Pub Date : 2022-02-15Epub Date: 2021-11-29DOI: 10.1146/annurev-animal-081621-112021
Eslam O Osman, Alexis M Weinnig
Microbial communities associated with deep-sea animals are critical to the establishment of novel biological communities in unusual environments. Over the past few decades, rapid exploration of the deep sea has enabled the discovery of novel microbial communities, some of which form symbiotic relationships with animal hosts. Symbiosis in the deep sea changes host physiology, behavior, ecology, and evolution over time and space. Symbiont diversity within a host is often aligned with diverse metabolic pathways that broaden the environmental niche for the animal host. In this review, we focus on microbiomes and obligate symbionts found in different deep-sea habitats and how they facilitate survival of the organisms that live in these environments. In addition, we discuss factors that govern microbiome diversity, host specificity, and biogeography in the deep sea. Finally, we highlight the current limitations of microbiome research and draw a road map for future directions to advance our knowledge of microbiomes in the deep sea.
{"title":"Microbiomes and Obligate Symbiosis of Deep-Sea Animals.","authors":"Eslam O Osman, Alexis M Weinnig","doi":"10.1146/annurev-animal-081621-112021","DOIUrl":"https://doi.org/10.1146/annurev-animal-081621-112021","url":null,"abstract":"<p><p>Microbial communities associated with deep-sea animals are critical to the establishment of novel biological communities in unusual environments. Over the past few decades, rapid exploration of the deep sea has enabled the discovery of novel microbial communities, some of which form symbiotic relationships with animal hosts. Symbiosis in the deep sea changes host physiology, behavior, ecology, and evolution over time and space. Symbiont diversity within a host is often aligned with diverse metabolic pathways that broaden the environmental niche for the animal host. In this review, we focus on microbiomes and obligate symbionts found in different deep-sea habitats and how they facilitate survival of the organisms that live in these environments. In addition, we discuss factors that govern microbiome diversity, host specificity, and biogeography in the deep sea. Finally, we highlight the current limitations of microbiome research and draw a road map for future directions to advance our knowledge of microbiomes in the deep sea.</p>","PeriodicalId":48953,"journal":{"name":"Annual Review of Animal Biosciences","volume":" ","pages":"151-176"},"PeriodicalIF":12.0,"publicationDate":"2022-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39675710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-02-15Epub Date: 2021-11-18DOI: 10.1146/annurev-animal-062521-090427
George E Seidel
Procedures to maintain viability of mammalian gametes and embryos in vitro, including cryopreservation, have been exceedingly valuable for my research over the past 55 years. Keeping sperm viable in vitro enables artificial insemination, which, when combined with selective breeding, often is the most effective approach to making rapid genetic change in a population. Superovulation and embryo transfer constitute a parallel approach for amplifying reproduction of female mammals. More recent developments include sexing of semen, in vitro fertilization, cloning by nuclear transfer, and genetic modification of germline cells, tools that are enabled by artificial insemination and/or embryo transfer for implementation. I have been fortunate in being able to contribute to the development of many of the above techniques, and to use them for research and applications for improving animal agriculture. Others have built on this work to circumvent human infertility, assist reproduction of companion animals, and rescue endangered species. It also has been a privilege to teach, mentor, and be mentored in this area. Resulting worldwide friendships have enriched me personally and professionally.
