In this note, we briefly discuss the opportunities to use polarized light and hyperspectral imaging as additional degrees of freedom in optical polarimetric image processing. The additional polarization and spectral information in recognition technologies allow them to identify visually indistinguishable features in a scene within a large region of interest.
{"title":"Polarization and hyperspectral imaging matter for newly emerging perspectives in optical image processing: guest editorial","authors":"J. Aval, A. Alfalou, C. Brosseau","doi":"10.1364/AOP.11.00ED10","DOIUrl":"https://doi.org/10.1364/AOP.11.00ED10","url":null,"abstract":"In this note, we briefly discuss the opportunities to use polarized light and hyperspectral imaging as additional degrees of freedom in optical polarimetric image processing. The additional polarization and spectral information in recognition technologies allow them to identify visually indistinguishable features in a scene within a large region of interest.","PeriodicalId":48960,"journal":{"name":"Advances in Optics and Photonics","volume":" ","pages":""},"PeriodicalIF":27.1,"publicationDate":"2019-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45876006","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shulin Sun, Qiong He, J. Hao, Shiyi Xiao, Lei Zhou
Metasurfaces are ultrathin metamaterials consisting of planar electromagnetic (EM) microstructures (e.g., meta-atoms) with pre-determined EM responses arranged in specific sequences. Based on careful structural designs on both meta-atoms and global sequences, one can realize homogenous and inhomogeneous metasurfaces that can possess exceptional capabilities to manipulate EM waves, serving as ideal candidates to realize ultracompact and highly efficient EM devices for next-generation integration-optics applications. In this paper, we present an overview on the development of metasurfaces, including both homogeneous and inhomogeneous ones, focusing particularly on their working principles, the fascinating wave-manipulation effects achieved both statically and dynamically, and the representative applications so far realized. Finally, we also present our own perspectives on possible future directions of this fast-developing research field in the conclusion.
{"title":"Electromagnetic metasurfaces: physics and applications","authors":"Shulin Sun, Qiong He, J. Hao, Shiyi Xiao, Lei Zhou","doi":"10.1364/AOP.11.000380","DOIUrl":"https://doi.org/10.1364/AOP.11.000380","url":null,"abstract":"Metasurfaces are ultrathin metamaterials consisting of planar electromagnetic (EM) microstructures (e.g., meta-atoms) with pre-determined EM responses arranged in specific sequences. Based on careful structural designs on both meta-atoms and global sequences, one can realize homogenous and inhomogeneous metasurfaces that can possess exceptional capabilities to manipulate EM waves, serving as ideal candidates to realize ultracompact and highly efficient EM devices for next-generation integration-optics applications. In this paper, we present an overview on the development of metasurfaces, including both homogeneous and inhomogeneous ones, focusing particularly on their working principles, the fascinating wave-manipulation effects achieved both statically and dynamically, and the representative applications so far realized. Finally, we also present our own perspectives on possible future directions of this fast-developing research field in the conclusion.","PeriodicalId":48960,"journal":{"name":"Advances in Optics and Photonics","volume":" ","pages":""},"PeriodicalIF":27.1,"publicationDate":"2019-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42488037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Modes generally provide an economical description of waves, reducing complicated wave functions to finite numbers of mode amplitudes, as in propagating fiber modes and ideal laser beams. But finding a corresponding mode description for counting the best orthogonal channels for communicating between surfaces or volumes, or for optimally describing the inputs and outputs of a complicated optical system or wave scatterer, requires a different approach. The singular-value decomposition approach we describe here gives the necessary optimal source and receiver “communication modes” pairs and device or scatterer input and output “mode-converter basis function” pairs. These define the best communication or input/output channels, allowing precise counting and straightforward calculations. Here we introduce all the mathematics and physics of this approach, which works for acoustic, radio-frequency, and optical waves, including full vector electromagnetic behavior, and is valid from nanophotonic scales to large systems. We show several general behaviors of communications modes, including various heuristic results. We also establish a new “M-gauge” for electromagnetism that clarifies the number of vector wave channels and allows a simple and general quantization. This approach also gives a new modal “M-coefficient” version of Einstein’s A&B coefficient argument and revised versions of Kirchhoff’s radiation laws. The article is written in a tutorial style to introduce the approach and its consequences.
