The ability to collect unprecedented amounts of astronomical data has enabled the nomical data has enabled the stu scientific questions that were impractical to study in the pre-information era. This study uses large datasets collected by four different robotic telescopes to profile the large-scale distribution of the spin directions of spiral galaxies. These datasets cover the Northern and Southern hemispheres, in addition to data acquired from space by the Hubble Space Telescope. The data were annotated automatically by a fully symmetric algorithm, as well as manually through a long labor-intensive process, leading to a dataset of nearly 10 6 galaxies. The data show possible patterns of asymmetric distribution of the spin directions, and the patterns agree between the different telescopes. The profiles also agree when using automatic or manual annotation of the galaxies, showing very similar large-scale patterns. Combining all data from all telescopes allows the most comprehensive analysis of its kind to date in terms of both the number of galaxies and the footprint size. The results show a statistically significant profile that is consistent across all telescopes. The instruments used in this study are DECam, HST, SDSS, and Pan-STARRS. The paper also discusses possible sources of bias and analyzes the design of previous work that showed different results. Further research will be required to understand and validate these preliminary observations.
{"title":"Analysis of ∼106 Spiral Galaxies from Four Telescopes Shows Large-Scale Patterns of Asymmetry in Galaxy Spin Directions","authors":"L. Shamir","doi":"10.1155/2022/8462363","DOIUrl":"https://doi.org/10.1155/2022/8462363","url":null,"abstract":"The ability to collect unprecedented amounts of astronomical data has enabled the nomical data has enabled the stu scientific questions that were impractical to study in the pre-information era. This study uses large datasets collected by four different robotic telescopes to profile the large-scale distribution of the spin directions of spiral galaxies. These datasets cover the Northern and Southern hemispheres, in addition to data acquired from space by the Hubble Space Telescope. The data were annotated automatically by a fully symmetric algorithm, as well as manually through a long labor-intensive process, leading to a dataset of nearly \u0000 \u0000 \u0000 \u0000 10\u0000 \u0000 \u0000 6\u0000 \u0000 \u0000 \u0000 galaxies. The data show possible patterns of asymmetric distribution of the spin directions, and the patterns agree between the different telescopes. The profiles also agree when using automatic or manual annotation of the galaxies, showing very similar large-scale patterns. Combining all data from all telescopes allows the most comprehensive analysis of its kind to date in terms of both the number of galaxies and the footprint size. The results show a statistically significant profile that is consistent across all telescopes. The instruments used in this study are DECam, HST, SDSS, and Pan-STARRS. The paper also discusses possible sources of bias and analyzes the design of previous work that showed different results. Further research will be required to understand and validate these preliminary observations.","PeriodicalId":48962,"journal":{"name":"Advances in Astronomy","volume":" ","pages":""},"PeriodicalIF":1.4,"publicationDate":"2022-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46098161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this article, we consider kinematical considerations of a rigid body rotating around a given fixed point in a Newtonian force field exerted by an attractive center with a rotating couple about their principal axes of inertia. The kinematic equations and their well-known three elementary integrals of the problem are introduced. The existence properties of the algebraic integrals are considered. Besides, we search as a special case of the fourth algebraic integral for the problem of the rigid body’s motion around a fixed point under the action of a Newtonian force field with an orbiting couple. Lagrange’s case and Kovalevskaya’s one are obtained. The large parameter is used for satisfying the existing conditions of the algebraic integrals. The comparison between the obtained results and the previous ones is arising. The numerical solutions of the regulating system of motion are obtained utilizing the fourth-order Runge-Kutta method and are plotted in some figures to illustrate the positive impact of the imposed forces and torques on the behavior of the body at any time.
