Pub Date : 2023-02-15DOI: 10.1146/annurev-animal-020420-025011
Yakhouba Kane, Gary Wong, George F Gao
Over the past three decades, coronavirus (CoV) diseases have impacted humans more than any other emerging infectious disease. The recent emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19 (coronavirus disease 2019), has resulted in huge economic disruptions and loss of human lives. The SARS-CoV-2 genome was found to mutate more rapidly due to sustained transmission in humans and potentially animals, resulting in variants of concern (VOCs) that threaten global human health. However, the primary difficulties are filling in the current knowledge gaps in terms of the origin and modalities of emergence for these viruses. Because many CoVs threatening human health are suspected to have a zoonotic origin, identifying the animal hosts implicated in the spillover or spillback events would be beneficial for current pandemic management and to prevent future outbreaks. In this review, wesummarize the animal models, zoonotic reservoirs, and cross-species transmission of the emerging human CoVs. Finally, we comment on potential sources of SARS-CoV-2 Omicron VOCs and the new SARS-CoV-2 recombinants currently under investigation.
{"title":"Animal Models, Zoonotic Reservoirs, and Cross-Species Transmission of Emerging Human-Infecting Coronaviruses.","authors":"Yakhouba Kane, Gary Wong, George F Gao","doi":"10.1146/annurev-animal-020420-025011","DOIUrl":"https://doi.org/10.1146/annurev-animal-020420-025011","url":null,"abstract":"<p><p>Over the past three decades, coronavirus (CoV) diseases have impacted humans more than any other emerging infectious disease. The recent emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19 (coronavirus disease 2019), has resulted in huge economic disruptions and loss of human lives. The SARS-CoV-2 genome was found to mutate more rapidly due to sustained transmission in humans and potentially animals, resulting in variants of concern (VOCs) that threaten global human health. However, the primary difficulties are filling in the current knowledge gaps in terms of the origin and modalities of emergence for these viruses. Because many CoVs threatening human health are suspected to have a zoonotic origin, identifying the animal hosts implicated in the spillover or spillback events would be beneficial for current pandemic management and to prevent future outbreaks. In this review, wesummarize the animal models, zoonotic reservoirs, and cross-species transmission of the emerging human CoVs. Finally, we comment on potential sources of SARS-CoV-2 Omicron VOCs and the new SARS-CoV-2 recombinants currently under investigation.</p>","PeriodicalId":48953,"journal":{"name":"Annual Review of Animal Biosciences","volume":"11 ","pages":"1-31"},"PeriodicalIF":12.0,"publicationDate":"2023-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10738161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-15DOI: 10.1146/annurev-animal-050622-043424
Rafael Jiménez, Miguel Burgos, Francisco J Barrionuevo
Talpid moles and spotted hyenas have become the paradigms of anatomical and behavioral female masculinization. Females of many mole species develop ovotestes that produce testosterone, show external genitalia that resemble that of males, and close their vaginal orifice after every estrus, and female spotted hyenas lack an external vaginal orifice and develop a pseudoscrotum and a large pseudopenis through which they urinate, mate, and give birth. We review current knowledge about several significant aspects of the biology and evolution of these females, including (a) their specific study methods; (b) their unique anatomical features, and how these peculiarities influence certain physiological functions; and (c) the role that steroid hormones as well as genetic and environmental factors may have in urogenital system development, aggressive behavior, and social dominance. Nevertheless, both mole and hyena females are exceptionally efficient mothers, so their peculiar genitalia should not call into question their femininity.