{"title":"Waves, modes, communications, and optics: a tutorial","authors":"D. Miller","doi":"10.1364/AOP.11.000679","DOIUrl":"https://doi.org/10.1364/AOP.11.000679","url":null,"abstract":"Modes generally provide an economical description of waves, reducing complicated wave functions to finite numbers of mode amplitudes, as in propagating fiber modes and ideal laser beams. But finding a corresponding mode description for counting the best orthogonal channels for communicating between surfaces or volumes, or for optimally describing the inputs and outputs of a complicated optical system or wave scatterer, requires a different approach. The singular-value decomposition approach we describe here gives the necessary optimal source and receiver “communication modes” pairs and device or scatterer input and output “mode-converter basis function” pairs. These define the best communication or input/output channels, allowing precise counting and straightforward calculations. Here we introduce all the mathematics and physics of this approach, which works for acoustic, radio-frequency, and optical waves, including full vector electromagnetic behavior, and is valid from nanophotonic scales to large systems. We show several general behaviors of communications modes, including various heuristic results. We also establish a new “M-gauge” for electromagnetism that clarifies the number of vector wave channels and allows a simple and general quantization. This approach also gives a new modal “M-coefficient” version of Einstein’s A&B coefficient argument and revised versions of Kirchhoff’s radiation laws. The article is written in a tutorial style to introduce the approach and its consequences.","PeriodicalId":48960,"journal":{"name":"Advances in Optics and Photonics","volume":" ","pages":""},"PeriodicalIF":27.1,"publicationDate":"2019-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49214001","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
E. Toninelli, B. Ndagano, A. Vallés, B. Sephton, I. Nape, A. Ambrosio, F. Capasso, M. Padgett, A. Forbes
A tomographic measurement is a ubiquitous tool for estimating the properties of quantum states, and its application is known as quantum state tomography (QST). The process involves manipulating single photons in a sequence of projective measurements, often to construct a density matrix from which other information can be inferred, and is as laborious as it is complex. Here we unravel the steps of a QST and outline how it may be demonstrated in a fast and simple manner with intense (classical) light. We use scalar beams in a time reversal approach to simulate the outcome of a QST and exploit non-separability in classical vector beams as a means to treat the latter as a “classically entangled” state for illustrating QSTs directly. We provide a complete do-it-yourself resource for the practical implementation of this approach, complete with tutorial video, which we hope will facilitate the introduction of this core quantum tool into teaching and research laboratories alike. Our work highlights the value of using intense classical light as a means to study quantum systems and in the process provides a tutorial on the fundamentals of QSTs.
{"title":"Concepts in quantum state tomography and classical implementation with intense light: a tutorial","authors":"E. Toninelli, B. Ndagano, A. Vallés, B. Sephton, I. Nape, A. Ambrosio, F. Capasso, M. Padgett, A. Forbes","doi":"10.1364/AOP.11.000067","DOIUrl":"https://doi.org/10.1364/AOP.11.000067","url":null,"abstract":"A tomographic measurement is a ubiquitous tool for estimating the properties of quantum states, and its application is known as quantum state tomography (QST). The process involves manipulating single photons in a sequence of projective measurements, often to construct a density matrix from which other information can be inferred, and is as laborious as it is complex. Here we unravel the steps of a QST and outline how it may be demonstrated in a fast and simple manner with intense (classical) light. We use scalar beams in a time reversal approach to simulate the outcome of a QST and exploit non-separability in classical vector beams as a means to treat the latter as a “classically entangled” state for illustrating QSTs directly. We provide a complete do-it-yourself resource for the practical implementation of this approach, complete with tutorial video, which we hope will facilitate the introduction of this core quantum tool into teaching and research laboratories alike. Our work highlights the value of using intense classical light as a means to study quantum systems and in the process provides a tutorial on the fundamentals of QSTs.","PeriodicalId":48960,"journal":{"name":"Advances in Optics and Photonics","volume":" 42","pages":""},"PeriodicalIF":27.1,"publicationDate":"2019-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41252479","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Joseph Rosen, A. Vijayakumar, Manoj Kumar, M. Rai, R. Kelner, Y. Kashter, Angika Bulbul, Saswata Mukherjee
Self-interference holography is a common technique to record holograms of incoherently illuminated scenes. In this review, we survey the main milestones in the topic of self-interference incoherent digital holography from two main points of view. First, we review the prime architectures of optical hologram recorders over more than 50 years. Second, we discuss some of the key applications of these recorders in the field of imaging in general, and for 3D super-resolution imaging, fluorescence microscopy, partial aperture imaging, seeing through a scattering medium, and spectral imaging in particular. We summarize this overview with a general perspective on this research topic and its prospective directions.