{"title":"Existential Properties of Algebraic Integrals of a Rigid Body","authors":"A. I. Ismail, W. Amer","doi":"10.1155/2022/9393658","DOIUrl":"https://doi.org/10.1155/2022/9393658","url":null,"abstract":"In this article, we consider kinematical considerations of a rigid body rotating around a given fixed point in a Newtonian force field exerted by an attractive center with a rotating couple about their principal axes of inertia. The kinematic equations and their well-known three elementary integrals of the problem are introduced. The existence properties of the algebraic integrals are considered. Besides, we search as a special case of the fourth algebraic integral for the problem of the rigid body’s motion around a fixed point under the action of a Newtonian force field with an orbiting couple. Lagrange’s case and Kovalevskaya’s one are obtained. The large parameter is used for satisfying the existing conditions of the algebraic integrals. The comparison between the obtained results and the previous ones is arising. The numerical solutions of the regulating system of motion are obtained utilizing the fourth-order Runge-Kutta method and are plotted in some figures to illustrate the positive impact of the imposed forces and torques on the behavior of the body at any time.","PeriodicalId":48962,"journal":{"name":"Advances in Astronomy","volume":" ","pages":""},"PeriodicalIF":1.4,"publicationDate":"2022-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45521233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Djachkova, I. Mitrofanov, S. Nikiforov, D. Lisov, M. Litvak, A. Sanin
Possible correlation is studied between Water Equivalent Hydrogen (WEH) in the Martian subsurface, as measured by the DAN (Dynamic Albedo of Neutrons) instrument along the Curiosity traverse, and the presence of hydrated minerals on the surface, as seen from the orbit by CRISM (Compact Reconnaissance Imaging Spectrometer for Mars) instrument onboard MRO (Mars Reconnaissance Orbiter). Cross-analysis of the subsurface WEH values from DAN passive measurements with the distribution of hydrated minerals over the surface of Gale crater according to Specialized Browse Product Mosaics is performed for the initial 20 km part of traverse. As a result, we found an increase up to 0.4 wt% of the mean WEH value for the surface areas with the spectral signatures of polyhydrated sulfates. The increase is shown to be higher with the more prominent spectral signature on the surface. Similar WEH increase for the two other types of hydrated minerals, such as monohydrated sulfates and phyllosilicates, was not found for the tested part of the traverse. Polyhydrated sulfates being a part of the sedimentary deposits composing the surface of Gale crater should have considerable thickness that is necessary for the subsurface neutron sensing by DAN measurements.
{"title":"Testing Correspondence between Areas with Hydrated Minerals, as Observed by CRISM/MRO, and Spots of Enhanced Subsurface Water Content, as Found by DAN along the Traverse of Curiosity","authors":"M. Djachkova, I. Mitrofanov, S. Nikiforov, D. Lisov, M. Litvak, A. Sanin","doi":"10.1155/2022/6672456","DOIUrl":"https://doi.org/10.1155/2022/6672456","url":null,"abstract":"Possible correlation is studied between Water Equivalent Hydrogen (WEH) in the Martian subsurface, as measured by the DAN (Dynamic Albedo of Neutrons) instrument along the Curiosity traverse, and the presence of hydrated minerals on the surface, as seen from the orbit by CRISM (Compact Reconnaissance Imaging Spectrometer for Mars) instrument onboard MRO (Mars Reconnaissance Orbiter). Cross-analysis of the subsurface WEH values from DAN passive measurements with the distribution of hydrated minerals over the surface of Gale crater according to Specialized Browse Product Mosaics is performed for the initial 20 km part of traverse. As a result, we found an increase up to 0.4 wt% of the mean WEH value for the surface areas with the spectral signatures of polyhydrated sulfates. The increase is shown to be higher with the more prominent spectral signature on the surface. Similar WEH increase for the two other types of hydrated minerals, such as monohydrated sulfates and phyllosilicates, was not found for the tested part of the traverse. Polyhydrated sulfates being a part of the sedimentary deposits composing the surface of Gale crater should have considerable thickness that is necessary for the subsurface neutron sensing by DAN measurements.","PeriodicalId":48962,"journal":{"name":"Advances in Astronomy","volume":"1 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43482937","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The restricted three body problem was outlined. The acceleration due to planetary magnetic field, in terms of space craft’s orbital elements, was analysed. The conditions for calculating the liberation points including the mutual gravitational attraction and the effect of Lorentz acceleration were derived for the case of circular planer restricted three bodies. The stability of the solution for the artificial Lorentz triangular liberation points was studied. Finally, numerical investigation for the case of Sun-Jupiter system was calculated as case study. The results show the ability of changing the position of the triangular liberation points by an order from 10−7 to 10−6 for the dimensionless x, y coordinates and distance r from Jupiter. This is equivalent to about hundreds of Kilometers which is considerable.