{"title":"Translating Basic Research to Animal Agriculture.","authors":"George E Seidel","doi":"10.1146/annurev-animal-062521-090427","DOIUrl":"https://doi.org/10.1146/annurev-animal-062521-090427","url":null,"abstract":"<p><p>Procedures to maintain viability of mammalian gametes and embryos in vitro, including cryopreservation, have been exceedingly valuable for my research over the past 55 years. Keeping sperm viable in vitro enables artificial insemination, which, when combined with selective breeding, often is the most effective approach to making rapid genetic change in a population. Superovulation and embryo transfer constitute a parallel approach for amplifying reproduction of female mammals. More recent developments include sexing of semen, in vitro fertilization, cloning by nuclear transfer, and genetic modification of germline cells, tools that are enabled by artificial insemination and/or embryo transfer for implementation. I have been fortunate in being able to contribute to the development of many of the above techniques, and to use them for research and applications for improving animal agriculture. Others have built on this work to circumvent human infertility, assist reproduction of companion animals, and rescue endangered species. It also has been a privilege to teach, mentor, and be mentored in this area. Resulting worldwide friendships have enriched me personally and professionally.</p>","PeriodicalId":48953,"journal":{"name":"Annual Review of Animal Biosciences","volume":" ","pages":"1-15"},"PeriodicalIF":12.0,"publicationDate":"2022-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39889260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-02-15Epub Date: 2021-12-23DOI: 10.1146/annurev-animal-013020-020412
Daphne Perlman, Marina Martínez-Álvaro, Sarah Moraïs, Ianina Altshuler, Live H Hagen, Elie Jami, Rainer Roehe, Phillip B Pope, Itzhak Mizrahi
Animal microbiomes are occasionally considered as an extension of host anatomy, physiology, and even their genomic architecture. Their compositions encompass variable and constant portions when examined across multiple hosts. The latter, termed the core microbiome, is viewed as more accommodated to its host environment and suggested to benefit host fitness. Nevertheless, discrepancies in its definitions, characteristics, and importance to its hosts exist across studies. We survey studies that characterize the core microbiome, detail its current definitions and available methods to identify it, and emphasize the crucial need to upgrade and standardize the methodologies among studies. We highlight ruminants as a case study and discussthe link between the core microbiome and host physiology and genetics, as well as potential factors that shape it. We conclude with main directives of action to better understand the host-core microbiome axis and acquire the necessary insights into its controlled modulation.
{"title":"Concepts and Consequences of a Core Gut Microbiota for Animal Growth and Development.","authors":"Daphne Perlman, Marina Martínez-Álvaro, Sarah Moraïs, Ianina Altshuler, Live H Hagen, Elie Jami, Rainer Roehe, Phillip B Pope, Itzhak Mizrahi","doi":"10.1146/annurev-animal-013020-020412","DOIUrl":"https://doi.org/10.1146/annurev-animal-013020-020412","url":null,"abstract":"<p><p>Animal microbiomes are occasionally considered as an extension of host anatomy, physiology, and even their genomic architecture. Their compositions encompass variable and constant portions when examined across multiple hosts. The latter, termed the core microbiome, is viewed as more accommodated to its host environment and suggested to benefit host fitness. Nevertheless, discrepancies in its definitions, characteristics, and importance to its hosts exist across studies. We survey studies that characterize the core microbiome, detail its current definitions and available methods to identify it, and emphasize the crucial need to upgrade and standardize the methodologies among studies. We highlight ruminants as a case study and discussthe link between the core microbiome and host physiology and genetics, as well as potential factors that shape it. We conclude with main directives of action to better understand the host-core microbiome axis and acquire the necessary insights into its controlled modulation.</p>","PeriodicalId":48953,"journal":{"name":"Annual Review of Animal Biosciences","volume":" ","pages":"177-201"},"PeriodicalIF":12.0,"publicationDate":"2022-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39751281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-02-15Epub Date: 2021-10-26DOI: 10.1146/annurev-animal-013120-043304
Shawn M D Bearson
An estimated 1.3 million Salmonella infections and 420 deaths occur annually in the United States, with an estimated economic burden of $3.7 billion. More than 50% of US swine operations test positive for Salmonella according to the National Animal Health Monitoring System, and 20% of Salmonella from swine are multidrug resistant (resistant to ≥3 antimicrobial classes) as reported by the National Antimicrobial Resistance Monitoring System. This review on Salmonella in swine addresses the current status of these topics by discussing antimicrobial resistance and metal tolerance in Salmonella and the contribution of horizontal gene transfer. A major challenge in controlling Salmonella is that Salmonella is a foodborne pathogen in humans but is often a commensal in food animals and thereby establishes an asymptomatic reservoir state in such animals, including swine. As food animal production systems continue to expand and antimicrobial usage becomes more limited, the need for Salmonella interventions has intensified. A promising mitigation strategy is vaccination against Salmonella in swine to limit animal, environmental, and food contamination.
