Pub Date : 2024-02-15Epub Date: 2023-10-20DOI: 10.1146/annurev-animal-021022-054730
Yisi Hu, Yibo Hu, Wenliang Zhou, Fuwen Wei
Giant pandas and red pandas are endangered species with similar specialized bamboo diet and partial sympatric distribution in China. Over the last two decades, the rapid development of genomics and metagenomics research on these species has enriched our knowledge of their biology, ecology, physiology, genetics, and evolution, which is crucial and useful for their conservation. We describe the evolutionary history, endangerment processes, genetic diversity, and population structure of wild giant pandas and two species of red pandas (Chinese and Himalayan red pandas). In addition, we explore how genomics and metagenomics studies have provided insight into the convergent adaptation of pandas to the specialized bamboo diet. Finally, we discuss how these findings are applied to effective conservation management of giant and red pandas in the wild and in captivity to promote the long-term persistence of these species.
{"title":"Conservation Genomics and Metagenomics of Giant and Red Pandas in the Wild.","authors":"Yisi Hu, Yibo Hu, Wenliang Zhou, Fuwen Wei","doi":"10.1146/annurev-animal-021022-054730","DOIUrl":"10.1146/annurev-animal-021022-054730","url":null,"abstract":"<p><p>Giant pandas and red pandas are endangered species with similar specialized bamboo diet and partial sympatric distribution in China. Over the last two decades, the rapid development of genomics and metagenomics research on these species has enriched our knowledge of their biology, ecology, physiology, genetics, and evolution, which is crucial and useful for their conservation. We describe the evolutionary history, endangerment processes, genetic diversity, and population structure of wild giant pandas and two species of red pandas (Chinese and Himalayan red pandas). In addition, we explore how genomics and metagenomics studies have provided insight into the convergent adaptation of pandas to the specialized bamboo diet. Finally, we discuss how these findings are applied to effective conservation management of giant and red pandas in the wild and in captivity to promote the long-term persistence of these species.</p>","PeriodicalId":48953,"journal":{"name":"Annual Review of Animal Biosciences","volume":" ","pages":"69-89"},"PeriodicalIF":12.0,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49683954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-15Epub Date: 2023-11-14DOI: 10.1146/annurev-animal-021022-025552
Susan A V Jennings, Thomas Clavel
Microbes and animals have a symbiotic relationship that greatly influences nutrient uptake and animal health. This relationship can be studied using selections of microbes termed synthetic communities, or SynComs. SynComs are used in many different animal hosts, including agricultural animals, to investigate microbial interactions with nutrients and how these affect animal health. The most common host focuses for SynComs are currently mouse and human, from basic mechanistic research through to translational disease models and live biotherapeutic products (LBPs) as treatments. We discuss SynComs used in basic research models and findings that relate to human and animal health and nutrition. Translational use cases of SynComs are discussed, followed by LBPs, especially within the context of agriculture. SynComs still face challenges, such as standardization for reproducibility and contamination risks. However, the future of SynComs is hopeful, especially in the areas of genome-guided SynCom design and custom SynCom-based treatments.
{"title":"Synthetic Communities of Gut Microbes for Basic Research and Translational Approaches in Animal Health and Nutrition.","authors":"Susan A V Jennings, Thomas Clavel","doi":"10.1146/annurev-animal-021022-025552","DOIUrl":"10.1146/annurev-animal-021022-025552","url":null,"abstract":"<p><p>Microbes and animals have a symbiotic relationship that greatly influences nutrient uptake and animal health. This relationship can be studied using selections of microbes termed synthetic communities, or SynComs. SynComs are used in many different animal hosts, including agricultural animals, to investigate microbial interactions with nutrients and how these affect animal health. The most common host focuses for SynComs are currently mouse and human, from basic mechanistic research through to translational disease models and live biotherapeutic products (LBPs) as treatments. We discuss SynComs used in basic research models and findings that relate to human and animal health and nutrition. Translational use cases of SynComs are discussed, followed by LBPs, especially within the context of agriculture. SynComs still face challenges, such as standardization for reproducibility and contamination risks. However, the future of SynComs is hopeful, especially in the areas of genome-guided SynCom design and custom SynCom-based treatments.</p>","PeriodicalId":48953,"journal":{"name":"Annual Review of Animal Biosciences","volume":" ","pages":"283-300"},"PeriodicalIF":12.0,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"107592596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-15Epub Date: 2023-10-03DOI: 10.1146/annurev-animal-021022-051810
Thomas L Schmidt, Joshua A Thia, Ary A Hoffmann
Genomic data are becoming increasingly affordable and easy to collect, and new tools for their analysis are appearing rapidly. Conservation biologists are interested in using this information to assist in management and planning but are typically limited financially and by the lack of genomic resources available for non-model taxa. It is therefore important to be aware of the pitfalls as well as the benefits of applying genomic approaches. Here, we highlight recent methods aimed at standardizing population assessments of genetic variation, inbreeding, and forms of genetic load and methods that help identify past and ongoing patterns of genetic interchange between populations, including those subjected to recent disturbance. We emphasize challenges in applying some of these methods and the need for adequate bioinformatic support. We also consider the promises and challenges of applying genomic approaches to understand adaptive changes in natural populations to predict their future adaptive capacity.