{"title":"Artificial Triangular Points by Lorentz Force in the Restricted Three-Body Problem","authors":"A. Mostafa, M. A. Yousef, M. El-Saftawy","doi":"10.1155/2022/4157792","DOIUrl":"https://doi.org/10.1155/2022/4157792","url":null,"abstract":"The restricted three body problem was outlined. The acceleration due to planetary magnetic field, in terms of space craft’s orbital elements, was analysed. The conditions for calculating the liberation points including the mutual gravitational attraction and the effect of Lorentz acceleration were derived for the case of circular planer restricted three bodies. The stability of the solution for the artificial Lorentz triangular liberation points was studied. Finally, numerical investigation for the case of Sun-Jupiter system was calculated as case study. The results show the ability of changing the position of the triangular liberation points by an order from 10−7 to 10−6 for the dimensionless x, y coordinates and distance r from Jupiter. This is equivalent to about hundreds of Kilometers which is considerable.","PeriodicalId":48962,"journal":{"name":"Advances in Astronomy","volume":" ","pages":""},"PeriodicalIF":1.4,"publicationDate":"2022-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44350508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Large sky survey telescopes have produced a tremendous amount of astronomical data, including spectra. Machine learning methods must be employed to automatically process the spectral data obtained by these telescopes. Classification of stellar spectra by applying deep learning is an important research direction for the automatic classification of high-dimensional celestial spectra. In this paper, a robust ensemble convolutional neural network (ECNN) was designed and applied to improve the classification accuracy of massive stellar spectra from the Sloan digital sky survey. We designed six classifiers which consist six different convolutional neural networks (CNN), respectively, to recognize the spectra in DR16. Then, according the cross-entropy testing error of the spectra at different signal-to-noise ratios, we integrate the results of different classifiers in an ensemble learning way to improve the effect of classification. The experimental result proved that our one-dimensional ECNN strategy could achieve 95.0% accuracy in the classification task of the stellar spectra, a level of accuracy that exceeds that of the classical principal component analysis and support vector machine model.
{"title":"Automated Stellar Spectra Classification with Ensemble Convolutional Neural Network","authors":"Zhuang Zhao, Jiyu Wei, Bin Jiang","doi":"10.1155/2022/4489359","DOIUrl":"https://doi.org/10.1155/2022/4489359","url":null,"abstract":"Large sky survey telescopes have produced a tremendous amount of astronomical data, including spectra. Machine learning methods must be employed to automatically process the spectral data obtained by these telescopes. Classification of stellar spectra by applying deep learning is an important research direction for the automatic classification of high-dimensional celestial spectra. In this paper, a robust ensemble convolutional neural network (ECNN) was designed and applied to improve the classification accuracy of massive stellar spectra from the Sloan digital sky survey. We designed six classifiers which consist six different convolutional neural networks (CNN), respectively, to recognize the spectra in DR16. Then, according the cross-entropy testing error of the spectra at different signal-to-noise ratios, we integrate the results of different classifiers in an ensemble learning way to improve the effect of classification. The experimental result proved that our one-dimensional ECNN strategy could achieve 95.0% accuracy in the classification task of the stellar spectra, a level of accuracy that exceeds that of the classical principal component analysis and support vector machine model.","PeriodicalId":48962,"journal":{"name":"Advances in Astronomy","volume":" ","pages":""},"PeriodicalIF":1.4,"publicationDate":"2022-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47891325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. Martín‐Torres, M. Zorzano‐Mier, E. Nyberg, A. Vakkada-Ramachandran, A. Bhardwaj
Tribocorrosion is a degradation phenomenon of material surfaces subjected to the combined action of mechanical loading and corrosion attack caused by the environment. Although corrosive chemical species such as materials like chloride atoms, chlorides, and perchlorates have been detected on the Martian surface, there is a lack of studies of its impact on materials for landed spacecraft and structures that will support surface operations on Mars. Here, we present a series of experiments on the stainless-steel material of the ExoMars 2020 Rosalind Franklin rover wheels. We show how tribocorrosion induced by brines accelerates wear on the materials of the wheels. Our results do not compromise the nominal ExoMars mission but have implications for future long-term surface operations in support of future human exploration or extended robotic missions on Mars.
