[Hanen Alhussain, Hela Ferjani, Youssef Ben Smida; https://doi.org/10.1002/crat.202300340]
[An error in the spelling of an author's name in the article. The name in the published paper is [Hanen] and should be corrected to [Hanan].
We apologize for this error.
[Hanen Alhussain, Hela Ferjani, Youssef Ben Smida; https://doi.org/10.1002/crat.202300340][文章中作者姓名拼写错误。已发表论文中的作者姓名是 [Hanen],应更正为 [Hanan]。我们对此错误深表歉意。
{"title":"Correction to First-Principles Calculations to Investigate the Ground State, Mechanical Stability, Electronic Structure, and Optical Properties of Tl2SnX3 (X = S, Se, Te)","authors":"","doi":"10.1002/crat.202470042","DOIUrl":"https://doi.org/10.1002/crat.202470042","url":null,"abstract":"<p>[Hanen Alhussain, Hela Ferjani, Youssef Ben Smida; https://doi.org/10.1002/crat.202300340]</p><p>[An error in the spelling of an author's name in the article. The name in the published paper is [Hanen] and should be corrected to [Hanan].</p><p>We apologize for this error.</p>","PeriodicalId":48935,"journal":{"name":"Crystal Research and Technology","volume":"59 10","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/crat.202470042","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142435790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alexander Frebel, Songhak Yoon, Samuel Meles Neguse, Dennis Michael Jöckel, Marc Widenmeyer, Stefan G. Ebbinghaus, Benjamin Balke-Grünewald, Anke Weidenkaff
Morphology-controlled Cs2SbBr6 crystals are synthesized by Bi- and Ag-substitution of the precursor solution. X-ray diffraction (XRD) together with Raman spectroscopy confirms the lattice tilting and symmetry changes with the dominant appearance of higher index facets by Bi substitution. Ag substitution does not induce crystal symmetry changes in the Cs2BBr6 (B = Sb or Bi) phase, but results in highly defective structures hindering the formation of a smooth surface during the crystal growth. Successful substitution of Bi and limited substitution of Ag into Cs2SbBr6 is also confirmed by energy dispersive X-ray spectroscopy (EDX). This research provides design principles and practical examples of how to control the morphology of Cs2SbBr6 crystals with structural defects and multiphase formation.
通过对前驱体溶液进行铋和银替代,合成了形态可控的 Cs2SbBr6 晶体。X 射线衍射(XRD)和拉曼光谱证实了晶格倾斜和对称性的变化,Bi 取代后主要出现了高折射率刻面。银的替代不会引起 Cs2BBr6(B = Sb 或 Bi)相晶体对称性的变化,但会导致高度缺陷结构,阻碍晶体生长过程中光滑表面的形成。能量色散 X 射线光谱(EDX)也证实了 Cs2SbBr6 中 Bi 的成功替代和 Ag 的有限替代。这项研究为如何控制具有结构缺陷和多相形成的 Cs2SbBr6 晶体的形态提供了设计原则和实际范例。
{"title":"Morphologically and Compositionally Controlled Cs2SbBr6 by Bi and Ag Substitution","authors":"Alexander Frebel, Songhak Yoon, Samuel Meles Neguse, Dennis Michael Jöckel, Marc Widenmeyer, Stefan G. Ebbinghaus, Benjamin Balke-Grünewald, Anke Weidenkaff","doi":"10.1002/crat.202400055","DOIUrl":"10.1002/crat.202400055","url":null,"abstract":"<p>Morphology-controlled Cs<sub>2</sub>SbBr<sub>6</sub> crystals are synthesized by Bi- and Ag-substitution of the precursor solution. X-ray diffraction (XRD) together with Raman spectroscopy confirms the lattice tilting and symmetry changes with the dominant appearance of higher index facets by Bi substitution. Ag substitution does not induce crystal symmetry changes in the Cs<sub>2</sub>BBr<sub>6</sub> (B = Sb or Bi) phase, but results in highly defective structures hindering the formation of a smooth surface during the crystal growth. Successful substitution of Bi and limited substitution of Ag into Cs<sub>2</sub>SbBr<sub>6</sub> is also confirmed by energy dispersive X-ray spectroscopy (EDX). This research provides design principles and practical examples of how to control the morphology of Cs<sub>2</sub>SbBr<sub>6</sub> crystals with structural defects and multiphase formation.</p>","PeriodicalId":48935,"journal":{"name":"Crystal Research and Technology","volume":"59 10","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/crat.202400055","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142268284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pristine tin selenide (SnSe) and copper (Cu) doped SnSe single crystals are grown by direct vapour transport technique. The energy dispersive X-ray, X-ray diffraction and Raman spectroscopic analysis of grown crystals show preferred stoichiometry having a single phase othorhombic SnSe. The electrical conductivity of SnSe and Cu doped SnSe are 24.24 and 106.06 S m−1 at 310 K respectively which increase as temperature increases. Carrier concentration of grown single crystals are evaluated by the Hall effect. Lattice thermal conductivity of pristine SnSe is 0.61 W mK−1, that decreased by copper doping to 0.44 W mK−1 at 310 K and for both the crystals it shows decrement as temperature increases to 483 K. Seebeck coefficient of the grown SnSe and Cu doped SnSe are positive and obtained values are 536.44 and 492.90 µV K−1 respectively at 310 K that confirm the p-type semiconducting nature. Power factor, Figure of merit and thermoelectric compatibility factor of grown pristine SnSe is 0.25 × 108 µV mK−2, 0.005 and 0.02 Volt−1 respectively and shows improvement in Cu doped SnSe, i.e., 0.08 × 108 µV mK−2, 0.017 and 0.07 Volt−1 respectively at 310 K. This shows Cu doping in SnSe makes it an effective thermoelectric device contender.