{"title":"The Biology and Evolution of Fierce Females (Moles and Hyenas).","authors":"Rafael Jiménez, Miguel Burgos, Francisco J Barrionuevo","doi":"10.1146/annurev-animal-050622-043424","DOIUrl":"https://doi.org/10.1146/annurev-animal-050622-043424","url":null,"abstract":"<p><p>Talpid moles and spotted hyenas have become the paradigms of anatomical and behavioral female masculinization. Females of many mole species develop ovotestes that produce testosterone, show external genitalia that resemble that of males, and close their vaginal orifice after every estrus, and female spotted hyenas lack an external vaginal orifice and develop a pseudoscrotum and a large pseudopenis through which they urinate, mate, and give birth. We review current knowledge about several significant aspects of the biology and evolution of these females, including (<i>a</i>) their specific study methods; (<i>b</i>) their unique anatomical features, and how these peculiarities influence certain physiological functions; and (<i>c</i>) the role that steroid hormones as well as genetic and environmental factors may have in urogenital system development, aggressive behavior, and social dominance. Nevertheless, both mole and hyena females are exceptionally efficient mothers, so their peculiar genitalia should not call into question their femininity.</p>","PeriodicalId":48953,"journal":{"name":"Annual Review of Animal Biosciences","volume":"11 ","pages":"141-162"},"PeriodicalIF":12.0,"publicationDate":"2023-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10796733","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Homeostatic control and reproductive functions of humans are regulated at the molecular levels largely by peptide hormones secreted from endocrine and/or neuroendocrine cells in the central nervous system and peripheral organs. Homologs of those hormones and their receptors function similarly in many vertebrate species distantly related to humans, but the evolutionary history of the endocrine system involving those factors has been obscured by the scarcity of genome DNA sequence information of some taxa that potentially contain their orthologs. Focusing on non-osteichthyan vertebrates, namely jawless and cartilaginous fishes, this article illustrates how investigating genome sequence information assists our understanding of the diversification of vertebrate gene repertoires in four broad themes: (a) the presence or absence of genes, (b) multiplication and maintenance of paralogs, (c) differential fates of duplicated paralogs, and (d) the evolutionary timing of gene origins.
{"title":"Evolution of Vertebrate Hormones and Their Receptors: Insights from Non-Osteichthyan Genomes.","authors":"Shigehiro Kuraku, Hiroyuki Kaiya, Tomohiro Tanaka, Susumu Hyodo","doi":"10.1146/annurev-animal-050922-071351","DOIUrl":"https://doi.org/10.1146/annurev-animal-050922-071351","url":null,"abstract":"<p><p>Homeostatic control and reproductive functions of humans are regulated at the molecular levels largely by peptide hormones secreted from endocrine and/or neuroendocrine cells in the central nervous system and peripheral organs. Homologs of those hormones and their receptors function similarly in many vertebrate species distantly related to humans, but the evolutionary history of the endocrine system involving those factors has been obscured by the scarcity of genome DNA sequence information of some taxa that potentially contain their orthologs. Focusing on non-osteichthyan vertebrates, namely jawless and cartilaginous fishes, this article illustrates how investigating genome sequence information assists our understanding of the diversification of vertebrate gene repertoires in four broad themes: (<i>a</i>) the presence or absence of genes, (<i>b</i>) multiplication and maintenance of paralogs, (<i>c</i>) differential fates of duplicated paralogs, and (<i>d</i>) the evolutionary timing of gene origins.</p>","PeriodicalId":48953,"journal":{"name":"Annual Review of Animal Biosciences","volume":"11 ","pages":"163-182"},"PeriodicalIF":12.0,"publicationDate":"2023-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10737595","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-15DOI: 10.1146/annurev-animal-062922-060125
Oyewale Tomori, Daniel O Oluwayelu
Zoonoses are diseases and infections naturally transmitted between humans and vertebrate animals. Over the years, zoonoses have become increasingly significant threats to global health. They form the dominant group of diseases among the emerging infectious diseases (EID) and currently account for 73% of EID. Approximately 25% of zoonoses originate in domestic animals. The etiological agents of zoonoses include different pathogens, with viruses accounting for approximately 30% of all zoonotic infections. Zoonotic diseases can be transmitted directly or indirectly, by contact, via aerosols, through a vector, or vertically in utero. Zoonotic diseases are found in every continent except Antarctica. Numerous factors associated with the pathogen, human activities, and the environment play significant roles in the transmission and emergence of zoonotic diseases. Effective response and control of zoonotic diseases call for multiple-sector involvement and collaboration according to the One Health concept.