{"title":"Brine-Induced Tribocorrosion Accelerates Wear on Stainless Steel: Implications for Mars Exploration","authors":"J. Martín‐Torres, M. Zorzano‐Mier, E. Nyberg, A. Vakkada-Ramachandran, A. Bhardwaj","doi":"10.1155/2021/6441233","DOIUrl":"https://doi.org/10.1155/2021/6441233","url":null,"abstract":"Tribocorrosion is a degradation phenomenon of material surfaces subjected to the combined action of mechanical loading and corrosion attack caused by the environment. Although corrosive chemical species such as materials like chloride atoms, chlorides, and perchlorates have been detected on the Martian surface, there is a lack of studies of its impact on materials for landed spacecraft and structures that will support surface operations on Mars. Here, we present a series of experiments on the stainless-steel material of the ExoMars 2020 Rosalind Franklin rover wheels. We show how tribocorrosion induced by brines accelerates wear on the materials of the wheels. Our results do not compromise the nominal ExoMars mission but have implications for future long-term surface operations in support of future human exploration or extended robotic missions on Mars.","PeriodicalId":48962,"journal":{"name":"Advances in Astronomy","volume":" ","pages":""},"PeriodicalIF":1.4,"publicationDate":"2021-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49128453","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aims. The complex dynamics of bodies, originating from the interplanetary matter and passing through Earth’s atmosphere, defines their further position, velocity, and final location on Earth’s surface in the form of meteorites. One of the important factors that affect the movement of a body in the atmosphere is its shape and orientation. Our goal is to model the interaction of real shape meteoroids with Earth’s atmosphere and compare the results with the standard spherical body approach. Methods. In the simulation, we use 3D models of fragments of the Košice meteorite with different sizes and shapes. Using a 3D model of fragments, we consider the real shape of the body to define its resistance properties during atmospheric transition more specifically. The simulation is performed using virtual wind tunnel in the MicroCFD (Computational Fluid Dynamics) software to obtain more realistic drag coefficients and using the µ(m)-Trajectory software to model the particle trajectory in the atmosphere including the wind profile. The final outputs from these programs are the drag coefficient as a function of the altitude and the particle orientation. Using these parameters we get the more realistic body trajectory and the impact area coordinates. Comparison of the results for real and spherical model meteorite impact location is discussed. Results. Simulation showed significant differences in trajectory and the impact area for the different real body orientations compared to the spherically symmetric body. Also, an important result is a difference in the impact area of the real body with a specific orientation without rotation and the body with considered rotation. The significant difference between the modeled impact of a real shape body and its real place of finding compared to a spherically symmetric body indicates the importance of the method used.
{"title":"Modeling of the Dark Phase of Flight and the Impact Area for Meteorites of Real Shapes","authors":"Karol Havrila, J. Tóth, L. Kornoš","doi":"10.1155/2021/5530540","DOIUrl":"https://doi.org/10.1155/2021/5530540","url":null,"abstract":"Aims. The complex dynamics of bodies, originating from the interplanetary matter and passing through Earth’s atmosphere, defines their further position, velocity, and final location on Earth’s surface in the form of meteorites. One of the important factors that affect the movement of a body in the atmosphere is its shape and orientation. Our goal is to model the interaction of real shape meteoroids with Earth’s atmosphere and compare the results with the standard spherical body approach. Methods. In the simulation, we use 3D models of fragments of the Košice meteorite with different sizes and shapes. Using a 3D model of fragments, we consider the real shape of the body to define its resistance properties during atmospheric transition more specifically. The simulation is performed using virtual wind tunnel in the MicroCFD (Computational Fluid Dynamics) software to obtain more realistic drag coefficients and using the µ(m)-Trajectory software to model the particle trajectory in the atmosphere including the wind profile. The final outputs from these programs are the drag coefficient as a function of the altitude and the particle orientation. Using these parameters we get the more realistic body trajectory and the impact area coordinates. Comparison of the results for real and spherical model meteorite impact location is discussed. Results. Simulation showed significant differences in trajectory and the impact area for the different real body orientations compared to the spherically symmetric body. Also, an important result is a difference in the impact area of the real body with a specific orientation without rotation and the body with considered rotation. The significant difference between the modeled impact of a real shape body and its real place of finding compared to a spherically symmetric body indicates the importance of the method used.","PeriodicalId":48962,"journal":{"name":"Advances in Astronomy","volume":" ","pages":""},"PeriodicalIF":1.4,"publicationDate":"2021-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42237017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ernesto Lee, F. Rustam, Wajdi Aljedaani, Abid Ishaq, Vaibhav Rupapara, I. Ashraf
Pulsar stars, usually neutron stars, are spherical and compact objects containing a large quantity of mass. Each pulsar star possesses a magnetic field and emits a slightly different pattern of electromagnetic radiation which is used to identify the potential candidates for a real pulsar star. Pulsar stars are considered an important cosmic phenomenon, and scientists use them to study nuclear physics, gravitational waves, and collisions between black holes. Defining the process of automatic detection of pulsar stars can accelerate the study of pulsar stars by scientists. This study contrives an accurate and efficient approach for true pulsar detection using supervised machine learning. For experiments, the high time-resolution (HTRU2) dataset is used in this study. To resolve the data imbalance problem and overcome model overfitting, a hybrid resampling approach is presented in this study. Experiments are performed with imbalanced and balanced datasets using well-known machine learning algorithms. Results demonstrate that the proposed hybrid resampling approach proves highly influential to avoid model overfitting and increase the prediction accuracy. With the proposed hybrid resampling approach, the extra tree classifier achieves a 0.993 accuracy score for true pulsar star prediction.