{"title":"Recent advances in self-interference incoherent digital holography","authors":"Joseph Rosen, A. Vijayakumar, Manoj Kumar, M. Rai, R. Kelner, Y. Kashter, Angika Bulbul, Saswata Mukherjee","doi":"10.1364/AOP.11.000001","DOIUrl":"https://doi.org/10.1364/AOP.11.000001","url":null,"abstract":"Self-interference holography is a common technique to record holograms of incoherently illuminated scenes. In this review, we survey the main milestones in the topic of self-interference incoherent digital holography from two main points of view. First, we review the prime architectures of optical hologram recorders over more than 50 years. Second, we discuss some of the key applications of these recorders in the field of imaging in general, and for 3D super-resolution imaging, fluorescence microscopy, partial aperture imaging, seeing through a scattering medium, and spectral imaging in particular. We summarize this overview with a general perspective on this research topic and its prospective directions.","PeriodicalId":48960,"journal":{"name":"Advances in Optics and Photonics","volume":" ","pages":""},"PeriodicalIF":27.1,"publicationDate":"2019-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46876746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
V. Micó, Juanjuan Zheng, Javier García, Z. Zalevsky, P. Gao
Quantitative phase microscopy (QPM), a technique combining phase imaging and microscopy, enables visualization of the 3D topography in reflective samples, as well as the inner structure or refractive index distribution of transparent and translucent samples. Similar to other imaging modalities, QPM is constrained by the conflict between numerical aperture (NA) and field of view (FOV): an imaging system with a low NA has to be employed to maintain a large FOV. This fact severely limits the resolution in QPM up to 0.82λ/NA, λ being the illumination wavelength. Consequently, finer structures of samples cannot be resolved by using modest NA objectives in QPM. Aimed to that, many approaches, such as oblique illumination, structured illumination, and speckle illumination (just to cite a few), have been proposed to improve the spatial resolution (or the space–bandwidth product) in phase microscopy by restricting other degrees of freedom (mostly time). This paper aims to provide an up-to-date review on the resolution enhancement approaches in QPM, discussing the pros and cons of each technique as well as the confusion on resolution definition claims on QPM and other coherent microscopy methods. Through this survey, we will review the most appealing and useful techniques for superresolution in coherent microscopy, working with and without lenses and with special attention to QPM. Note that, throughout this review, with the term “superresolution” we denote enhancing the resolution to surpass the limit imposed by diffraction and proportional to λ/NA, rather than the physics limit λ/(2n med ), with n med being the refractive index value of the immersion medium.