{"title":"Domestic Animals as Potential Reservoirs of Zoonotic Viral Diseases.","authors":"Oyewale Tomori, Daniel O Oluwayelu","doi":"10.1146/annurev-animal-062922-060125","DOIUrl":"https://doi.org/10.1146/annurev-animal-062922-060125","url":null,"abstract":"<p><p>Zoonoses are diseases and infections naturally transmitted between humans and vertebrate animals. Over the years, zoonoses have become increasingly significant threats to global health. They form the dominant group of diseases among the emerging infectious diseases (EID) and currently account for 73% of EID. Approximately 25% of zoonoses originate in domestic animals. The etiological agents of zoonoses include different pathogens, with viruses accounting for approximately 30% of all zoonotic infections. Zoonotic diseases can be transmitted directly or indirectly, by contact, via aerosols, through a vector, or vertically in utero. Zoonotic diseases are found in every continent except Antarctica. Numerous factors associated with the pathogen, human activities, and the environment play significant roles in the transmission and emergence of zoonotic diseases. Effective response and control of zoonotic diseases call for multiple-sector involvement and collaboration according to the One Health concept.</p>","PeriodicalId":48953,"journal":{"name":"Annual Review of Animal Biosciences","volume":"11 ","pages":"33-55"},"PeriodicalIF":12.0,"publicationDate":"2023-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10738159","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-15DOI: 10.1146/annurev-animal-051622-091935
Kelsey Dayle John, Gilbert H John
This article addresses the underrepresentation of Indigenous perspectives in animal sciences by challenging the exclusive use of Western scientific paradigms in research and education. Because of the systematic exclusion of Indigenous peoples, Indigenous perspectives have rarely been represented through empirical study, leading us to believe this is a key reason for the underrepresentation of Native people in these fields. We conducted a literature review, searching for Indigenous contributions in animal sciences and finding a handful of articles in three areas: human-animal bonds, genetic testing and breeding programs, and Traditional Ecological Knowledge. Given the interconnected paradigm of Indigenous worldviews, we suggest that the ongoing siloes of scientific disciplines and the hierarchy of methodology contribute to the dearth of Indigenous perspectives. We suggest increased support for proper tribal consultation, contextualization of the history of research in Native communities, and the creation of scholarly spaces to support these conversations.
{"title":"A Review of Indigenous Perspectives in Animal Biosciences.","authors":"Kelsey Dayle John, Gilbert H John","doi":"10.1146/annurev-animal-051622-091935","DOIUrl":"https://doi.org/10.1146/annurev-animal-051622-091935","url":null,"abstract":"<p><p>This article addresses the underrepresentation of Indigenous perspectives in animal sciences by challenging the exclusive use of Western scientific paradigms in research and education. Because of the systematic exclusion of Indigenous peoples, Indigenous perspectives have rarely been represented through empirical study, leading us to believe this is a key reason for the underrepresentation of Native people in these fields. We conducted a literature review, searching for Indigenous contributions in animal sciences and finding a handful of articles in three areas: human-animal bonds, genetic testing and breeding programs, and Traditional Ecological Knowledge. Given the interconnected paradigm of Indigenous worldviews, we suggest that the ongoing siloes of scientific disciplines and the hierarchy of methodology contribute to the dearth of Indigenous perspectives. We suggest increased support for proper tribal consultation, contextualization of the history of research in Native communities, and the creation of scholarly spaces to support these conversations.</p>","PeriodicalId":48953,"journal":{"name":"Annual Review of Animal Biosciences","volume":"11 ","pages":"307-319"},"PeriodicalIF":12.0,"publicationDate":"2023-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10738160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-02-15DOI: 10.1146/annurev-animal-051021-080937
Audrey Ruple, Evan MacLean, Noah Snyder-Mackler, Kate E Creevy, Daniel Promislow
As the most phenotypically diverse mammalian species that shares human environments and access to sophisticated healthcare, domestic dogs have unique potential to inform our understanding of the determinants of aging. Here we outline key concepts in the study of aging and illustrate the value of research with dogs, which can improve dog health and support translational discoveries. We consider similarities and differences in aging and age-related diseases in dogs and humans and summarize key advances in our understanding of genetic and environmental risk factors for morbidity and mortality in dogs. We address health outcomes ranging from cancer to cognitive function and highlight emerging research opportunities from large-scale cohort studies in companion dogs. We conclude that studying aging in dogs could overcome many limitations of laboratory models, most notably, the ability to assess how aging-associated pathways influence aging in real-world environments similar to those experienced by humans.
