Wei-Jie Ji, Yue Wu, Minghuang Hong, Bin Zhu, Guo-Bin Ren, Ming-Hui Qi
Hydroxychloroquine sulfate is a common drug for the treatment of rheumatoid arthritis. However, the disadvantage of this drug is that it needs to be taken continuously for 3–6 months to be effective and compliance of patients is poor. In this work, four new salt forms of hydroxychloroquine are successfully prepared whose crystal structures and properties are confirmed by a series of solid-state characterization methods, including infrared spectroscopy, single crystal X-ray diffraction, powder X-ray diffraction, thermal analysis, and dynamic vapor sorption analysis. The hygroscopicity, stability, equilibrium solubility, and intrinsic dissolution rate of the four new salts are also tested. The moisture absorption, solubility, and intrinsic dissolution rate of newly prepared salts are significantly reduced, and the dissolution rates of 1-hydroxy-2-naphthoate and 1,5-naphthalenedisulfonate salts are only 1/158 and 1/335 of that of the therapeutically used sulfates, respectively. It is expected that they are potentially useful to be developed into a sustained-release formulation, which can greatly improve the dosing compliance for rheumatoid arthritis treatment.
硫酸羟氯喹是治疗类风湿性关节炎的常用药物。然而,这种药物的缺点是需要连续服用 3-6 个月才能见效,患者的依从性较差。本研究成功制备了四种羟氯喹新盐类,并通过一系列固态表征方法,包括红外光谱、单晶 X 射线衍射、粉末 X 射线衍射、热分析和动态蒸汽吸附分析,证实了其晶体结构和性质。此外,还测试了四种新盐的吸湿性、稳定性、平衡溶解度和内在溶解速率。结果表明,新制备的盐类的吸湿性、溶解度和固有溶解速率均显著降低,1-羟基-2-萘磺酸盐和 1,5-萘二磺酸盐的溶解速率分别仅为治疗用硫酸盐的 1/158 和 1/335。预计它们有望被开发成缓释制剂,从而大大提高类风湿关节炎治疗的用药依从性。
{"title":"Exploring New Solid Forms of Antirheumatic Drug Hydroxychloroquine: Novel Salts with Sustained-Release Performance","authors":"Wei-Jie Ji, Yue Wu, Minghuang Hong, Bin Zhu, Guo-Bin Ren, Ming-Hui Qi","doi":"10.1002/crat.202400056","DOIUrl":"10.1002/crat.202400056","url":null,"abstract":"<p>Hydroxychloroquine sulfate is a common drug for the treatment of rheumatoid arthritis. However, the disadvantage of this drug is that it needs to be taken continuously for 3–6 months to be effective and compliance of patients is poor. In this work, four new salt forms of hydroxychloroquine are successfully prepared whose crystal structures and properties are confirmed by a series of solid-state characterization methods, including infrared spectroscopy, single crystal X-ray diffraction, powder X-ray diffraction, thermal analysis, and dynamic vapor sorption analysis. The hygroscopicity, stability, equilibrium solubility, and intrinsic dissolution rate of the four new salts are also tested. The moisture absorption, solubility, and intrinsic dissolution rate of newly prepared salts are significantly reduced, and the dissolution rates of 1-hydroxy-2-naphthoate and 1,5-naphthalenedisulfonate salts are only 1/158 and 1/335 of that of the therapeutically used sulfates, respectively. It is expected that they are potentially useful to be developed into a sustained-release formulation, which can greatly improve the dosing compliance for rheumatoid arthritis treatment.</p>","PeriodicalId":48935,"journal":{"name":"Crystal Research and Technology","volume":"59 8","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141549800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Laila H. Gaabour, Atef Fayez Qasrawi, Seham R. Alharbi
Herein stacked layers of iron selenide (FeSe2) thin films are deposited by the physical evaporation technique and thermally annealed. An in situ monitoring of the crystallinity during the annealing process has shown that the crystallinity is reached at 100 °C. The crystallinity of the films that preferred the orthorhombic phase is enhanced with increasing annealing temperature. Evidences about the improved crystallinity are presented by the increased crystallite and grain sizes, decreased microstrain values, decreased stacking faults, and decreased defect densities with increasing annealing temperature. Optical investigations have shown impressive effect of the annealing process on the optical reflectance, optical contrast, and light absorbability. Namely, respective improvement percentages exceeding 170%, 64%, and 140% is achieved near E≈2 eV for samples annealed at 200 °C for 20 min. Both direct and indirect optical transitions are dominant in the film. In addition the annealing increased the dielectric constant in the spectral range of 1.17–4.20 eV. Maximum dielectric enhancement by 214% is reached near ≈2.10 eV. Moreover, the annealing process increases the optical conductivity and drift mobility of the FeSe2 films. The improvement in the crystallinity that resulted in enhanced optical properties makes the thermally annealed FeSe2 films promising for optoelectronic technology applications.