{"title":"How Can Genomics Help or Hinder Wildlife Conservation?","authors":"Thomas L Schmidt, Joshua A Thia, Ary A Hoffmann","doi":"10.1146/annurev-animal-021022-051810","DOIUrl":"10.1146/annurev-animal-021022-051810","url":null,"abstract":"<p><p>Genomic data are becoming increasingly affordable and easy to collect, and new tools for their analysis are appearing rapidly. Conservation biologists are interested in using this information to assist in management and planning but are typically limited financially and by the lack of genomic resources available for non-model taxa. It is therefore important to be aware of the pitfalls as well as the benefits of applying genomic approaches. Here, we highlight recent methods aimed at standardizing population assessments of genetic variation, inbreeding, and forms of genetic load and methods that help identify past and ongoing patterns of genetic interchange between populations, including those subjected to recent disturbance. We emphasize challenges in applying some of these methods and the need for adequate bioinformatic support. We also consider the promises and challenges of applying genomic approaches to understand adaptive changes in natural populations to predict their future adaptive capacity.</p>","PeriodicalId":48953,"journal":{"name":"Annual Review of Animal Biosciences","volume":" ","pages":"45-68"},"PeriodicalIF":12.0,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41169230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-15Epub Date: 2023-11-06DOI: 10.1146/annurev-animal-021122-093315
K M Quigley
Selective breeding of resilient organisms is an emerging topic in marine conservation. It can help us predict how species will adapt in the future and how we can help restore struggling populations effectively in the present. Scleractinian corals represent a potential tractable model system given their widescale phenotypic plasticity across fitness-related traits and a reproductive life history based on mass synchronized spawning. Here, I explore the justification for breeding in corals, identify underutilized pathways of acclimation, and highlight avenues for quantitative targeted breeding from the coral host and symbiont perspective. Specifically, the facilitation of enhanced heat tolerance by targeted breeding of plasticity mechanisms is underutilized. Evidence from theoretical genetics identifies potential pitfalls, including inattention to physical and genetic characteristics of the receiving environment. Three criteria for breeding emerge from this synthesis: selection from warm, variable reefs that have survived disturbance. This information will be essential to protect what we have and restore what we can.
{"title":"Breeding and Selecting Corals Resilient to Global Warming.","authors":"K M Quigley","doi":"10.1146/annurev-animal-021122-093315","DOIUrl":"10.1146/annurev-animal-021122-093315","url":null,"abstract":"<p><p>Selective breeding of resilient organisms is an emerging topic in marine conservation. It can help us predict how species will adapt in the future and how we can help restore struggling populations effectively in the present. Scleractinian corals represent a potential tractable model system given their widescale phenotypic plasticity across fitness-related traits and a reproductive life history based on mass synchronized spawning. Here, I explore the justification for breeding in corals, identify underutilized pathways of acclimation, and highlight avenues for quantitative targeted breeding from the coral host and symbiont perspective. Specifically, the facilitation of enhanced heat tolerance by targeted breeding of plasticity mechanisms is underutilized. Evidence from theoretical genetics identifies potential pitfalls, including inattention to physical and genetic characteristics of the receiving environment. Three criteria for breeding emerge from this synthesis: selection from warm, variable reefs that have survived disturbance. This information will be essential to protect what we have and restore what we can.</p>","PeriodicalId":48953,"journal":{"name":"Annual Review of Animal Biosciences","volume":" ","pages":"209-332"},"PeriodicalIF":12.0,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71487783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-15DOI: 10.1146/annurev-animal-021122-100823
Lee Berger, Lee F Skerratt, Tiffany A Kosch, Laura A Brannelly, Rebecca J Webb, Anthony W Waddle
Extensive knowledge gains from research worldwide over the 25 years since the discovery of chytridiomycosis can be used for improved management. Strategies that have saved populations in the short term and/or enabled recovery include captive breeding, translocation into disease refugia, translocation from resistant populations, disease-free exclosures, and preservation of disease refuges with connectivity to previous habitat, while antifungal treatments have reduced mortality rates in the wild. Increasing host resistance is the goal of many strategies under development, including vaccination and targeted genetic interventions. Pathogen-directed strategies may be more challenging but would have broad applicability. While the search for the silver bullet solution continues, we should value targeted local interventions that stop extinction and buy time for evolution of resistance or development of novel solutions. As for most invasive species and infectious diseases, we need to accept that ongoing management is necessary. For species continuing to decline, proactive deployment and assessment of promising interventions are more valid than a hands-off, do-no-harm approach that will likely allow further extinctions.