{"title":"Dog Models of Aging.","authors":"Audrey Ruple, Evan MacLean, Noah Snyder-Mackler, Kate E Creevy, Daniel Promislow","doi":"10.1146/annurev-animal-051021-080937","DOIUrl":"https://doi.org/10.1146/annurev-animal-051021-080937","url":null,"abstract":"<p><p>As the most phenotypically diverse mammalian species that shares human environments and access to sophisticated healthcare, domestic dogs have unique potential to inform our understanding of the determinants of aging. Here we outline key concepts in the study of aging and illustrate the value of research with dogs, which can improve dog health and support translational discoveries. We consider similarities and differences in aging and age-related diseases in dogs and humans and summarize key advances in our understanding of genetic and environmental risk factors for morbidity and mortality in dogs. We address health outcomes ranging from cancer to cognitive function and highlight emerging research opportunities from large-scale cohort studies in companion dogs. We conclude that studying aging in dogs could overcome many limitations of laboratory models, most notably, the ability to assess how aging-associated pathways influence aging in real-world environments similar to those experienced by humans.</p>","PeriodicalId":48953,"journal":{"name":"Annual Review of Animal Biosciences","volume":"10 ","pages":"419-439"},"PeriodicalIF":12.0,"publicationDate":"2022-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8962603/pdf/nihms-1784206.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9298199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-02-15DOI: 10.1146/annurev-animal-021419-084001
Animesh Barua, Janice M Bahr
The lack of preclinical models of spontaneous ovarian cancer (OVCA), a fatal gynecological malignancy, is a significant barrier to generating information on early changes indicative of OVCA. In contrast to rodents, laying hens develop OVCA spontaneously, with remarkable similarities to OVCA in women regarding tumor histology, OVCA dissemination, immune responses, and risk factors. These important features of OVCA will be useful to develop an early detection test for OVCA, which would significantly reduce mortality rates; preventive strategies; immunotherapeutics; prevention of resistance to chemotherapeutics; and exploration of gene therapies. A transvaginal ultrasound (TVUS) imaging method for imaging of hen ovarian tumors has been developed. Hens can be monitored prospectively by using serum markers, together with TVUS imaging, to detect early-stage OVCA, provided that a panel of serum markers can be established and imaging agents developed. Recent sequencing of the chicken genome will further facilitate the hen model to explore gene therapies against OVCA.
{"title":"Ovarian Cancer: Applications of Chickens to Humans.","authors":"Animesh Barua, Janice M Bahr","doi":"10.1146/annurev-animal-021419-084001","DOIUrl":"https://doi.org/10.1146/annurev-animal-021419-084001","url":null,"abstract":"<p><p>The lack of preclinical models of spontaneous ovarian cancer (OVCA), a fatal gynecological malignancy, is a significant barrier to generating information on early changes indicative of OVCA. In contrast to rodents, laying hens develop OVCA spontaneously, with remarkable similarities to OVCA in women regarding tumor histology, OVCA dissemination, immune responses, and risk factors. These important features of OVCA will be useful to develop an early detection test for OVCA, which would significantly reduce mortality rates; preventive strategies; immunotherapeutics; prevention of resistance to chemotherapeutics; and exploration of gene therapies. A transvaginal ultrasound (TVUS) imaging method for imaging of hen ovarian tumors has been developed. Hens can be monitored prospectively by using serum markers, together with TVUS imaging, to detect early-stage OVCA, provided that a panel of serum markers can be established and imaging agents developed. Recent sequencing of the chicken genome will further facilitate the hen model to explore gene therapies against OVCA.</p>","PeriodicalId":48953,"journal":{"name":"Annual Review of Animal Biosciences","volume":"10 ","pages":"241-257"},"PeriodicalIF":12.0,"publicationDate":"2022-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10782175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-02-16Epub Date: 2020-11-16DOI: 10.1146/annurev-animal-061220-023118
Pablo Librado, Ludovic Orlando
The equid family contains only one single extant genus, Equus, including seven living species grouped into horses on the one hand and zebras and asses on the other. In contrast, the equine fossil record shows that an extraordinarily richer diversity existed in the past and provides multiple examples of a highly dynamic evolution punctuated by several waves of explosive radiations and extinctions, cross-continental migrations, and local adaptations. In recent years, genomic technologies have provided new analytical solutions that have enhanced our understanding of equine evolution, including the species radiation within Equus; the extinction dynamics of several lineages; and the domestication history of two individual species, the horse and the donkey. Here, we provide an overview of these recent developments and suggest areas for further research.