本文采用物理蒸发技术沉积叠层硒化铁(FeSe2)薄膜并进行热退火。对退火过程中的结晶度进行的原位监测表明,薄膜在 100 °C 时达到结晶度。正交相薄膜的结晶度随着退火温度的升高而提高。随着退火温度的升高,晶体尺寸和晶粒尺寸增大,微应变值减小,堆积断层减少,缺陷密度降低,这些都证明了结晶度的提高。光学研究表明,退火工艺对光学反射率、光学对比度和光吸收性的影响令人印象深刻。也就是说,在 200 °C 下退火 20 分钟的样品,在 E≈2 eV 附近的改进率分别超过了 170%、64% 和 140%。直接和间接光学转变在薄膜中均占主导地位。此外,退火还增加了 1.17-4.20 eV 光谱范围内的介电常数。在 ≈2.10 eV 附近,介电常数最大增强了 214%。此外,退火过程还提高了 FeSe2 薄膜的光导率和漂移迁移率。结晶度的提高导致了光学特性的增强,这使得热退火的 FeSe2 薄膜在光电技术应用中大有可为。
{"title":"In Situ Monitoring of Crystallinity of FeSe2 Thin Films During Thermal Annealing and the Annealing Effects on the Structural, Optical and Dielectric Properties","authors":"Laila H. Gaabour, Atef Fayez Qasrawi, Seham R. Alharbi","doi":"10.1002/crat.202400097","DOIUrl":"10.1002/crat.202400097","url":null,"abstract":"<p>Herein stacked layers of iron selenide (FeSe<sub>2</sub>) thin films are deposited by the physical evaporation technique and thermally annealed. An in situ monitoring of the crystallinity during the annealing process has shown that the crystallinity is reached at 100 °C. The crystallinity of the films that preferred the orthorhombic phase is enhanced with increasing annealing temperature. Evidences about the improved crystallinity are presented by the increased crystallite and grain sizes, decreased microstrain values, decreased stacking faults, and decreased defect densities with increasing annealing temperature. Optical investigations have shown impressive effect of the annealing process on the optical reflectance, optical contrast, and light absorbability. Namely, respective improvement percentages exceeding 170%, 64%, and 140% is achieved near E≈2 eV for samples annealed at 200 °C for 20 min. Both direct and indirect optical transitions are dominant in the film. In addition the annealing increased the dielectric constant in the spectral range of 1.17–4.20 eV. Maximum dielectric enhancement by 214% is reached near ≈2.10 eV. Moreover, the annealing process increases the optical conductivity and drift mobility of the FeSe<sub>2</sub> films. The improvement in the crystallinity that resulted in enhanced optical properties makes the thermally annealed FeSe<sub>2</sub> films promising for optoelectronic technology applications.</p>","PeriodicalId":48935,"journal":{"name":"Crystal Research and Technology","volume":"59 8","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141549801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aspirin, a commonly used pharmaceutical therapeutic pharmacological substance, exhibits cross-nucleation (intergrowth or overgrowth) of stable polymorphic Form-I over the preferably required metastable polymorphic Form-II, which creates a bottleneck issue in the solution crystallization of aspirin in most organic solvents and their mixtures. Controlling the overgrowth phenomenon is a key factor for designing the pharmaceutical drug material aspirin with desired properties. Hence, our present work chose a novel template-assisted swift cooling crystallization with selected templates like copper-wire and nylon 6/6 polymer, and also N-N-Dimethylformamide (DMF) as a solvent. The pure solution in the absence and the presence of a nylon 6/6 template in all the experimental supersaturation ranges achieves only thermodynamically stable polymorphic Form-I of aspirin with slightly different morphologies. Contrarily, the presence of a copper-wire template induces both stable and metastable polymorphs of aspirin depending on the level of supersaturation in the mother solution. The effect of templates on the nucleation kinetics of aspirin polymorphs is estimated using classical nucleation theory, and the determined values exactly match with experimental results. The polymorphic nature of the grown crystals is ascertained by powder X-ray diffraction (PXRD), single crystal X-ray diffraction (SCXRD), and differential scanning calorimetry (DSC) analyses.