{"title":"<i>Salmonella</i> in Swine: Prevalence, Multidrug Resistance, and Vaccination Strategies.","authors":"Shawn M D Bearson","doi":"10.1146/annurev-animal-013120-043304","DOIUrl":"https://doi.org/10.1146/annurev-animal-013120-043304","url":null,"abstract":"<p><p>An estimated 1.3 million <i>Salmonella</i> infections and 420 deaths occur annually in the United States, with an estimated economic burden of $3.7 billion. More than 50% of US swine operations test positive for <i>Salmonella</i> according to the National Animal Health Monitoring System, and 20% of <i>Salmonella</i> from swine are multidrug resistant (resistant to ≥3 antimicrobial classes) as reported by the National Antimicrobial Resistance Monitoring System. This review on <i>Salmonella</i> in swine addresses the current status of these topics by discussing antimicrobial resistance and metal tolerance in <i>Salmonella</i> and the contribution of horizontal gene transfer. A major challenge in controlling <i>Salmonella</i> is that <i>Salmonella</i> is a foodborne pathogen in humans but is often a commensal in food animals and thereby establishes an asymptomatic reservoir state in such animals, including swine. As food animal production systems continue to expand and antimicrobial usage becomes more limited, the need for <i>Salmonella</i> interventions has intensified. A promising mitigation strategy is vaccination against <i>Salmonella</i> in swine to limit animal, environmental, and food contamination.</p>","PeriodicalId":48953,"journal":{"name":"Annual Review of Animal Biosciences","volume":" ","pages":"373-393"},"PeriodicalIF":12.0,"publicationDate":"2022-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39560497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-02-15DOI: 10.1146/annurev-av-10-120921-100001
R Michael Roberts, Harris A Lewin
{"title":"Introduction.","authors":"R Michael Roberts, Harris A Lewin","doi":"10.1146/annurev-av-10-120921-100001","DOIUrl":"https://doi.org/10.1146/annurev-av-10-120921-100001","url":null,"abstract":"","PeriodicalId":48953,"journal":{"name":"Annual Review of Animal Biosciences","volume":" ","pages":"i-ii"},"PeriodicalIF":12.0,"publicationDate":"2022-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39925326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-02-15Epub Date: 2021-11-15DOI: 10.1146/annurev-animal-020420-035235
Ernest Bailey, Jessica L Petersen, Theodore S Kalbfleisch
Thoroughbred horses have been selected for racing performance for more than 400 years. Despite continued selection, race times have not improved significantly during the past 60 years, raising the question of whether genetic variation for racing performance still exists. Studies using phenotypes such as race time, money earned, and handicapping, however, demonstrate that there is extensive variation within these traits and that they are heritable. Even so, these are poor measures of racing success since Thoroughbreds race at different ages and distances and on different types of tracks, and some may not race at all. With the advent of genomic tools, DNA variants are being identified that contribute to racing success. Aside from strong associations for myostatin variants with best racing distance, weak to modest associations with racing phenotypes are reported for other genomic regions. These data suggest that diverse genetic strategies have contributed to producing a successful racehorse, and genetic variation contributing to athleticism remains important. Expected final online publication date for the Annual Review of Animal Biosciences, Volume 10 is February 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
{"title":"Genetics of Thoroughbred Racehorse Performance.","authors":"Ernest Bailey, Jessica L Petersen, Theodore S Kalbfleisch","doi":"10.1146/annurev-animal-020420-035235","DOIUrl":"https://doi.org/10.1146/annurev-animal-020420-035235","url":null,"abstract":"Thoroughbred horses have been selected for racing performance for more than 400 years. Despite continued selection, race times have not improved significantly during the past 60 years, raising the question of whether genetic variation for racing performance still exists. Studies using phenotypes such as race time, money earned, and handicapping, however, demonstrate that there is extensive variation within these traits and that they are heritable. Even so, these are poor measures of racing success since Thoroughbreds race at different ages and distances and on different types of tracks, and some may not race at all. With the advent of genomic tools, DNA variants are being identified that contribute to racing success. Aside from strong associations for myostatin variants with best racing distance, weak to modest associations with racing phenotypes are reported for other genomic regions. These data suggest that diverse genetic strategies have contributed to producing a successful racehorse, and genetic variation contributing to athleticism remains important. Expected final online publication date for the Annual Review of Animal Biosciences, Volume 10 is February 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":48953,"journal":{"name":"Annual Review of Animal Biosciences","volume":" ","pages":"131-150"},"PeriodicalIF":12.0,"publicationDate":"2022-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39714611","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-02-15DOI: 10.1146/annurev-animal-021419-084001
Animesh Barua, Janice M Bahr
The lack of preclinical models of spontaneous ovarian cancer (OVCA), a fatal gynecological malignancy, is a significant barrier to generating information on early changes indicative of OVCA. In contrast to rodents, laying hens develop OVCA spontaneously, with remarkable similarities to OVCA in women regarding tumor histology, OVCA dissemination, immune responses, and risk factors. These important features of OVCA will be useful to develop an early detection test for OVCA, which would significantly reduce mortality rates; preventive strategies; immunotherapeutics; prevention of resistance to chemotherapeutics; and exploration of gene therapies. A transvaginal ultrasound (TVUS) imaging method for imaging of hen ovarian tumors has been developed. Hens can be monitored prospectively by using serum markers, together with TVUS imaging, to detect early-stage OVCA, provided that a panel of serum markers can be established and imaging agents developed. Recent sequencing of the chicken genome will further facilitate the hen model to explore gene therapies against OVCA.
