Pub Date : 2025-02-01Epub Date: 2024-10-16DOI: 10.1146/annurev-animal-111523-101954
Kathryn A Lord, Frances L Chen, Elinor K Karlsson
Dogs have played an outsized role in the field of behavioral genetics since its earliest days. Their unique evolutionary history and ubiquity in the modern world make them a potentially powerful model system for discovering how genetic changes lead to changes in behavior. Genomic technology has supercharged this potential by enabling scientists to sequence the DNA of thousands of dogs and test for correlations with behavioral traits. However, fractures in the early history of animal behavior between biological and psychological subfields may be impeding progress. In addition, canine behavioral genetics has included almost exclusively dogs from modern breeds, who represent just a small fraction of all dog diversity. By expanding the scope of dog behavior studies, and incorporating an evolutionary perspective on canine behavioral genetics, we can move beyond associations to understanding the complex interactions between genes and environment that lead to dog behavior.
自行为遗传学诞生之初,狗就在这一领域发挥着举足轻重的作用。它们独特的进化历史和在现代世界中无处不在的特性,使它们成为发现基因变化如何导致行为变化的潜在强大模型系统。基因组技术使科学家们能够对成千上万只狗的 DNA 进行测序,并测试它们与行为特征之间的相关性,从而极大地增强了这一潜力。然而,早期动物行为学在生物学和心理学子领域之间的断裂可能阻碍了研究的进展。此外,犬类行为遗传学几乎只包括现代犬种,而现代犬种只占犬类多样性的一小部分。通过扩大犬类行为学的研究范围,并将进化论的视角纳入犬类行为遗传学,我们可以超越关联,理解基因与环境之间导致犬类行为的复杂相互作用。
{"title":"An Evolutionary Perspective on Dog Behavioral Genetics.","authors":"Kathryn A Lord, Frances L Chen, Elinor K Karlsson","doi":"10.1146/annurev-animal-111523-101954","DOIUrl":"10.1146/annurev-animal-111523-101954","url":null,"abstract":"<p><p>Dogs have played an outsized role in the field of behavioral genetics since its earliest days. Their unique evolutionary history and ubiquity in the modern world make them a potentially powerful model system for discovering how genetic changes lead to changes in behavior. Genomic technology has supercharged this potential by enabling scientists to sequence the DNA of thousands of dogs and test for correlations with behavioral traits. However, fractures in the early history of animal behavior between biological and psychological subfields may be impeding progress. In addition, canine behavioral genetics has included almost exclusively dogs from modern breeds, who represent just a small fraction of all dog diversity. By expanding the scope of dog behavior studies, and incorporating an evolutionary perspective on canine behavioral genetics, we can move beyond associations to understanding the complex interactions between genes and environment that lead to dog behavior.</p>","PeriodicalId":48953,"journal":{"name":"Annual Review of Animal Biosciences","volume":" ","pages":"167-188"},"PeriodicalIF":8.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142478541","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01Epub Date: 2024-11-15DOI: 10.1146/annurev-animal-010324-113703
Karen A Beauchemin, Ermias Kebreab, Michelle Cain, Michael J VandeHaar
Achieving net-zero greenhouse gas (GHG) emissions in dairy production will require >50% reduction in enteric methane (CH4) emissions together with elimination of emissions from feed production, additional carbon sequestration, reduction in manure emissions, anaerobic digestion of manure, and decreased reliance on fossil fuel energy. Over past decades, improved production efficiency has reduced GHG intensity of milk production (i.e., emissions per unit of milk) in the United States, but this trend can continue only if cows are bred for increased efficiency. Genetic selection of low-CH4-producing animals, diet reformulation, use of feed additives, and vaccination show tremendous potential for enteric CH4 mitigation; however, few mitigation strategies are currently available, and added cost without increased revenue is a major barrier to implementation. Complete elimination of CH4 emissions from dairying is likely not possible without negatively affecting milk production; thus, offsets and removals of other GHGs will be needed to achieve net-zero milk production.