阿司匹林是一种常用的药物治疗药理物质,其稳定的多晶型式-I 与所需的易变型多晶型式-II 之间存在交叉成核(互生或过生)现象,这给阿司匹林在大多数有机溶剂及其混合物中的溶液结晶带来了瓶颈问题。控制过度生长现象是设计具有所需特性的阿司匹林药用材料的关键因素。因此,我们的研究选择了一种新型的模板辅助快速冷却结晶法,并选择了铜丝和尼龙 6/6 聚合物等模板以及 N-N-二甲基甲酰胺(DMF)作为溶剂。在所有实验过饱和度范围内,无尼龙 6/6 模板和有尼龙 6/6 模板的纯溶液都只能生成阿司匹林的热力学稳定多晶型-I,且形态略有不同。相反,根据母液中的过饱和度,铜丝模板的存在会诱导出阿司匹林的稳定和易变多晶型。利用经典成核理论估算了模板对阿司匹林多晶体成核动力学的影响,得出的数值与实验结果完全吻合。通过粉末 X 射线衍射 (PXRD)、单晶 X 射线衍射 (SCXRD) 和差示扫描量热 (DSC) 分析,确定了生长出的晶体的多晶体性质。
{"title":"Nucleation Control and Isolation of Polymorphic Forms of Aspirin through an Efficient Template-Assisted Swift Cooling Process","authors":"Ramya Muthusamy, Nandhu varshini Gnanasekar, Srinivasan Karuppannan","doi":"10.1002/crat.202400046","DOIUrl":"10.1002/crat.202400046","url":null,"abstract":"<p>Aspirin, a commonly used pharmaceutical therapeutic pharmacological substance, exhibits cross-nucleation (intergrowth or overgrowth) of stable polymorphic Form-I over the preferably required metastable polymorphic Form-II, which creates a bottleneck issue in the solution crystallization of aspirin in most organic solvents and their mixtures. Controlling the overgrowth phenomenon is a key factor for designing the pharmaceutical drug material aspirin with desired properties. Hence, our present work chose a novel template-assisted swift cooling crystallization with selected templates like copper-wire and nylon 6/6 polymer, and also N-N-Dimethylformamide (DMF) as a solvent. The pure solution in the absence and the presence of a nylon 6/6 template in all the experimental supersaturation ranges achieves only thermodynamically stable polymorphic Form-I of aspirin with slightly different morphologies. Contrarily, the presence of a copper-wire template induces both stable and metastable polymorphs of aspirin depending on the level of supersaturation in the mother solution. The effect of templates on the nucleation kinetics of aspirin polymorphs is estimated using classical nucleation theory, and the determined values exactly match with experimental results. The polymorphic nature of the grown crystals is ascertained by powder X-ray diffraction (PXRD), single crystal X-ray diffraction (SCXRD), and differential scanning calorimetry (DSC) analyses.</p>","PeriodicalId":48935,"journal":{"name":"Crystal Research and Technology","volume":"59 8","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141511346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Maria Annunziata M. Capozzi, Angel Alvarez-Larena, Joan F. Piniella Febrer, Cosimo Cardellicchio
A recent interest attaches to the derivatives of the (2-benzylsulfinyl)benzoic acid as inhibitors of human carbonic anhydrases (hCAs), an action that can be applied in innovative therapies. A set of crystal structures of six sulfides and six enantiopure sulfoxides related to this scaffold, taken from the literature, or derived from the work on the asymmetric synthesis of sulfinyl compounds, is investigated. The lattice energies of these structures are estimated by means of the Crystal Explorer 21 program. The weak interactions building up the crystal structures are identified, and their contributions are analyzed in comparison with the calculated lattice energies. The most stable conformations in the solid phase are identified. It is worth observing that the sulfides of the scaffold under investigation behave almost in the same manner; on the other hand, the presence of the sulfinyl group of the sulfoxides adds complexity, that shall be taken into account in future docking calculations of these molecules with the hCAs enzymes.