{"title":"Ovarian Cancer: Applications of Chickens to Humans.","authors":"Animesh Barua, Janice M Bahr","doi":"10.1146/annurev-animal-021419-084001","DOIUrl":"https://doi.org/10.1146/annurev-animal-021419-084001","url":null,"abstract":"<p><p>The lack of preclinical models of spontaneous ovarian cancer (OVCA), a fatal gynecological malignancy, is a significant barrier to generating information on early changes indicative of OVCA. In contrast to rodents, laying hens develop OVCA spontaneously, with remarkable similarities to OVCA in women regarding tumor histology, OVCA dissemination, immune responses, and risk factors. These important features of OVCA will be useful to develop an early detection test for OVCA, which would significantly reduce mortality rates; preventive strategies; immunotherapeutics; prevention of resistance to chemotherapeutics; and exploration of gene therapies. A transvaginal ultrasound (TVUS) imaging method for imaging of hen ovarian tumors has been developed. Hens can be monitored prospectively by using serum markers, together with TVUS imaging, to detect early-stage OVCA, provided that a panel of serum markers can be established and imaging agents developed. Recent sequencing of the chicken genome will further facilitate the hen model to explore gene therapies against OVCA.</p>","PeriodicalId":48953,"journal":{"name":"Annual Review of Animal Biosciences","volume":"10 ","pages":"241-257"},"PeriodicalIF":12.0,"publicationDate":"2022-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10782175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-02-15DOI: 10.1146/annurev-animal-021419-083711
Kazuharu Arakawa
Tardigrades are ubiquitous meiofauna that are especially renowned for their exceptional extremotolerance to various adverse environments, including pressure, temperature, and even ionizing radiation. This is achieved through a reversible halt of metabolism triggered by desiccation, a phenomenon called anhydrobiosis. Recent establishment of genome resources for two tardigrades, Hypsibius exemplaris and Ramazzottius varieornatus, accelerated research to uncover the molecular mechanisms behind anhydrobiosis, leading to the discovery of many tardigrade-unique proteins. This review focuses on the history, methods, discoveries, and current state and challenges regarding tardigrade genomics, with an emphasis on molecular anhydrobiology. Remaining questions and future perspectives regarding prospective approaches to fully elucidate the molecular machinery of this complex phenomenon are discussed.