{"title":"The Path to Net-Zero in Dairy Production: Are Pronounced Decreases in Enteric Methane Achievable?","authors":"Karen A Beauchemin, Ermias Kebreab, Michelle Cain, Michael J VandeHaar","doi":"10.1146/annurev-animal-010324-113703","DOIUrl":"10.1146/annurev-animal-010324-113703","url":null,"abstract":"<p><p>Achieving net-zero greenhouse gas (GHG) emissions in dairy production will require >50% reduction in enteric methane (CH<sub>4</sub>) emissions together with elimination of emissions from feed production, additional carbon sequestration, reduction in manure emissions, anaerobic digestion of manure, and decreased reliance on fossil fuel energy. Over past decades, improved production efficiency has reduced GHG intensity of milk production (i.e., emissions per unit of milk) in the United States, but this trend can continue only if cows are bred for increased efficiency. Genetic selection of low-CH<sub>4</sub>-producing animals, diet reformulation, use of feed additives, and vaccination show tremendous potential for enteric CH<sub>4</sub> mitigation; however, few mitigation strategies are currently available, and added cost without increased revenue is a major barrier to implementation. Complete elimination of CH<sub>4</sub> emissions from dairying is likely not possible without negatively affecting milk production; thus, offsets and removals of other GHGs will be needed to achieve net-zero milk production.</p>","PeriodicalId":48953,"journal":{"name":"Annual Review of Animal Biosciences","volume":" ","pages":"325-341"},"PeriodicalIF":8.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142639980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01Epub Date: 2024-11-14DOI: 10.1146/annurev-animal-021022-030040
Isaac Cann, Yanfen Cheng, Manal A B Alhawsawi, Mallory Moran, Yuqi Li, Tian Gong, Weiyun Zhu, Roderick I Mackie
Second-generation biofuel production, which aims to convert lignocellulose to liquid transportation fuels, could be transformative in worldwide energy portfolios. A bottleneck impeding its large-scale deployment is conversion of the target polysaccharides in lignocellulose to their unit sugars for microbial fermentation to the desired fuels. Cellulose and hemicellulose, the two major polysaccharides in lignocellulose, are complex in nature, and their interactions with pectin and lignin further increase their recalcitrance to depolymerization. This review focuses on the intricate linkages present in the feedstocks of interest and examines the potential of the enzymes evolved by microbes, in the microbe/ruminant symbiotic relationship, to depolymerize the target polysaccharides. We further provide insights to how a rational and more efficient assembly of rumen microbial enzymes can be reconstituted for lignocellulose degradation. We conclude by expounding on how gains in this area can impact the sustainability of both animal agriculture and the energy sector.
{"title":"Rumen-Targeted Mining of Enzymes for Bioenergy Production.","authors":"Isaac Cann, Yanfen Cheng, Manal A B Alhawsawi, Mallory Moran, Yuqi Li, Tian Gong, Weiyun Zhu, Roderick I Mackie","doi":"10.1146/annurev-animal-021022-030040","DOIUrl":"10.1146/annurev-animal-021022-030040","url":null,"abstract":"<p><p>Second-generation biofuel production, which aims to convert lignocellulose to liquid transportation fuels, could be transformative in worldwide energy portfolios. A bottleneck impeding its large-scale deployment is conversion of the target polysaccharides in lignocellulose to their unit sugars for microbial fermentation to the desired fuels. Cellulose and hemicellulose, the two major polysaccharides in lignocellulose, are complex in nature, and their interactions with pectin and lignin further increase their recalcitrance to depolymerization. This review focuses on the intricate linkages present in the feedstocks of interest and examines the potential of the enzymes evolved by microbes, in the microbe/ruminant symbiotic relationship, to depolymerize the target polysaccharides. We further provide insights to how a rational and more efficient assembly of rumen microbial enzymes can be reconstituted for lignocellulose degradation. We conclude by expounding on how gains in this area can impact the sustainability of both animal agriculture and the energy sector.</p>","PeriodicalId":48953,"journal":{"name":"Annual Review of Animal Biosciences","volume":" ","pages":"343-369"},"PeriodicalIF":8.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142631080","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01Epub Date: 2024-11-15DOI: 10.1146/annurev-animal-030424-074906
Yalin Cheng, Matthew J Miller, Fumin Lei
The beak, a pivotal evolutionary trait characterized by high morphological diversity and plasticity, has enabled birds to survive mass extinction events and subsequently radiate into diverse ecological niches worldwide. This remarkable ecological adaptability underscores the importance of uncovering the molecular mechanisms shaping avian beak morphology, particularly benefiting from the rapidly advancing archives of genomics and epigenomics. We review the latest advancements in understanding how genetic and epigenetic innovations control or regulate beak development and drive beak morphological adaptation and diversification over the past two decades. We conclude with several recommendations for future endeavors, expanding to more bird lineages, with a focus on beak shape and the lower beak, and conducting functional experiments. By directing research efforts toward these aspects and integrating advanced omics techniques, the complex molecular mechanisms involved in avian beak evolution and morphogenesis will be deeply interpreted.