最近,人们对作为人类碳酸酐酶(hCAs)抑制剂的(2-苄基亚磺酰基)苯甲酸衍生物产生了浓厚的兴趣,这种作用可应用于创新疗法中。本文研究了与这一支架相关的六种硫化物和六种不纯硫氧化物的晶体结构,这些晶体结构来自文献,或来自亚磺酰化合物的不对称合成工作。通过 Crystal Explorer 21 程序估算了这些结构的晶格能。确定了构成晶体结构的弱相互作用,并将其贡献与计算出的晶格能进行了对比分析。确定了固相中最稳定的构象。值得注意的是,所研究的支架硫化物的行为方式几乎相同;另一方面,硫氧化物的亚磺酰基的存在增加了复杂性,这将在今后这些分子与 hCAs 酶的对接计算中加以考虑。
{"title":"Investigation on the Crystal Structures of Molecules Related to 2-(Benzylsulfinyl)Benzoic Acid, As a Support to the Studies on the Inhibition of Human Carbonic Anhydrases","authors":"Maria Annunziata M. Capozzi, Angel Alvarez-Larena, Joan F. Piniella Febrer, Cosimo Cardellicchio","doi":"10.1002/crat.202400096","DOIUrl":"10.1002/crat.202400096","url":null,"abstract":"<p>A recent interest attaches to the derivatives of the (2-benzylsulfinyl)benzoic acid as inhibitors of human carbonic anhydrases (hCAs), an action that can be applied in innovative therapies. A set of crystal structures of six sulfides and six enantiopure sulfoxides related to this scaffold, taken from the literature, or derived from the work on the asymmetric synthesis of sulfinyl compounds, is investigated. The lattice energies of these structures are estimated by means of the <i>Crystal Explorer 21</i> program. The weak interactions building up the crystal structures are identified, and their contributions are analyzed in comparison with the calculated lattice energies. The most stable conformations in the solid phase are identified. It is worth observing that the sulfides of the scaffold under investigation behave almost in the same manner; on the other hand, the presence of the sulfinyl group of the sulfoxides adds complexity, that shall be taken into account in future docking calculations of these molecules with the hCAs enzymes.</p>","PeriodicalId":48935,"journal":{"name":"Crystal Research and Technology","volume":"59 8","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141511345","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A new polymorph of maltol, a food and intermediate pharmaceutical material, is discovered through solution crystallization process using a mixed solvent of water and ethanol with l-menthol as an additive. It belongs to monoclinic crystal system with lattice parameters: a = 7.136(8) Å, b = 24.23(3) Å, c = 7.020(8) Å, and β = 106.22(3)°, volume = 1165 (2) Å3 and the refinement factor is R = 6.64%. With single crystal X-ray diffraction (SCXRD) data as input, the intermolecular interactions between the new polymorph of maltol is investigated through Hirshfeld surface analysis, the higher percentage of overall interaction between the polymorph (H…H) interaction, and the (O…H) interaction contributes more to the generation of new polymorph. The 2D finger print plot depicts the interactions are mainly due to the hydrogen bonds.