{"title":"Examples of Extreme Survival: Tardigrade Genomics and Molecular Anhydrobiology.","authors":"Kazuharu Arakawa","doi":"10.1146/annurev-animal-021419-083711","DOIUrl":"https://doi.org/10.1146/annurev-animal-021419-083711","url":null,"abstract":"<p><p>Tardigrades are ubiquitous meiofauna that are especially renowned for their exceptional extremotolerance to various adverse environments, including pressure, temperature, and even ionizing radiation. This is achieved through a reversible halt of metabolism triggered by desiccation, a phenomenon called anhydrobiosis. Recent establishment of genome resources for two tardigrades, <i>Hypsibius exemplaris</i> and <i>Ramazzottius varieornatus</i>, accelerated research to uncover the molecular mechanisms behind anhydrobiosis, leading to the discovery of many tardigrade-unique proteins. This review focuses on the history, methods, discoveries, and current state and challenges regarding tardigrade genomics, with an emphasis on molecular anhydrobiology. Remaining questions and future perspectives regarding prospective approaches to fully elucidate the molecular machinery of this complex phenomenon are discussed.</p>","PeriodicalId":48953,"journal":{"name":"Annual Review of Animal Biosciences","volume":" ","pages":"17-37"},"PeriodicalIF":12.0,"publicationDate":"2022-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39925325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-02-16Epub Date: 2020-11-16DOI: 10.1146/annurev-animal-061220-023118
Pablo Librado, Ludovic Orlando
The equid family contains only one single extant genus, Equus, including seven living species grouped into horses on the one hand and zebras and asses on the other. In contrast, the equine fossil record shows that an extraordinarily richer diversity existed in the past and provides multiple examples of a highly dynamic evolution punctuated by several waves of explosive radiations and extinctions, cross-continental migrations, and local adaptations. In recent years, genomic technologies have provided new analytical solutions that have enhanced our understanding of equine evolution, including the species radiation within Equus; the extinction dynamics of several lineages; and the domestication history of two individual species, the horse and the donkey. Here, we provide an overview of these recent developments and suggest areas for further research.
{"title":"Genomics and the Evolutionary History of Equids.","authors":"Pablo Librado, Ludovic Orlando","doi":"10.1146/annurev-animal-061220-023118","DOIUrl":"https://doi.org/10.1146/annurev-animal-061220-023118","url":null,"abstract":"<p><p>The equid family contains only one single extant genus, <i>Equus</i>, including seven living species grouped into horses on the one hand and zebras and asses on the other. In contrast, the equine fossil record shows that an extraordinarily richer diversity existed in the past and provides multiple examples of a highly dynamic evolution punctuated by several waves of explosive radiations and extinctions, cross-continental migrations, and local adaptations. In recent years, genomic technologies have provided new analytical solutions that have enhanced our understanding of equine evolution, including the species radiation within <i>Equus</i>; the extinction dynamics of several lineages; and the domestication history of two individual species, the horse and the donkey. Here, we provide an overview of these recent developments and suggest areas for further research.</p>","PeriodicalId":48953,"journal":{"name":"Annual Review of Animal Biosciences","volume":"9 ","pages":"81-101"},"PeriodicalIF":12.0,"publicationDate":"2021-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-animal-061220-023118","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38616980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-02-16Epub Date: 2020-11-16DOI: 10.1146/annurev-animal-061220-023138
Joseph D Orkin, Lukas F K Kuderna, Tomas Marques-Bonet
Until now, the field of primate genomics has focused on two major themes: understanding human evolution and advancing biomedical research. We propose that it is now time for a third theme to receive attention: conservation genomics. As a result of anthropogenic effects, the majority of primate species have become threatened with extinction. A more robust primate conservation genomics will allow for genetically informed population management. Thanks to a steady decline in the cost of sequencing, it has now become feasible to sequence whole primate genomes at the population level. Furthermore, technological advances in noninvasive genomic methods have made it possible to acquire genome-scale data from noninvasive biomaterials. Here, we review recent advances in the analysis of primate diversity, with a focus on genomic data sets across the radiation.
{"title":"The Diversity of Primates: From Biomedicine to Conservation Genomics.","authors":"Joseph D Orkin, Lukas F K Kuderna, Tomas Marques-Bonet","doi":"10.1146/annurev-animal-061220-023138","DOIUrl":"https://doi.org/10.1146/annurev-animal-061220-023138","url":null,"abstract":"<p><p>Until now, the field of primate genomics has focused on two major themes: understanding human evolution and advancing biomedical research. We propose that it is now time for a third theme to receive attention: conservation genomics. As a result of anthropogenic effects, the majority of primate species have become threatened with extinction. A more robust primate conservation genomics will allow for genetically informed population management. Thanks to a steady decline in the cost of sequencing, it has now become feasible to sequence whole primate genomes at the population level. Furthermore, technological advances in noninvasive genomic methods have made it possible to acquire genome-scale data from noninvasive biomaterials. Here, we review recent advances in the analysis of primate diversity, with a focus on genomic data sets across the radiation.</p>","PeriodicalId":48953,"journal":{"name":"Annual Review of Animal Biosciences","volume":"9 ","pages":"103-124"},"PeriodicalIF":12.0,"publicationDate":"2021-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-animal-061220-023138","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38616981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}