{"title":"Predicting Pulsars from Imbalanced Dataset with Hybrid Resampling Approach","authors":"Ernesto Lee, F. Rustam, Wajdi Aljedaani, Abid Ishaq, Vaibhav Rupapara, I. Ashraf","doi":"10.1155/2021/4916494","DOIUrl":"https://doi.org/10.1155/2021/4916494","url":null,"abstract":"Pulsar stars, usually neutron stars, are spherical and compact objects containing a large quantity of mass. Each pulsar star possesses a magnetic field and emits a slightly different pattern of electromagnetic radiation which is used to identify the potential candidates for a real pulsar star. Pulsar stars are considered an important cosmic phenomenon, and scientists use them to study nuclear physics, gravitational waves, and collisions between black holes. Defining the process of automatic detection of pulsar stars can accelerate the study of pulsar stars by scientists. This study contrives an accurate and efficient approach for true pulsar detection using supervised machine learning. For experiments, the high time-resolution (HTRU2) dataset is used in this study. To resolve the data imbalance problem and overcome model overfitting, a hybrid resampling approach is presented in this study. Experiments are performed with imbalanced and balanced datasets using well-known machine learning algorithms. Results demonstrate that the proposed hybrid resampling approach proves highly influential to avoid model overfitting and increase the prediction accuracy. With the proposed hybrid resampling approach, the extra tree classifier achieves a 0.993 accuracy score for true pulsar star prediction.","PeriodicalId":48962,"journal":{"name":"Advances in Astronomy","volume":" ","pages":""},"PeriodicalIF":1.4,"publicationDate":"2021-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41907955","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Formisano, M. D. De Sanctis, C. Federico, G. Magni, F. Altieri, E. Ammannito, S. De Angelis, M. Ferrari, A. Frigeri
Numerical simulations are required to thermophysically characterize Oxia Planum, the landing site of the mission ExoMars 2022. A drilling system is installed on the ExoMars rover, and it will be able to analyze down to 2 meters in the subsurface of Mars. The spectrometer Ma_MISS (Mars Multispectral Imager for Subsurface, Coradini and Da Pieve, 2001) will investigate the lateral wall of the borehole generated by the drill, providing hyperspectral images. It is not fully clear if water ice can be found in the subsurface at Oxia Planum. However, Ma_MISS has the capability to characterize and map the presence of possible ices, in particular water ice. We performed simulations of the subsurface temperatures by varying the thermal inertia, and we quantified the effects of self-heating. Moreover, we quantified the heat released by the drilling operations, by exploring different frictional coefficients and angular drill velocities, in order to evaluate the lifetime of possible water ice.