{"title":"Molecular Innovations Shaping Beak Morphology in Birds.","authors":"Yalin Cheng, Matthew J Miller, Fumin Lei","doi":"10.1146/annurev-animal-030424-074906","DOIUrl":"10.1146/annurev-animal-030424-074906","url":null,"abstract":"<p><p>The beak, a pivotal evolutionary trait characterized by high morphological diversity and plasticity, has enabled birds to survive mass extinction events and subsequently radiate into diverse ecological niches worldwide. This remarkable ecological adaptability underscores the importance of uncovering the molecular mechanisms shaping avian beak morphology, particularly benefiting from the rapidly advancing archives of genomics and epigenomics. We review the latest advancements in understanding how genetic and epigenetic innovations control or regulate beak development and drive beak morphological adaptation and diversification over the past two decades. We conclude with several recommendations for future endeavors, expanding to more bird lineages, with a focus on beak shape and the lower beak, and conducting functional experiments. By directing research efforts toward these aspects and integrating advanced omics techniques, the complex molecular mechanisms involved in avian beak evolution and morphogenesis will be deeply interpreted.</p>","PeriodicalId":48953,"journal":{"name":"Annual Review of Animal Biosciences","volume":" ","pages":"99-119"},"PeriodicalIF":8.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142639975","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01Epub Date: 2024-10-01DOI: 10.1146/annurev-animal-111523-102004
John C Z Woinarski, Stephen T Garnett, Sarah M Legge
Most conservation programs and laws aim to prevent extinction. However, there is a gulf between such aspirations and the current reality of escalating biodiversity loss. This review focuses on efforts to prevent extinctions in Australia, but much of this consideration is likely to apply globally. As context, we consider the reasons for trying to prevent extinction, review Australia's extinction record, and note that there are likely to be many more extinctions than formally recognized. We describe recent cases where conservation actions have prevented extinction. We note that extinction is a pathway rather than solely an endpoint, and many decisions made or not made on that pathway can determine the fate of species. We conclude that all looming extinctions can and should be prevented. This will require transformational change in legislation, increased resourcing, more consideration of poorly known species, and increased societal recognition of the need to be responsible for the care of country.
{"title":"No More Extinctions: Recovering Australia's Biodiversity.","authors":"John C Z Woinarski, Stephen T Garnett, Sarah M Legge","doi":"10.1146/annurev-animal-111523-102004","DOIUrl":"10.1146/annurev-animal-111523-102004","url":null,"abstract":"<p><p>Most conservation programs and laws aim to prevent extinction. However, there is a gulf between such aspirations and the current reality of escalating biodiversity loss. This review focuses on efforts to prevent extinctions in Australia, but much of this consideration is likely to apply globally. As context, we consider the reasons for trying to prevent extinction, review Australia's extinction record, and note that there are likely to be many more extinctions than formally recognized. We describe recent cases where conservation actions have prevented extinction. We note that extinction is a pathway rather than solely an endpoint, and many decisions made or not made on that pathway can determine the fate of species. We conclude that all looming extinctions can and should be prevented. This will require transformational change in legislation, increased resourcing, more consideration of poorly known species, and increased societal recognition of the need to be responsible for the care of country.</p>","PeriodicalId":48953,"journal":{"name":"Annual Review of Animal Biosciences","volume":" ","pages":"507-528"},"PeriodicalIF":8.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142367124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01Epub Date: 2024-11-12DOI: 10.1146/annurev-animal-111523-102403
Olga Amelkina, Samantha Gardner, Jessica C Edge, Zenab Butt, Haidee Tinning, Niamh Forde
Implantation in cattle is a key developmental checkpoint for pregnancy success. It involves careful spatiotemporal changes to the transcriptional landscape of the endometrium, with the heterogeneous nature of the endometrium increasing the complexity of understanding of the mechanism involved. Implantation is impacted by the developmental competency of the embryo, use of assisted reproductive technologies, and the environment in which this process occurs. We identify the factors that most impact the implantation process in cattle and highlight how it differs with that in other placental mammals. We propose the major areas that lack evidence are the mechanism(s) by which implantation itself occurs and how different stressors alter this process. Our understanding is hindered by a lack of appropriate in vitro models; however, development of novel 3D tools and available data sets will further elucidate the implantation process. Perhaps more importantly, this will develop methods to mitigate against these stressors to improve implantation success and offspring health.