{"title":"Advances in Managing Chytridiomycosis for Australian Frogs: <i>Gradarius Firmus Victoria</i>.","authors":"Lee Berger, Lee F Skerratt, Tiffany A Kosch, Laura A Brannelly, Rebecca J Webb, Anthony W Waddle","doi":"10.1146/annurev-animal-021122-100823","DOIUrl":"10.1146/annurev-animal-021122-100823","url":null,"abstract":"<p><p>Extensive knowledge gains from research worldwide over the 25 years since the discovery of chytridiomycosis can be used for improved management. Strategies that have saved populations in the short term and/or enabled recovery include captive breeding, translocation into disease refugia, translocation from resistant populations, disease-free exclosures, and preservation of disease refuges with connectivity to previous habitat, while antifungal treatments have reduced mortality rates in the wild. Increasing host resistance is the goal of many strategies under development, including vaccination and targeted genetic interventions. Pathogen-directed strategies may be more challenging but would have broad applicability. While the search for the silver bullet solution continues, we should value targeted local interventions that stop extinction and buy time for evolution of resistance or development of novel solutions. As for most invasive species and infectious diseases, we need to accept that ongoing management is necessary. For species continuing to decline, proactive deployment and assessment of promising interventions are more valid than a hands-off, do-no-harm approach that will likely allow further extinctions.</p>","PeriodicalId":48953,"journal":{"name":"Annual Review of Animal Biosciences","volume":"12 ","pages":"113-133"},"PeriodicalIF":12.0,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139742373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-15Epub Date: 2023-11-22DOI: 10.1146/annurev-animal-021022-042133
Scott Carver, Georgia L Stannard, Alynn M Martin
The bare-nosed wombat is an iconic Australian fauna with remarkable biological characteristics and mythology. This solitary, muscular, fossorial, herbivorous marsupial from southeast Australia has continent and continental island subspeciation. Vombatiformes also contains hairy-nosed wombats (Lasiorhinus spp.); koala (Phascolarctos cinereus); and extinct megafauna, Phascolonus gigas (giant wombat), Diprotodon, and Thylacoleo (marsupial lion). Culturally important to Aboriginal people, bare-nosed wombats engineer ecosystems through digging, grazing, and defecation. Olfaction and cubic fecal aggregations appear critical for communication, including identity, courtship, and mating. Though among the largest fossorial herbivores, they have a nutrient-poor diet, a home range up to an order of magnitude smaller than expected, and a metabolism among the lowest extreme for mammals >10 kg. Metabolic depression may confer advantages over resource competitors and fossorial lifestyle protection from predators, fires, and climatic extremes. Bare-nosed wombats are loved and persecuted by European colonists. Recent population increases may reflect softening attitudes toward, and greater protections of, bare-nosed wombats.