{"title":"Resolution enhancement in quantitative phase microscopy","authors":"V. Micó, Juanjuan Zheng, Javier García, Z. Zalevsky, P. Gao","doi":"10.1364/AOP.11.000135","DOIUrl":"https://doi.org/10.1364/AOP.11.000135","url":null,"abstract":"Quantitative phase microscopy (QPM), a technique combining phase imaging and microscopy, enables visualization of the 3D topography in reflective samples, as well as the inner structure or refractive index distribution of transparent and translucent samples. Similar to other imaging modalities, QPM is constrained by the conflict between numerical aperture (NA) and field of view (FOV): an imaging system with a low NA has to be employed to maintain a large FOV. This fact severely limits the resolution in QPM up to 0.82λ/NA, λ being the illumination wavelength. Consequently, finer structures of samples cannot be resolved by using modest NA objectives in QPM. Aimed to that, many approaches, such as oblique illumination, structured illumination, and speckle illumination (just to cite a few), have been proposed to improve the spatial resolution (or the space–bandwidth product) in phase microscopy by restricting other degrees of freedom (mostly time). This paper aims to provide an up-to-date review on the resolution enhancement approaches in QPM, discussing the pros and cons of each technique as well as the confusion on resolution definition claims on QPM and other coherent microscopy methods. Through this survey, we will review the most appealing and useful techniques for superresolution in coherent microscopy, working with and without lenses and with special attention to QPM. Note that, throughout this review, with the term “superresolution” we denote enhancing the resolution to surpass the limit imposed by diffraction and proportional to λ/NA, rather than the physics limit λ/(2n\u0000 med\u0000 ), with n\u0000 med\u0000 being the refractive index value of the immersion medium.","PeriodicalId":48960,"journal":{"name":"Advances in Optics and Photonics","volume":" ","pages":""},"PeriodicalIF":27.1,"publicationDate":"2019-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47907239","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The nature of light, extending from the optical to the x-ray regime, is reviewed from a diffraction point of view by comparing field-based statistical optics and photon-based quantum optics approaches. The topic is introduced by comparing historical diffraction concepts based on wave interference, Dirac’s notion of photon self-interference, Feynman’s interference of space–time photon probability amplitudes, and Glauber’s formulation of coherence functions based on photon detection. The concepts are elucidated by a review of how the semiclassical combination of the disparate photon and wave concepts have been used to describe light creation, diffraction, and detection. The origin of the fundamental diffraction limit is then discussed in both wave and photon pictures. By use of Feynman’s concept of probability amplitudes associated with independent photons, we show that quantum electrodynamics, the complete theory of light, reduces in lowest order to the conventional wave formalism of diffraction. As an introduction to multi-photon effects, we then review fundamental one- and two-photon experiments and detection schemes, in particular the seminal Hanbury Brown–Twiss experiment. The formal discourse of the paper starts with a treatment of first-order coherence theory. In first order, the statistical optics and quantum optics formulations of coherence are shown to be equivalent. This is elucidated by a discussion of Zernike’s powerful theorem of partial coherence propagation, a cornerstone of statistical optics, followed by its quantum derivation based on the interference of single-photon probability amplitudes. The treatment is then extended to second-order coherence theory, where the equivalence of wave and particle descriptions is shown to break down. This is illustrated by considering two photons whose space–time probability amplitudes are correlated through nonlinear birth processes, resulting in entanglement or cloning. In both cases, the two-photon diffraction patterns are shown to exhibit resolution below the conventional diffraction limit, defined by the one-photon diffraction patterns. The origin of the reduction is shown to arise from the interference of two-photon probability amplitudes. By comparing first- and second-order diffraction, it is shown that the conventional first-order concept of partial coherence with its limits of chaoticity and first-order coherence has the second-order analogue of partial entanglement, with its limits corresponding to two entangled photons (“entangled biphotons”) and two cloned photons (“cloned biphotons”), the latter being second-order coherent. The concept of cloned biphotons is extended to the case of n cloned photons, resulting in a 1/n reduction of the diffraction limit. In the limit of nth-order coherence, all photons within the nth-order collective state are shown to propagate on particle like trajectories, reproducing the 0th-order ray-optics picture. These results are discussed in terms of the li