{"title":"Ruminating on Bovine Implantation: Its Importance in Fertility, Food Production, Conservation, and Health.","authors":"Olga Amelkina, Samantha Gardner, Jessica C Edge, Zenab Butt, Haidee Tinning, Niamh Forde","doi":"10.1146/annurev-animal-111523-102403","DOIUrl":"10.1146/annurev-animal-111523-102403","url":null,"abstract":"<p><p>Implantation in cattle is a key developmental checkpoint for pregnancy success. It involves careful spatiotemporal changes to the transcriptional landscape of the endometrium, with the heterogeneous nature of the endometrium increasing the complexity of understanding of the mechanism involved. Implantation is impacted by the developmental competency of the embryo, use of assisted reproductive technologies, and the environment in which this process occurs. We identify the factors that most impact the implantation process in cattle and highlight how it differs with that in other placental mammals. We propose the major areas that lack evidence are the mechanism(s) by which implantation itself occurs and how different stressors alter this process. Our understanding is hindered by a lack of appropriate in vitro models; however, development of novel 3D tools and available data sets will further elucidate the implantation process. Perhaps more importantly, this will develop methods to mitigate against these stressors to improve implantation success and offspring health.</p>","PeriodicalId":48953,"journal":{"name":"Annual Review of Animal Biosciences","volume":" ","pages":"143-165"},"PeriodicalIF":8.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142631083","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01Epub Date: 2024-09-24DOI: 10.1146/annurev-animal-111523-102149
Fevi Rose Paro, Roselyn Davour, Daniel Acosta, Karah Mechlowitz, Chhavi Tiwari, Sarah L McKune
Nutrition security is challenging in regions where resources are limited and food production is naturally constrained. In low- and middle-income countries (LMICs), undernutrition is high for many reasons, including lack of nutritional diversity and low high-quality protein content. Interest in the role of animal-source food (ASF) in reducing nutrition insecurity is increasing, as evidence from LMICs suggests that consumption of ASF is strongly associated with reduction in stunting, improved diet quality, and overall nutrition, particularly in early stages of life. We review the strengths and limitations of ASF consumption in terms of accessibility, safety, and nutritional benefits compared to non-ASF sources. We present a critical discussion on existing barriers to ASF consumption and its future directions in LMICs. Understanding the role of ASF in improving nutrition security in LMICs is crucial to optimizing public health, designing appropriate interventions, and implementing effective policy in resource-poor settings.