{"title":"Genomics and the Evolutionary History of Equids.","authors":"Pablo Librado, Ludovic Orlando","doi":"10.1146/annurev-animal-061220-023118","DOIUrl":"https://doi.org/10.1146/annurev-animal-061220-023118","url":null,"abstract":"<p><p>The equid family contains only one single extant genus, <i>Equus</i>, including seven living species grouped into horses on the one hand and zebras and asses on the other. In contrast, the equine fossil record shows that an extraordinarily richer diversity existed in the past and provides multiple examples of a highly dynamic evolution punctuated by several waves of explosive radiations and extinctions, cross-continental migrations, and local adaptations. In recent years, genomic technologies have provided new analytical solutions that have enhanced our understanding of equine evolution, including the species radiation within <i>Equus</i>; the extinction dynamics of several lineages; and the domestication history of two individual species, the horse and the donkey. Here, we provide an overview of these recent developments and suggest areas for further research.</p>","PeriodicalId":48953,"journal":{"name":"Annual Review of Animal Biosciences","volume":"9 ","pages":"81-101"},"PeriodicalIF":12.0,"publicationDate":"2021-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-animal-061220-023118","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38616980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-02-16Epub Date: 2020-11-16DOI: 10.1146/annurev-animal-061220-023138
Joseph D Orkin, Lukas F K Kuderna, Tomas Marques-Bonet
Until now, the field of primate genomics has focused on two major themes: understanding human evolution and advancing biomedical research. We propose that it is now time for a third theme to receive attention: conservation genomics. As a result of anthropogenic effects, the majority of primate species have become threatened with extinction. A more robust primate conservation genomics will allow for genetically informed population management. Thanks to a steady decline in the cost of sequencing, it has now become feasible to sequence whole primate genomes at the population level. Furthermore, technological advances in noninvasive genomic methods have made it possible to acquire genome-scale data from noninvasive biomaterials. Here, we review recent advances in the analysis of primate diversity, with a focus on genomic data sets across the radiation.
{"title":"The Diversity of Primates: From Biomedicine to Conservation Genomics.","authors":"Joseph D Orkin, Lukas F K Kuderna, Tomas Marques-Bonet","doi":"10.1146/annurev-animal-061220-023138","DOIUrl":"https://doi.org/10.1146/annurev-animal-061220-023138","url":null,"abstract":"<p><p>Until now, the field of primate genomics has focused on two major themes: understanding human evolution and advancing biomedical research. We propose that it is now time for a third theme to receive attention: conservation genomics. As a result of anthropogenic effects, the majority of primate species have become threatened with extinction. A more robust primate conservation genomics will allow for genetically informed population management. Thanks to a steady decline in the cost of sequencing, it has now become feasible to sequence whole primate genomes at the population level. Furthermore, technological advances in noninvasive genomic methods have made it possible to acquire genome-scale data from noninvasive biomaterials. Here, we review recent advances in the analysis of primate diversity, with a focus on genomic data sets across the radiation.</p>","PeriodicalId":48953,"journal":{"name":"Annual Review of Animal Biosciences","volume":"9 ","pages":"103-124"},"PeriodicalIF":12.0,"publicationDate":"2021-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-animal-061220-023138","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38616981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}