{"title":"A New Polymorphic Form of Maltol: Crystallization and Structure Refinement","authors":"Kavipriya Srinivasan, Srinivasan Karuppannan","doi":"10.1002/crat.202300336","DOIUrl":"10.1002/crat.202300336","url":null,"abstract":"<p>A new polymorph of maltol, a food and intermediate pharmaceutical material, is discovered through solution crystallization process using a mixed solvent of water and ethanol with <span>l</span>-menthol as an additive. It belongs to monoclinic crystal system with lattice parameters: <i>a</i> = 7.136(8) Å, <i>b</i> = 24.23(3) Å, <i>c</i> = 7.020(8) Å, and <i>β </i>= 106.22(3)°, volume = 1165 (2) Å<sup>3</sup> and the refinement factor is R = 6.64%. With single crystal X-ray diffraction (SCXRD) data as input, the intermolecular interactions between the new polymorph of maltol is investigated through Hirshfeld surface analysis, the higher percentage of overall interaction between the polymorph (H…H) interaction, and the (O…H) interaction contributes more to the generation of new polymorph. The 2D finger print plot depicts the interactions are mainly due to the hydrogen bonds.</p>","PeriodicalId":48935,"journal":{"name":"Crystal Research and Technology","volume":"59 8","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141511347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study investigates the crystallization of acetaminophen (ACET) in ultrapure water and a 10 wt.% aqueous polyacrylic acid (PAA) solution using non-photochemical laser-induced nucleation (NPLIN) for the first time. Using a 532 nm nanosecond laser, two distinct crystal morphologies—rhombic and tetragonal plate-like—are formed in both solvents after adding impurities. Notably, the PAA solution showed a reduced number of crystals and slower growth rates compared to ultrapure water, suggesting that the acidic polymer modulates crystal growth. Interestingly, crystals are not induced by the laser without impurities. However, impurities like copper phthalocyanine (CuPc) or boron carbide (CB4) enabled successful NPLIN, with CB4 showing higher nucleation efficiency than CuPc. The study also explores how laser power affects nucleation probability and identifies potential laser energy thresholds. Experimental data on ACET crystal sizes over time are fitted to derived equations, which accurately represented trends and predicted results. The nanoparticle heating mechanism and the role of acidic polymers in affecting nucleation probability and growth rate are discussed, along with potential mechanisms for changes in crystal morphology.
{"title":"Laser-Induced Nucleation of Acetaminophen through the Addition of Insoluble Impurities and Acidic Polymers","authors":"Xiongfei Xie, Shuai Li, Yao Liu","doi":"10.1002/crat.202400059","DOIUrl":"10.1002/crat.202400059","url":null,"abstract":"<p>This study investigates the crystallization of acetaminophen (ACET) in ultrapure water and a 10 wt.% aqueous polyacrylic acid (PAA) solution using non-photochemical laser-induced nucleation (NPLIN) for the first time. Using a 532 nm nanosecond laser, two distinct crystal morphologies—rhombic and tetragonal plate-like—are formed in both solvents after adding impurities. Notably, the PAA solution showed a reduced number of crystals and slower growth rates compared to ultrapure water, suggesting that the acidic polymer modulates crystal growth. Interestingly, crystals are not induced by the laser without impurities. However, impurities like copper phthalocyanine (CuPc) or boron carbide (CB<sub>4</sub>) enabled successful NPLIN, with CB<sub>4</sub> showing higher nucleation efficiency than CuPc. The study also explores how laser power affects nucleation probability and identifies potential laser energy thresholds. Experimental data on ACET crystal sizes over time are fitted to derived equations, which accurately represented trends and predicted results. The nanoparticle heating mechanism and the role of acidic polymers in affecting nucleation probability and growth rate are discussed, along with potential mechanisms for changes in crystal morphology.