{"title":"Overcoming the diffraction limit by multi-photon interference: a tutorial","authors":"J. Stöhr","doi":"10.1364/AOP.11.000215","DOIUrl":"https://doi.org/10.1364/AOP.11.000215","url":null,"abstract":"The nature of light, extending from the optical to the x-ray regime, is reviewed from a diffraction point of view by comparing field-based statistical optics and photon-based quantum optics approaches. The topic is introduced by comparing historical diffraction concepts based on wave interference, Dirac’s notion of photon self-interference, Feynman’s interference of space–time photon probability amplitudes, and Glauber’s formulation of coherence functions based on photon detection. The concepts are elucidated by a review of how the semiclassical combination of the disparate photon and wave concepts have been used to describe light creation, diffraction, and detection. The origin of the fundamental diffraction limit is then discussed in both wave and photon pictures. By use of Feynman’s concept of probability amplitudes associated with independent photons, we show that quantum electrodynamics, the complete theory of light, reduces in lowest order to the conventional wave formalism of diffraction. As an introduction to multi-photon effects, we then review fundamental one- and two-photon experiments and detection schemes, in particular the seminal Hanbury Brown–Twiss experiment. The formal discourse of the paper starts with a treatment of first-order coherence theory. In first order, the statistical optics and quantum optics formulations of coherence are shown to be equivalent. This is elucidated by a discussion of Zernike’s powerful theorem of partial coherence propagation, a cornerstone of statistical optics, followed by its quantum derivation based on the interference of single-photon probability amplitudes. The treatment is then extended to second-order coherence theory, where the equivalence of wave and particle descriptions is shown to break down. This is illustrated by considering two photons whose space–time probability amplitudes are correlated through nonlinear birth processes, resulting in entanglement or cloning. In both cases, the two-photon diffraction patterns are shown to exhibit resolution below the conventional diffraction limit, defined by the one-photon diffraction patterns. The origin of the reduction is shown to arise from the interference of two-photon probability amplitudes. By comparing first- and second-order diffraction, it is shown that the conventional first-order concept of partial coherence with its limits of chaoticity and first-order coherence has the second-order analogue of partial entanglement, with its limits corresponding to two entangled photons (“entangled biphotons”) and two cloned photons (“cloned biphotons”), the latter being second-order coherent. The concept of cloned biphotons is extended to the case of n cloned photons, resulting in a 1/n reduction of the diffraction limit. In the limit of nth-order coherence, all photons within the nth-order collective state are shown to propagate on particle like trajectories, reproducing the 0th-order ray-optics picture. These results are discussed in terms of the li","PeriodicalId":48960,"journal":{"name":"Advances in Optics and Photonics","volume":" ","pages":""},"PeriodicalIF":27.1,"publicationDate":"2019-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41745974","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Quantum plasmonics: new opportunity in fundamental and applied photonics: publisher’s note","authors":"Da Xu, X. Xiong, Lin Wu, Xifeng Ren, C. Png, G. Guo, Q. Gong, Yun-Feng Xiao","doi":"10.1364/AOP.10.000939","DOIUrl":"https://doi.org/10.1364/AOP.10.000939","url":null,"abstract":"This publisher’s note corrects errors in the funding and references of Adv. Opt. Photon.10, 703 (2018)AOPAC71943-820610.1364/AOP.10.000703.","PeriodicalId":48960,"journal":{"name":"Advances in Optics and Photonics","volume":" ","pages":""},"PeriodicalIF":27.1,"publicationDate":"2018-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48199197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Terahertz (THz) science and technology have greatly progressed over the past two decades to a point where the THz region of the electromagnetic spectrum is now a mature research area with many fundamental and practical applications. Furthermore, THz imaging is positioned to play a key role in many industrial applications, as THz technology is steadily shifting from university-grade instrumentation to commercial systems. In this context, the objective of this review is to discuss recent advances in THz imaging with an emphasis on the modalities that could enable real-time high-resolution imaging. To this end, we first discuss several key imaging modalities developed over the years: THz transmission, reflection, and conductivity imaging; THz pulsed imaging; THz computed tomography; and THz near-field imaging. Then, we discuss several enabling technologies for real-time THz imaging within the time-domain spectroscopy paradigm: fast optical delay lines, photoconductive antenna arrays, and electro-optic sampling with cameras. Next, we discuss the advances in THz cameras, particularly THz thermal cameras and THz field-effect transistor cameras. Finally, we overview the most recent techniques that enable fast THz imaging with single-pixel detectors: mechanical beam-steering, compressive sensing, spectral encoding, and fast Fourier optics. We believe that this critical and comprehensive review of enabling hardware, instrumentation, algorithms, and potential applications in real-time high-resolution THz imaging can serve a diverse community of fundamental and applied scientists.