原始硒化锡(SnSe)和掺杂铜(Cu)的硒化锡单晶体是通过直接蒸汽传输技术生长出来的。对生长出的晶体进行的能量色散 X 射线、X 射线衍射和拉曼光谱分析表明,单相掺杂的硒化锡具有优选的化学计量学特性。在 310 K 时,SnSe 和掺铜 SnSe 的电导率分别为 24.24 和 106.06 S m-1,并随着温度的升高而增加。利用霍尔效应评估了生长单晶的载流子浓度。原始 SnSe 的晶格热导率为 0.61 W mK-1,掺铜后在 310 K 时降至 0.44 W mK-1,随着温度升高至 483 K,两种晶体的热导率均有所下降。生长的 SnSe 和掺铜 SnSe 的塞贝克系数均为正值,在 310 K 时的值分别为 536.44 和 492.90 µV K-1,这证实了其 p 型半导体性质。生长的原始 SnSe 的功率因数、优点系数和热电兼容系数分别为 0.25 × 108 µV mK-2、0.005 和 0.02 伏特-1,而掺铜的 SnSe 则有所提高,在 310 K 时分别为 0.08 × 108 µV mK-2、0.017 和 0.07 伏特-1。
{"title":"Copper Intercalation Effect on Thermoelectric Performance of Pristine Tin Selenide","authors":"Satendrasinh Bharthaniya, Mahesh Chaudhari, Ajay Agarwal, Kailash Chaudhari, Sunil Chaki","doi":"10.1002/crat.202400115","DOIUrl":"https://doi.org/10.1002/crat.202400115","url":null,"abstract":"<p>Pristine tin selenide (SnSe) and copper (Cu) doped SnSe single crystals are grown by direct vapour transport technique. The energy dispersive X-ray, X-ray diffraction and Raman spectroscopic analysis of grown crystals show preferred stoichiometry having a single phase othorhombic SnSe. The electrical conductivity of SnSe and Cu doped SnSe are 24.24 and 106.06 S m<sup>−1</sup> at 310 K respectively which increase as temperature increases. Carrier concentration of grown single crystals are evaluated by the Hall effect. Lattice thermal conductivity of pristine SnSe is 0.61 W mK<sup>−1</sup>, that decreased by copper doping to 0.44 W mK<sup>−1</sup> at 310 K and for both the crystals it shows decrement as temperature increases to 483 K. Seebeck coefficient of the grown SnSe and Cu doped SnSe are positive and obtained values are 536.44 and 492.90 µV K<sup>−1</sup> respectively at 310 K that confirm the p-type semiconducting nature. Power factor, Figure of merit and thermoelectric compatibility factor of grown pristine SnSe is 0.25 × 10<sup>8</sup> µV mK<sup>−2</sup>, 0.005 and 0.02 Volt<sup>−1</sup> respectively and shows improvement in Cu doped SnSe, i.e., 0.08 × 10<sup>8</sup> µV mK<sup>−2</sup>, 0.017 and 0.07 Volt<sup>−1</sup> respectively at 310 K. This shows Cu doping in SnSe makes it an effective thermoelectric device contender.</p>","PeriodicalId":48935,"journal":{"name":"Crystal Research and Technology","volume":"59 10","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142435835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chuanwen Chen, Lei Qin, Maoxin Su, Yang Xiang, Liguo Tang, Kainan Xiong, Kechen Wu, Xiaoniu Tu, Wenyu Luo
In this study, the propagation of plane waves in the lanthanum gallium tantalate (langatate, LGT) single crystals is investigated. Moreover, the flight time of different waves in the LGT rectangular parallelepiped sample is measured using the ultrasonic pulse-echo (UPE) technique, and the elastic constants of the LGT sample are determined. The experimental results clearly show echoes corresponding to the longitudinal and transverse waves along the x-axis. The waves along the z-axis have a similar property. However, the waves along the y-axis are more complex than those along the x- and z-axes. The echoes corresponding to the quasi-longitudinal waves along the y-axis are clear, but those corresponding to the transverse and quasi-transverse waves along the y-axis are not. The elastic constant can be accurately determined if the wave echoes corresponding to this constant propagate without distinct distortion and are clear; otherwise, it may be impossible to accurately determine the constant using UPE. All elastic constants