</p>","PeriodicalId":48935,"journal":{"name":"Crystal Research and Technology","volume":"59 7","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141511348","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ultrapure gallium up to 99.9999%/ 99.99999% (6N/7N) purity level is a highly demanding material needed for the growth of gallium-based group III–V semiconductor compounds and optoelectronic devices. However, general extraction of gallium from Bayer liquor contains high impurity content and ultra-purification of the same cannot be accomplished by a single step. Thus, the purpose of this review is to assess various purification processes for the production of ultra-pure gallium and to critically examine its applications in the optoelectronics industry. Through this research survey, it is found that zone refining of the zone melting process stands tall over other methods in purifying materials even up to 13N. Hence, scientists are adopting detailed mathematical models and simulation tools for designing unique zone refining systems for material purification. Current-day technology even adopts intelligence methods such as machine learning, which sheds light on the importance of different zone refining parameters that influence the purification process. Here, the practical aspects of zone refining and how the feedback from the theoretical models or performance prediction through intelligence methods can be effectively incorporated into practice have also been emphasized
{"title":"A Review on the Zone Refining Process Technology toward Ultra-Purification of Gallium for GaAs/GaN-based Optoelectronic Device Applications","authors":"Kaustab Ghosh, V. N. Mani","doi":"10.1002/crat.202300347","DOIUrl":"https://doi.org/10.1002/crat.202300347","url":null,"abstract":"<p>Ultrapure gallium up to 99.9999%/ 99.99999% (6N/7N) purity level is a highly demanding material needed for the growth of gallium-based group III–V semiconductor compounds and optoelectronic devices. However, general extraction of gallium from Bayer liquor contains high impurity content and ultra-purification of the same cannot be accomplished by a single step. Thus, the purpose of this review is to assess various purification processes for the production of ultra-pure gallium and to critically examine its applications in the optoelectronics industry. Through this research survey, it is found that zone refining of the zone melting process stands tall over other methods in purifying materials even up to 13N. Hence, scientists are adopting detailed mathematical models and simulation tools for designing unique zone refining systems for material purification. Current-day technology even adopts intelligence methods such as machine learning, which sheds light on the importance of different zone refining parameters that influence the purification process. Here, the practical aspects of zone refining and how the feedback from the theoretical models or performance prediction through intelligence methods can be effectively incorporated into practice have also been emphasized</p>","PeriodicalId":48935,"journal":{"name":"Crystal Research and Technology","volume":"59 7","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141565885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The full potential linearized augmented plane wave (FP-LAPW) method is used to compute structural, electronic, and optical properties of III-V semiconductor ternary alloys GaP1-xSbx (0≤x≤1) using first-principle calculations within density functional theory. To calculate the ground state parameters of the structure, the energy exchange-correlation Wu-cohen generalized gradient approximation is employed in the wiek2k program. The Tran–Blaha-modified Becke–Johnson (TB-mBJ) pseudopotential is employed in addition to the Wu-Cohen generalised gradient approximation to achieve a precise bandgap. After this, WC-mBJ is used to examine optical properties such as real and imaginary parts of the dielectric constant, and energy loss. This study illustrates the nonlinear dependency on the various Sb compositions by examining the composition impacts on the bandgap, bulk modulus, and lattice constant. Using WC-mBJ, the estimated band structures for alloys GaP0.75Sb0.25, GaP0.50Sb0.50, and GaP0.25Sb0.75 show direct energy bandgaps of 2.008 eV (617 nm), 1.482 eV (836 nm), and 1.055 eV (1174 nm), respectively. As a result, this material system has enormous potential for use in applications spanning the visible to infrared spectrum.
