to Cyclic Carbonates by Copper Nanocrystals Fabricated on Jute Tartaric Acid Composite Surface 在黄麻酒石酸复合材料表面制备纳米铜,实现环氧化物到环碳酸盐的绿色转化
IF 1.5 4区 材料科学 Q3 Chemistry Pub Date : 2024-10-08 DOI: 10.1002/crat.202400114
Sankar Barman, Sushobhan Ghosh

The synthesis of copper nanocrystals on tartaric acid jute composite surface is reported. The formation of nanocrystals is detected by FT IR, Powder X-ray diffraction, SEM, and TEM analysis. The average size of the nanocrystals is found to be 500 nm. The reaction of the copper nanocrystals with CO2 resulted in a decrease in the size of the nanoparticles. Cycloaddition reaction of epoxides to cyclic carbonate is efficiently carried out by the copper nanocrystals on tartaric acid jute composite surface (CUNPJT) without using any cocatalyst and solvent. To the best of author's knowledge, this is the first example of copper nanocrystals catalyzing the cycloaddition of CO2 and epoxide.

报告了在酒石酸黄麻复合材料表面合成纳米铜晶体的过程。通过傅立叶变换红外光谱、粉末 X 射线衍射、扫描电镜和 TEM 分析检测了纳米晶体的形成。纳米晶体的平均尺寸为 500 nm。纳米铜晶体与 CO2 反应后,纳米粒子的尺寸减小。酒石酸黄麻复合表面(CUNPJT)上的纳米铜晶体不使用任何助催化剂和溶剂,就能有效地进行环氧化物与环碳酸盐的环加成反应。据作者所知,这是纳米铜晶体催化二氧化碳和环氧化物环化反应的第一个实例。
{"title":"Green Conversion of Epoxides to Cyclic Carbonates by Copper Nanocrystals Fabricated on Jute Tartaric Acid Composite Surface","authors":"Sankar Barman,&nbsp;Sushobhan Ghosh","doi":"10.1002/crat.202400114","DOIUrl":"https://doi.org/10.1002/crat.202400114","url":null,"abstract":"<p>The synthesis of copper nanocrystals on tartaric acid jute composite surface is reported. The formation of nanocrystals is detected by FT IR, Powder X-ray diffraction, SEM, and TEM analysis. The average size of the nanocrystals is found to be 500 nm. The reaction of the copper nanocrystals with CO<sub>2</sub> resulted in a decrease in the size of the nanoparticles. Cycloaddition reaction of epoxides to cyclic carbonate is efficiently carried out by the copper nanocrystals on tartaric acid jute composite surface (CUNPJT) without using any cocatalyst and solvent. To the best of author's knowledge, this is the first example of copper nanocrystals catalyzing the cycloaddition of CO<sub>2</sub> and epoxide.</p>","PeriodicalId":48935,"journal":{"name":"Crystal Research and Technology","volume":"59 11","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142664527","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Crystal Research and Technology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1