{"title":"Subsurface Thermal Modeling of Oxia Planum, Landing Site of ExoMars 2022","authors":"M. Formisano, M. D. De Sanctis, C. Federico, G. Magni, F. Altieri, E. Ammannito, S. De Angelis, M. Ferrari, A. Frigeri","doi":"10.1155/2021/9924571","DOIUrl":"https://doi.org/10.1155/2021/9924571","url":null,"abstract":"Numerical simulations are required to thermophysically characterize Oxia Planum, the landing site of the mission ExoMars 2022. A drilling system is installed on the ExoMars rover, and it will be able to analyze down to 2 meters in the subsurface of Mars. The spectrometer Ma_MISS (Mars Multispectral Imager for Subsurface, Coradini and Da Pieve, 2001) will investigate the lateral wall of the borehole generated by the drill, providing hyperspectral images. It is not fully clear if water ice can be found in the subsurface at Oxia Planum. However, Ma_MISS has the capability to characterize and map the presence of possible ices, in particular water ice. We performed simulations of the subsurface temperatures by varying the thermal inertia, and we quantified the effects of self-heating. Moreover, we quantified the heat released by the drilling operations, by exploring different frictional coefficients and angular drill velocities, in order to evaluate the lifetime of possible water ice.","PeriodicalId":48962,"journal":{"name":"Advances in Astronomy","volume":" ","pages":""},"PeriodicalIF":1.4,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41824757","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Ozguc, A. Kilçik, V. Sarp, H. Yeşilyaprak, R. Pektaş
In this study, we used the flare index (FI) data taken from Kandilli Observatory for the period of 2009–2020. The data sets are analyzed in three categories as Northern Hemisphere, Southern Hemisphere, and total FI data sets. Total FI data set is obtained from the sum of Northern and Southern Hemispheric values. In this study, the periodic variations of abovementioned three categories FI data sets were investigated by using the MTM and Morlet wavelet analysis methods. The wavelet coherence (XWT) and cross wavelet (WTC) analysis methods were also performed between these data sets. As a result of our analysis, the following results were found: (1) long- and short-term periodicities ( 2048 ± 512 day and periodicities smaller than 62 days) exist in all data sets without any exception at least with 95 % confidence level; (2) all periodic variations were detected maximum during the solar cycle, while during the minima, no meaningful period is detected; (3) some periodicities have data preference that about 150 days Rieger period appears only in the whole data set and 682-, 204-, and 76.6-day periods appear only in the Northern Hemisphere data sets; (4) During the Solar Cycle 24, more flare activity is seen at the Southern Hemisphere, so the whole disk data periodicities are dominated by this hemisphere; (5) in general, there is a phase mixing between Northern and Southern Hemisphere FI data, except about 1024-day periodicity, and the best phase coherency is obtained between the Southern Hemisphere and total flare index data sets; (6) in case of the Northern and Southern Hemisphere FI data sets, there is no significant correlation between two continuous wavelet transforms, but the strongest correlation is obtained for the total FI and Southern Hemisphere data sets.
{"title":"Periodic Variation of Solar Flare Index for the Last Solar Cycle (Cycle 24)","authors":"A. Ozguc, A. Kilçik, V. Sarp, H. Yeşilyaprak, R. Pektaş","doi":"10.1155/2021/5391091","DOIUrl":"https://doi.org/10.1155/2021/5391091","url":null,"abstract":"In this study, we used the flare index (FI) data taken from Kandilli Observatory for the period of 2009–2020. The data sets are analyzed in three categories as Northern Hemisphere, Southern Hemisphere, and total FI data sets. Total FI data set is obtained from the sum of Northern and Southern Hemispheric values. In this study, the periodic variations of abovementioned three categories FI data sets were investigated by using the MTM and Morlet wavelet analysis methods. The wavelet coherence (XWT) and cross wavelet (WTC) analysis methods were also performed between these data sets. As a result of our analysis, the following results were found: (1) long- and short-term periodicities (\u0000 \u0000 2048\u0000 ±\u0000 512\u0000 \u0000 day and periodicities smaller than 62 days) exist in all data sets without any exception at least with \u0000 \u0000 95\u0000 %\u0000 \u0000 confidence level; (2) all periodic variations were detected maximum during the solar cycle, while during the minima, no meaningful period is detected; (3) some periodicities have data preference that about 150 days Rieger period appears only in the whole data set and 682-, 204-, and 76.6-day periods appear only in the Northern Hemisphere data sets; (4) During the Solar Cycle 24, more flare activity is seen at the Southern Hemisphere, so the whole disk data periodicities are dominated by this hemisphere; (5) in general, there is a phase mixing between Northern and Southern Hemisphere FI data, except about 1024-day periodicity, and the best phase coherency is obtained between the Southern Hemisphere and total flare index data sets; (6) in case of the Northern and Southern Hemisphere FI data sets, there is no significant correlation between two continuous wavelet transforms, but the strongest correlation is obtained for the total FI and Southern Hemisphere data sets.","PeriodicalId":48962,"journal":{"name":"Advances in Astronomy","volume":" ","pages":""},"PeriodicalIF":1.4,"publicationDate":"2021-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41397312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}