{"title":"Opto-Electronic Properties of Gap1-xSbx Alloys for IR Applications","authors":"Priya Chaudhary, Amit Rathi, Amit Kumar Singh","doi":"10.1002/crat.202300346","DOIUrl":"10.1002/crat.202300346","url":null,"abstract":"<p>The full potential linearized augmented plane wave (FP-LAPW) method is used to compute structural, electronic, and optical properties of III-V semiconductor ternary alloys GaP<sub>1-x</sub>Sb<sub>x</sub> (0≤x≤1) using first-principle calculations within density functional theory. To calculate the ground state parameters of the structure, the energy exchange-correlation Wu-cohen generalized gradient approximation is employed in the wiek2k program. The Tran–Blaha-modified Becke–Johnson (TB-mBJ) pseudopotential is employed in addition to the Wu-Cohen generalised gradient approximation to achieve a precise bandgap. After this, WC-mBJ is used to examine optical properties such as real and imaginary parts of the dielectric constant, and energy loss. This study illustrates the nonlinear dependency on the various Sb compositions by examining the composition impacts on the bandgap, bulk modulus, and lattice constant. Using WC-mBJ, the estimated band structures for alloys GaP<sub>0.75</sub>Sb<sub>0.25</sub>, GaP<sub>0.50</sub>Sb<sub>0.50</sub>, and GaP<sub>0.25</sub>Sb<sub>0.75</sub> show direct energy bandgaps of 2.008 eV (617 nm), 1.482 eV (836 nm), and 1.055 eV (1174 nm), respectively. As a result, this material system has enormous potential for use in applications spanning the visible to infrared spectrum.</p>","PeriodicalId":48935,"journal":{"name":"Crystal Research and Technology","volume":"59 7","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141352428","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Magnesium and sulfate are a determinant key in CaCO3 mineralization. However, the works of the literature have failed to provide a clear understanding of how these ions influence the nucleation-growth of CaCO3 precipitation. Our study uses an electrochemical method, having for principle to impose a dissolved oxygen reduction potential on gold (111) films. This technique that allows the exclusive and controlled crystallization of epitaxial calcite established an ideal system for the study of foreign ions influence. The polymorph, composition and morphology of crystals are characterized using scanning electron microscopy (SEM) coupled with X-ray energy dispersive spectroscopy (EDS) and Raman spectroscopy. The results demonstrate that the increase of calcium concentration in calcocarbonic pure solution enhances the nucleation and then the growth of calcite crystals without affecting their morphology and their orientation. However, the magnesium directly modifies the surface morphology of calcite as a consequence of Mg substitution to calcium ions and the inhibitive effect of magnesium is assured by an incorporation mechanism. In the matter of sulfate ions influence, the experimental results indicate that SO42− slows down the epitaxial calcite nucleation by substituting itself to carbonate ions preferentially in the center of the crystals facets causing an enlargement of the lattice parameter.
{"title":"Epitaxial Calcite Morphology Modified in the Presence of Magnesium and Sulfate Ions","authors":"Hassiba Tighidet, Suzanne Joiret, Nabila Cherchour, Naima Brinis, Kahina Aoudia","doi":"10.1002/crat.202400044","DOIUrl":"10.1002/crat.202400044","url":null,"abstract":"<p>Magnesium and sulfate are a determinant key in CaCO<sub>3</sub> mineralization. However, the works of the literature have failed to provide a clear understanding of how these ions influence the nucleation-growth of CaCO<sub>3</sub> precipitation. Our study uses an electrochemical method, having for principle to impose a dissolved oxygen reduction potential on gold (111) films. This technique that allows the exclusive and controlled crystallization of epitaxial calcite established an ideal system for the study of foreign ions influence. The polymorph, composition and morphology of crystals are characterized using scanning electron microscopy (SEM) coupled with X-ray energy dispersive spectroscopy (EDS) and Raman spectroscopy. The results demonstrate that the increase of calcium concentration in calcocarbonic pure solution enhances the nucleation and then the growth of calcite crystals without affecting their morphology and their orientation. However, the magnesium directly modifies the surface morphology of calcite as a consequence of Mg substitution to calcium ions and the inhibitive effect of magnesium is assured by an incorporation mechanism. In the matter of sulfate ions influence, the experimental results indicate that SO<sub>4</sub><sup>2−</sup> slows down the epitaxial calcite nucleation by substituting itself to carbonate ions preferentially in the center of the crystals facets causing an enlargement of the lattice parameter.</p>","PeriodicalId":48935,"journal":{"name":"Crystal Research and Technology","volume":"59 7","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141351680","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anton Suslov, Vasilisa Gerega, Arkadi Rodionov, Mikhail Fedoseev, Vladimir Komarov, Vladimir Grabov
Due to the sensitivity of the electronic structure of semi-metals to small distortions of the crystal lattice, the study of the electrical and galvanomagnetic properties of bismuth films requires taking into account the deformation that occurs in the film-substrate system due to the difference in the thermal expansion of the film and substrate materials. The magnitude of these deformations plays an important role in analyzing the temperature dependencies of the transport properties of charge carriers. The paper presents an experimental study of the magnitude of deformation of bismuth films on various substrates at 300 and 77 K using X-ray diffraction. Changes in the lattice constant