{"title":"Improving Nutrition Security in Low- and Middle-Income Countries and the Role of Animal-Source Foods.","authors":"Fevi Rose Paro, Roselyn Davour, Daniel Acosta, Karah Mechlowitz, Chhavi Tiwari, Sarah L McKune","doi":"10.1146/annurev-animal-111523-102149","DOIUrl":"10.1146/annurev-animal-111523-102149","url":null,"abstract":"<p><p>Nutrition security is challenging in regions where resources are limited and food production is naturally constrained. In low- and middle-income countries (LMICs), undernutrition is high for many reasons, including lack of nutritional diversity and low high-quality protein content. Interest in the role of animal-source food (ASF) in reducing nutrition insecurity is increasing, as evidence from LMICs suggests that consumption of ASF is strongly associated with reduction in stunting, improved diet quality, and overall nutrition, particularly in early stages of life. We review the strengths and limitations of ASF consumption in terms of accessibility, safety, and nutritional benefits compared to non-ASF sources. We present a critical discussion on existing barriers to ASF consumption and its future directions in LMICs. Understanding the role of ASF in improving nutrition security in LMICs is crucial to optimizing public health, designing appropriate interventions, and implementing effective policy in resource-poor settings.</p>","PeriodicalId":48953,"journal":{"name":"Annual Review of Animal Biosciences","volume":" ","pages":"371-388"},"PeriodicalIF":8.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142330580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01Epub Date: 2024-11-14DOI: 10.1146/annurev-animal-111523-102225
Yihuan Mao, Yulong Zhao, Qi Zhou, Wei Li
Chromosome engineering is a transformative field at the cutting edge of biological science, offering unprecedented precision in manipulating large-scale genomic DNA within cells. This discipline is central to deciphering how the multifaceted roles of chromosomes-guarding genetic information, encoding sequence positional information, and influencing organismal traits-shape the genetic blueprint of life. This review comprehensively examines the technological advancements in chromosome engineering, which center on engineering chromosomal rearrangements, generating artificial chromosomes, de novo synthesizing chromosomes, and transferring chromosomes. Additionally, we introduce the application progress of chromosome engineering in basic and applied research fields, showcasing its capacity to deepen our knowledge of genetics and catalyze breakthroughs in therapeutic strategies. Finally, we conclude with a discussion of the challenges the field faces and highlight the profound implications that chromosome engineering holds for the future of modern biology and medical applications.
{"title":"Chromosome Engineering: Technologies, Applications, and Challenges.","authors":"Yihuan Mao, Yulong Zhao, Qi Zhou, Wei Li","doi":"10.1146/annurev-animal-111523-102225","DOIUrl":"10.1146/annurev-animal-111523-102225","url":null,"abstract":"<p><p>Chromosome engineering is a transformative field at the cutting edge of biological science, offering unprecedented precision in manipulating large-scale genomic DNA within cells. This discipline is central to deciphering how the multifaceted roles of chromosomes-guarding genetic information, encoding sequence positional information, and influencing organismal traits-shape the genetic blueprint of life. This review comprehensively examines the technological advancements in chromosome engineering, which center on engineering chromosomal rearrangements, generating artificial chromosomes, de novo synthesizing chromosomes, and transferring chromosomes. Additionally, we introduce the application progress of chromosome engineering in basic and applied research fields, showcasing its capacity to deepen our knowledge of genetics and catalyze breakthroughs in therapeutic strategies. Finally, we conclude with a discussion of the challenges the field faces and highlight the profound implications that chromosome engineering holds for the future of modern biology and medical applications.</p>","PeriodicalId":48953,"journal":{"name":"Annual Review of Animal Biosciences","volume":" ","pages":"25-47"},"PeriodicalIF":8.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142631064","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01Epub Date: 2024-11-12DOI: 10.1146/annurev-animal-111523-102158
Marisa L Korody, Thomas B Hildebrandt
The northern white rhinoceros (NWR) is functionally extinct, with only two nonreproductive females remaining. However, because of the foresight of scientists, cryopreserved cells and reproductive tissues may aid in the recovery of this species. An ambitious program of natural and artificial gametes and in vitro embryo generation was first outlined in 2015, and many of the proposed steps have been achieved. Multiple induced pluripotent stem cell lines have been established, primordial germ cell-like cells have been generated, oocytes have been collected from the remaining females, blastocysts have been cryopreserved, and the closely related southern white rhinoceros (SWR) is being established as a surrogate. Recently, the first successful embryo transfer in SWR demonstrated that embryos can be generated by in vitro fertilization and cryopreserved. We explore progress to date in using advanced cellular technologies to save the NWR and highlight the necessary next steps to ensure a viable population for reintroduction. We roll out a holistic rescue approach for a charismatic megavertebrate that includes the most advanced cellular technologies, which can provide a blueprint for other critically endangered mammals. We also provide a detailed discussion of the remaining questions in such an upgraded conservation program.