{"title":"The Distinctive Biology and Characteristics of the Bare-Nosed Wombat (<i>Vombatus ursinus</i>).","authors":"Scott Carver, Georgia L Stannard, Alynn M Martin","doi":"10.1146/annurev-animal-021022-042133","DOIUrl":"10.1146/annurev-animal-021022-042133","url":null,"abstract":"<p><p>The bare-nosed wombat is an iconic Australian fauna with remarkable biological characteristics and mythology. This solitary, muscular, fossorial, herbivorous marsupial from southeast Australia has continent and continental island subspeciation. Vombatiformes also contains hairy-nosed wombats (<i>Lasiorhinus</i> spp.); koala (<i>Phascolarctos cinereus</i>); and extinct megafauna, <i>Phascolonus gigas</i> (giant wombat), <i>Diprotodon</i>, and <i>Thylacoleo</i> (marsupial lion). Culturally important to Aboriginal people, bare-nosed wombats engineer ecosystems through digging, grazing, and defecation. Olfaction and cubic fecal aggregations appear critical for communication, including identity, courtship, and mating. Though among the largest fossorial herbivores, they have a nutrient-poor diet, a home range up to an order of magnitude smaller than expected, and a metabolism among the lowest extreme for mammals >10 kg. Metabolic depression may confer advantages over resource competitors and fossorial lifestyle protection from predators, fires, and climatic extremes. Bare-nosed wombats are loved and persecuted by European colonists. Recent population increases may reflect softening attitudes toward, and greater protections of, bare-nosed wombats.</p>","PeriodicalId":48953,"journal":{"name":"Annual Review of Animal Biosciences","volume":" ","pages":"135-160"},"PeriodicalIF":12.0,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41152960","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-15DOI: 10.1146/annurev-animal-021122-112307
Martin T Nweeia
Though narwhal have survived multiple ice ages, including 2.5 Ma and the last interglacial period with warming temperatures, Arctic climate change during the Anthropocene introduces new challenges. Despite their evolutionary connection to Arctic Pleistocene fossils, narwhal archeocete ancestors from the Pliocene (Bohaskaia monodontoides) and Miocene (Denebola and Odobenocetopsidae) inhabited warm waters. Narwhal Arctic adaptation holds valuable insights into unique traits, including thin skin; extreme diving capacity; and a unique straight, spiraled, and sensory tooth organ system. Inaccessible weather, ice conditions, and darkness limit scientific studies, though Inuit knowledge adds valuable observations of narwhal ecology, biology, and behavior. Existing and future studies in myriad fields of physical, chemical, biological, and genetic science, combined and integrated with remote sensing and imaging technologies, will help elucidate narwhal evolution, biology, and adaptation. When integrated with Qaujimajatuqangit, "the Inuit way of knowing," these studies help describe interesting biologic expressions of the narwhal.
虽然独角鲸经历了多次冰期,包括 2.5 Ma 和上一次温度变暖的间冰期,但人类世期间的北极气候变化带来了新的挑战。尽管独角鲸与北极更新世化石有着进化上的联系,但其上新世(Bohaskaia monodontoides)和中新世(Denebola 和 Odobenocetopsidae)的原生祖先却生活在温暖的水域中。鸣鲸的北极适应性为其独特的特征提供了宝贵的见解,包括薄皮肤、极强的潜水能力以及独特的直齿、螺旋齿和感觉齿器官系统。虽然因纽特人的知识增加了对独角鲸生态学、生物学和行为学的宝贵观察,但难以接近的天气、冰雪条件和黑暗限制了科学研究。现有和未来在物理、化学、生物和遗传科学等众多领域的研究与遥感和成像技术相结合,将有助于阐明独角鲸的进化、生物学和适应性。当这些研究与 "因纽特人的认知方式 "Qaujimajatuqangit相结合时,将有助于描述独角鲸有趣的生物表现形式。
{"title":"Biology and Cultural Importance of the Narwhal.","authors":"Martin T Nweeia","doi":"10.1146/annurev-animal-021122-112307","DOIUrl":"10.1146/annurev-animal-021122-112307","url":null,"abstract":"<p><p>Though narwhal have survived multiple ice ages, including 2.5 Ma and the last interglacial period with warming temperatures, Arctic climate change during the Anthropocene introduces new challenges. Despite their evolutionary connection to Arctic Pleistocene fossils, narwhal archeocete ancestors from the Pliocene (<i>Bohaskaia monodontoides</i>) and Miocene (<i>Denebola</i> and Odobenocetopsidae) inhabited warm waters. Narwhal Arctic adaptation holds valuable insights into unique traits, including thin skin; extreme diving capacity; and a unique straight, spiraled, and sensory tooth organ system. Inaccessible weather, ice conditions, and darkness limit scientific studies, though Inuit knowledge adds valuable observations of narwhal ecology, biology, and behavior. Existing and future studies in myriad fields of physical, chemical, biological, and genetic science, combined and integrated with remote sensing and imaging technologies, will help elucidate narwhal evolution, biology, and adaptation. When integrated with <i>Qaujimajatuqangit</i>, \"the Inuit way of knowing,\" these studies help describe interesting biologic expressions of the narwhal.</p>","PeriodicalId":48953,"journal":{"name":"Annual Review of Animal Biosciences","volume":"12 ","pages":"187-208"},"PeriodicalIF":12.0,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139742375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-11DOI: 10.1146/annurev-animal-021022-024931
Simon Roques, Gonzalo Martinez-Fernandez, Yuliaxis Ramayo-Caldas, Milka Popova, Stuart Denman, Sarah J. Meale, Diego P. Morgavi
