This study investigates the influences of the evaporation temperature and Mg2+ concentration on the crystallization of an ammonium sulfate mother liquor. Specifically, their effects on the solubility, metastable zone width, crystallization amount, average particle size, and coefficient of variation of ammonium sulfate are examined through the laser and evaporation crystallization methods. Results show that solubility increases and the metastable zone width narrows with an increase in the evaporation temperature. At an evaporation temperature of 338.15 K, the controllability of the crystallization process improves and explosive nucleation does not easily occur. In this case, crystals with large average particle sizes, regular morphologies, and high crystallinity are obtained. With an increase in the Mg2+ concentration in the solvent, solubility decreases. The added Mg2+ covers the active nucleation sites, thus hindering the nucleation of ammonium sulfate and widening the metastable zone width. At a Mg2+ concentration of 0.9 g L−1 or higher, Mg2+ covers the active surfaces of the grains. This inhibits normal crystal growth and hinders the nucleation and growth of ammonium sulfate crystals, so the crystallization amount of ammonium sulfate significantly reduces.
本研究探讨了蒸发温度和 Mg2+ 浓度对硫酸铵母液结晶的影响。具体来说,通过激光结晶法和蒸发结晶法考察了它们对硫酸铵的溶解度、可转移区宽度、结晶量、平均粒径和变异系数的影响。结果表明,随着蒸发温度的升高,溶解度增加,可迁移区宽度变窄。在蒸发温度为 338.15 K 时,结晶过程的可控性提高,不易发生爆炸成核。在这种情况下,可获得平均粒径大、形态规则和结晶度高的晶体。随着溶剂中 Mg2+ 浓度的增加,溶解度会降低。添加的 Mg2+ 覆盖了活性成核点,从而阻碍了硫酸铵的成核,并扩大了逸散区的宽度。当 Mg2+ 浓度为 0.9 g L-1 或更高时,Mg2+ 会覆盖晶粒的活性表面。这就抑制了晶体的正常生长,阻碍了硫酸铵晶体的成核和生长,因此硫酸铵的结晶量大大减少。
{"title":"Effect of Evaporation Temperature and Mg2+ Concentration on the Crystallization of Ammonium Sulfate","authors":"Gaoyong Zi, Bangfu Huang, Langshu Dong, Zhe Shi, Linjing Yang, Liubin Luo","doi":"10.1002/crat.202300312","DOIUrl":"10.1002/crat.202300312","url":null,"abstract":"<p>This study investigates the influences of the evaporation temperature and Mg<sup>2+</sup> concentration on the crystallization of an ammonium sulfate mother liquor. Specifically, their effects on the solubility, metastable zone width, crystallization amount, average particle size, and coefficient of variation of ammonium sulfate are examined through the laser and evaporation crystallization methods. Results show that solubility increases and the metastable zone width narrows with an increase in the evaporation temperature. At an evaporation temperature of 338.15 K, the controllability of the crystallization process improves and explosive nucleation does not easily occur. In this case, crystals with large average particle sizes, regular morphologies, and high crystallinity are obtained. With an increase in the Mg<sup>2+</sup> concentration in the solvent, solubility decreases. The added Mg<sup>2+</sup> covers the active nucleation sites, thus hindering the nucleation of ammonium sulfate and widening the metastable zone width. At a Mg<sup>2+</sup> concentration of 0.9 g L<sup>−1</sup> or higher, Mg<sup>2+</sup> covers the active surfaces of the grains. This inhibits normal crystal growth and hinders the nucleation and growth of ammonium sulfate crystals, so the crystallization amount of ammonium sulfate significantly reduces.</p>","PeriodicalId":48935,"journal":{"name":"Crystal Research and Technology","volume":"59 6","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140298497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xin Wang, Ming Wei, Kun Liu, Kuixin Cui, Yahui Yang, Zhongliang Tian
The wet dissolution process of lime is an effective approach for synthesizing calcium hydroxide. Process parameters and additives exert influence on the product particle. Among the process parameters, lime particle size, reaction temperature, and time have a significant impact on product particle size, followed by liquid-solid ratio and stirring speed. The experiment proved that reaction time affects product particle size by affecting the crystal growth, while other process parameters affect the particle size by affecting the ion diffusion behavior. In terms of inorganic additives, Ca(OH)2 has minimal effect on product particle size; however, NaOH and CaCl2 can significantly enhance it with a greater dose leading to a larger increase. The experiment proved that Ca(OH)2, NaOH, and CaCl2 influence particle size through their impact on ion diffusion behavior. Regarding organic additives, soluble starch exhibits the greatest effect on product size followed by triethanolamine and polyvinylpyrrolidone K30. The experiment proved that soluble starch, triethanolamine, and polyvinylpyrrolidone K30 affect product particle size by influencing its crystallization position. Finally, an ultrafine slurry of calcium hydroxide was prepared using the lime wet digestion method based on the aforementioned research, with particle size distribution characterized by D10, D50, and D90 values of 0.303, 1.750, and 4.534 µm respectively.
{"title":"Particle Size of Calcium Hydroxide Prepared by Wet Digestion: Influencing Factors and Mechanism","authors":"Xin Wang, Ming Wei, Kun Liu, Kuixin Cui, Yahui Yang, Zhongliang Tian","doi":"10.1002/crat.202300335","DOIUrl":"10.1002/crat.202300335","url":null,"abstract":"<p>The wet dissolution process of lime is an effective approach for synthesizing calcium hydroxide. Process parameters and additives exert influence on the product particle. Among the process parameters, lime particle size, reaction temperature, and time have a significant impact on product particle size, followed by liquid-solid ratio and stirring speed. The experiment proved that reaction time affects product particle size by affecting the crystal growth, while other process parameters affect the particle size by affecting the ion diffusion behavior. In terms of inorganic additives, Ca(OH)<sub>2</sub> has minimal effect on product particle size; however, NaOH and CaCl<sub>2</sub> can significantly enhance it with a greater dose leading to a larger increase. The experiment proved that Ca(OH)<sub>2</sub>, NaOH, and CaCl<sub>2</sub> influence particle size through their impact on ion diffusion behavior. Regarding organic additives, soluble starch exhibits the greatest effect on product size followed by triethanolamine and polyvinylpyrrolidone K30. The experiment proved that soluble starch, triethanolamine, and polyvinylpyrrolidone K30 affect product particle size by influencing its crystallization position. Finally, an ultrafine slurry of calcium hydroxide was prepared using the lime wet digestion method based on the aforementioned research, with particle size distribution characterized by D10, D50, and D90 values of 0.303, 1.750, and 4.534 µm respectively.</p>","PeriodicalId":48935,"journal":{"name":"Crystal Research and Technology","volume":"59 4","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140167428","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cover image provided courtesy of Jianguang Zhou, Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, China.