{"title":"Progress Toward Genetic Rescue of the Northern White Rhinoceros (<i>Ceratotherium simum cottoni</i>).","authors":"Marisa L Korody, Thomas B Hildebrandt","doi":"10.1146/annurev-animal-111523-102158","DOIUrl":"10.1146/annurev-animal-111523-102158","url":null,"abstract":"<p><p>The northern white rhinoceros (NWR) is functionally extinct, with only two nonreproductive females remaining. However, because of the foresight of scientists, cryopreserved cells and reproductive tissues may aid in the recovery of this species. An ambitious program of natural and artificial gametes and in vitro embryo generation was first outlined in 2015, and many of the proposed steps have been achieved. Multiple induced pluripotent stem cell lines have been established, primordial germ cell-like cells have been generated, oocytes have been collected from the remaining females, blastocysts have been cryopreserved, and the closely related southern white rhinoceros (SWR) is being established as a surrogate. Recently, the first successful embryo transfer in SWR demonstrated that embryos can be generated by in vitro fertilization and cryopreserved. We explore progress to date in using advanced cellular technologies to save the NWR and highlight the necessary next steps to ensure a viable population for reintroduction. We roll out a holistic rescue approach for a charismatic megavertebrate that includes the most advanced cellular technologies, which can provide a blueprint for other critically endangered mammals. We also provide a detailed discussion of the remaining questions in such an upgraded conservation program.</p>","PeriodicalId":48953,"journal":{"name":"Annual Review of Animal Biosciences","volume":" ","pages":"483-505"},"PeriodicalIF":8.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142631074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Transcriptional regulation in response to diverse physiological cues involves complicated biological processes. Recent initiatives that leverage whole genome sequencing and annotation of regulatory elements significantly contribute to our understanding of transcriptional gene regulation. Advances in the data sets available for comparative genomics and epigenomics can identify evolutionarily constrained regulatory variants and shed light on noncoding elements that influence transcription in different tissues and developmental stages across species. Most epigenomic data, however, are generated from healthy subjects at specific developmental stages. To bridge the genotype-phenotype gap, future research should focus on generating multidimensional epigenomic data under diverse physiological conditions. Farm animal species offer advantages in terms of feasibility, cost, and experimental design for such integrative analyses in comparison to humans. Deep learning modeling and cutting-edge technologies in sequencing and functional screening and validation also provide great promise for better understanding transcriptional regulation in this dynamic field.
{"title":"Comparative Genomics and Epigenomics of Transcriptional Regulation.","authors":"Huaijun Zhou, Emily Clark, Dailu Guan, Sandrine Lagarrigue, Lingzhao Fang, Hao Cheng, Christopher K Tuggle, Muskan Kapoor, Ying Wang, Elisabetta Giuffra, Giorgia Egidy","doi":"10.1146/annurev-animal-111523-102217","DOIUrl":"10.1146/annurev-animal-111523-102217","url":null,"abstract":"<p><p>Transcriptional regulation in response to diverse physiological cues involves complicated biological processes. Recent initiatives that leverage whole genome sequencing and annotation of regulatory elements significantly contribute to our understanding of transcriptional gene regulation. Advances in the data sets available for comparative genomics and epigenomics can identify evolutionarily constrained regulatory variants and shed light on noncoding elements that influence transcription in different tissues and developmental stages across species. Most epigenomic data, however, are generated from healthy subjects at specific developmental stages. To bridge the genotype-phenotype gap, future research should focus on generating multidimensional epigenomic data under diverse physiological conditions. Farm animal species offer advantages in terms of feasibility, cost, and experimental design for such integrative analyses in comparison to humans. Deep learning modeling and cutting-edge technologies in sequencing and functional screening and validation also provide great promise for better understanding transcriptional regulation in this dynamic field.</p>","PeriodicalId":48953,"journal":{"name":"Annual Review of Animal Biosciences","volume":" ","pages":"73-98"},"PeriodicalIF":8.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142683238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}