Mitigation of methane emission, a potent greenhouse gas, is a worldwide priority to limit global warming. A substantial part of anthropogenic methane is emitted by the livestock sector, as methane is a normal product of ruminant digestion. We present the latest developments and challenges ahead of the main efficient mitigation strategies of enteric methane production in ruminants. Numerous mitigation strategies have been developed in the last decades, from dietary manipulation and breeding to targeting of methanogens, the microbes that produce methane. The most recent advances focus on specific inhibition of key enzymes involved in methanogenesis. But these inhibitors, although efficient, are not affordable and not adapted to the extensive farming systems prevalent in low- and middle-income countries. Effective global mitigation of methane emissions from livestock should be based not only on scientific progress but also on the feasibility and accessibility of mitigation strategies.Expected final online publication date for the Annual Review of Animal Biosciences, Volume 12 is February 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
{"title":"Recent Advances in Enteric Methane Mitigation and the Long Road to Sustainable Ruminant Production","authors":"Simon Roques, Gonzalo Martinez-Fernandez, Yuliaxis Ramayo-Caldas, Milka Popova, Stuart Denman, Sarah J. Meale, Diego P. Morgavi","doi":"10.1146/annurev-animal-021022-024931","DOIUrl":"https://doi.org/10.1146/annurev-animal-021022-024931","url":null,"abstract":"Mitigation of methane emission, a potent greenhouse gas, is a worldwide priority to limit global warming. A substantial part of anthropogenic methane is emitted by the livestock sector, as methane is a normal product of ruminant digestion. We present the latest developments and challenges ahead of the main efficient mitigation strategies of enteric methane production in ruminants. Numerous mitigation strategies have been developed in the last decades, from dietary manipulation and breeding to targeting of methanogens, the microbes that produce methane. The most recent advances focus on specific inhibition of key enzymes involved in methanogenesis. But these inhibitors, although efficient, are not affordable and not adapted to the extensive farming systems prevalent in low- and middle-income countries. Effective global mitigation of methane emissions from livestock should be based not only on scientific progress but also on the feasibility and accessibility of mitigation strategies.Expected final online publication date for the Annual Review of Animal Biosciences, Volume 12 is February 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":48953,"journal":{"name":"Annual Review of Animal Biosciences","volume":"67 1","pages":""},"PeriodicalIF":12.0,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138575041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-08DOI: 10.1146/annurev-animal-021122-113212
Barry J. Bradford, G. Andres Contreras
The study of adipose tissue (AT) is enjoying a renaissance. White, brown, and beige adipocytes are being investigated in adult animals, and the critical roles of small depots like perivascular AT are becoming clear. But the most profound revision of the AT dogma has been its cellular composition and regulation. Single-cell transcriptomic studies revealed that adipocytes comprise well under 50% of the cells in white AT, and a substantial portion of the rest are immune cells. Altering the function of AT resident leukocytes can induce or correct metabolic syndrome and, more surprisingly, alter adaptive immune responses to infection. Although the field is dominated by obesity research, conditions such as rapid lipolysis, infection, and heat stress impact AT immune dynamics as well. Recent findings in rodents lead to critical questions that should be explored in domestic livestock as potential avenues for improved animal resilience to stressors, particularly as animals age.Expected final online publication date for the Annual Review of Animal Biosciences, Volume 12 is February 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
{"title":"Adipose Tissue Inflammation: Linking Physiological Stressors to Disease Susceptibility","authors":"Barry J. Bradford, G. Andres Contreras","doi":"10.1146/annurev-animal-021122-113212","DOIUrl":"https://doi.org/10.1146/annurev-animal-021122-113212","url":null,"abstract":"The study of adipose tissue (AT) is enjoying a renaissance. White, brown, and beige adipocytes are being investigated in adult animals, and the critical roles of small depots like perivascular AT are becoming clear. But the most profound revision of the AT dogma has been its cellular composition and regulation. Single-cell transcriptomic studies revealed that adipocytes comprise well under 50% of the cells in white AT, and a substantial portion of the rest are immune cells. Altering the function of AT resident leukocytes can induce or correct metabolic syndrome and, more surprisingly, alter adaptive immune responses to infection. Although the field is dominated by obesity research, conditions such as rapid lipolysis, infection, and heat stress impact AT immune dynamics as well. Recent findings in rodents lead to critical questions that should be explored in domestic livestock as potential avenues for improved animal resilience to stressors, particularly as animals age.Expected final online publication date for the Annual Review of Animal Biosciences, Volume 12 is February 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":48953,"journal":{"name":"Annual Review of Animal Biosciences","volume":"67 1","pages":""},"PeriodicalIF":12.0,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138561450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}