{"title":"Toward real-time terahertz imaging","authors":"H. Guerboukha, K. Nallappan, M. Skorobogatiy","doi":"10.1364/AOP.10.000843","DOIUrl":"https://doi.org/10.1364/AOP.10.000843","url":null,"abstract":"Terahertz (THz) science and technology have greatly progressed over the past two decades to a point where the THz region of the electromagnetic spectrum is now a mature research area with many fundamental and practical applications. Furthermore, THz imaging is positioned to play a key role in many industrial applications, as THz technology is steadily shifting from university-grade instrumentation to commercial systems. In this context, the objective of this review is to discuss recent advances in THz imaging with an emphasis on the modalities that could enable real-time high-resolution imaging. To this end, we first discuss several key imaging modalities developed over the years: THz transmission, reflection, and conductivity imaging; THz pulsed imaging; THz computed tomography; and THz near-field imaging. Then, we discuss several enabling technologies for real-time THz imaging within the time-domain spectroscopy paradigm: fast optical delay lines, photoconductive antenna arrays, and electro-optic sampling with cameras. Next, we discuss the advances in THz cameras, particularly THz thermal cameras and THz field-effect transistor cameras. Finally, we overview the most recent techniques that enable fast THz imaging with single-pixel detectors: mechanical beam-steering, compressive sensing, spectral encoding, and fast Fourier optics. We believe that this critical and comprehensive review of enabling hardware, instrumentation, algorithms, and potential applications in real-time high-resolution THz imaging can serve a diverse community of fundamental and applied scientists.","PeriodicalId":48960,"journal":{"name":"Advances in Optics and Photonics","volume":" ","pages":""},"PeriodicalIF":27.1,"publicationDate":"2018-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42465056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper presents a review of the subwavelength interference effects of light in structured surfaces. Starting from the anomalous interference in simple structures such as double nanoslits, thin films, and catenary apertures, the theories and applications of light–matter interaction in layered, periodic, and aperiodic subwavelength structures are discussed. Two basic platforms, i.e., Young’s double slits and the Fabry–Perot cavity, are used as prototypes for the investigation of the complex interference of surface waves. It is shown that these novel phenomena could dramatically reduce the characteristic lengths of functional devices and increase the resolution of optical imaging. By engineering the dispersion of surface waves, broadband responses beyond traditional limits in both temporal and spatial regimes have been demonstrated. As a final remark, the current challenges and future trends of subwavelength interference engineering are addressed.
{"title":"Subwavelength interference of light on structured surfaces","authors":"Xian-shu Luo, Dinping Tsai, M. Gu, M. Hong","doi":"10.1364/AOP.10.000757","DOIUrl":"https://doi.org/10.1364/AOP.10.000757","url":null,"abstract":"This paper presents a review of the subwavelength interference effects of light in structured surfaces. Starting from the anomalous interference in simple structures such as double nanoslits, thin films, and catenary apertures, the theories and applications of light–matter interaction in layered, periodic, and aperiodic subwavelength structures are discussed. Two basic platforms, i.e., Young’s double slits and the Fabry–Perot cavity, are used as prototypes for the investigation of the complex interference of surface waves. It is shown that these novel phenomena could dramatically reduce the characteristic lengths of functional devices and increase the resolution of optical imaging. By engineering the dispersion of surface waves, broadband responses beyond traditional limits in both temporal and spatial regimes have been demonstrated. As a final remark, the current challenges and future trends of subwavelength interference engineering are addressed.","PeriodicalId":48960,"journal":{"name":"Advances in Optics and Photonics","volume":" ","pages":""},"PeriodicalIF":27.1,"publicationDate":"2018-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49484938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}