首页 > 最新文献

Advances in Astronomy最新文献

英文 中文
Stability Analysis of the Rhomboidal Restricted Six-Body Problem 菱形约束六体问题的稳定性分析
IF 1.4 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS Pub Date : 2021-07-01 DOI: 10.1155/2021/5575826
Muhammad Abubakar Siddique, A. Kashif, M. Shoaib, S. Hussain
<jats:p>We discuss the restricted rhomboidal six-body problem (RR6BP), which has four positive masses at the vertices of the rhombus, and the fifth mass is at the intersection of the two diagonals. These masses always move in rhomboidal CC with diagonals <jats:inline-formula> <math xmlns="http://www.w3.org/1998/Math/MathML" id="M1"> <mn>2</mn> <mi>a</mi> </math> </jats:inline-formula> and <jats:inline-formula> <math xmlns="http://www.w3.org/1998/Math/MathML" id="M2"> <mn>2</mn> <mi>b</mi> </math> </jats:inline-formula>. The sixth body, having a very small mass, does not influence the motion of the five masses, also called primaries. The masses of the primaries are <jats:inline-formula> <math xmlns="http://www.w3.org/1998/Math/MathML" id="M3"> <msub> <mrow> <mi>m</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mrow> <mi>m</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msub> <mo>=</mo> <msub> <mrow> <mi>m</mi> </mrow> <mrow> <mn>0</mn> </mrow> </msub> <mo>=</mo> <mi>m</mi> </math> </jats:inline-formula> and <jats:inline-formula> <math xmlns="http://www.w3.org/1998/Math/MathML" id="M4"> <msub> <mrow> <mi>m</mi> </mrow> <mrow> <mn>3</mn> </mrow> </msub> <mo>=</mo> <msub> <mrow> <mi>m</mi> </mrow> <mrow> <mn>4</mn> </mrow> </msub> <mo>=</mo> <mover accent="true"> <mi>m</mi> <mo>˜</mo> </mover> </math> </jats:i
我们讨论了限制菱形六体问题(RR6BP),该问题在菱形的顶点有四个正质量,第五个质量在两条对角线的交点。这些质量体总是在具有对角线2a和2b的菱形CC中移动。质量很小的第六个物体不影响五个质量的运动,也被称为初级。初级的质量是m1=m2=m 0=m和m 3=m4=m~。质量m和m~被写成参数a和b,使得它们总是形成菱形中心构型。讨论了正质量定值情况下零速度曲线的演化。使用运动的第一积分,我们导出了测试粒子m5可能运动的区域,并确定了雅可比常数的值C表示这些区域断开的不同能量间隔。利用半解析技术,我们证明了轴上和轴外平衡解的存在性和唯一性。我们证明了对于b∈1/3,1.1394282249562009,总存在12个平衡点。我们还证明了所有12个平衡点都是不稳定的。
{"title":"Stability Analysis of the Rhomboidal Restricted Six-Body Problem","authors":"Muhammad Abubakar Siddique, A. Kashif, M. Shoaib, S. Hussain","doi":"10.1155/2021/5575826","DOIUrl":"https://doi.org/10.1155/2021/5575826","url":null,"abstract":"&lt;jats:p&gt;We discuss the restricted rhomboidal six-body problem (RR6BP), which has four positive masses at the vertices of the rhombus, and the fifth mass is at the intersection of the two diagonals. These masses always move in rhomboidal CC with diagonals &lt;jats:inline-formula&gt;\u0000 &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M1\"&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;mi&gt;a&lt;/mi&gt;\u0000 &lt;/math&gt;\u0000 &lt;/jats:inline-formula&gt; and &lt;jats:inline-formula&gt;\u0000 &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M2\"&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;mi&gt;b&lt;/mi&gt;\u0000 &lt;/math&gt;\u0000 &lt;/jats:inline-formula&gt;. The sixth body, having a very small mass, does not influence the motion of the five masses, also called primaries. The masses of the primaries are &lt;jats:inline-formula&gt;\u0000 &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M3\"&gt;\u0000 &lt;msub&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;m&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mo&gt;=&lt;/mo&gt;\u0000 &lt;msub&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;m&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mo&gt;=&lt;/mo&gt;\u0000 &lt;msub&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;m&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mn&gt;0&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mo&gt;=&lt;/mo&gt;\u0000 &lt;mi&gt;m&lt;/mi&gt;\u0000 &lt;/math&gt;\u0000 &lt;/jats:inline-formula&gt; and &lt;jats:inline-formula&gt;\u0000 &lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M4\"&gt;\u0000 &lt;msub&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;m&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mn&gt;3&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mo&gt;=&lt;/mo&gt;\u0000 &lt;msub&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;m&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mn&gt;4&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mo&gt;=&lt;/mo&gt;\u0000 &lt;mover accent=\"true\"&gt;\u0000 &lt;mi&gt;m&lt;/mi&gt;\u0000 &lt;mo&gt;˜&lt;/mo&gt;\u0000 &lt;/mover&gt;\u0000 &lt;/math&gt;\u0000 &lt;/jats:i","PeriodicalId":48962,"journal":{"name":"Advances in Astronomy","volume":" ","pages":""},"PeriodicalIF":1.4,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46788899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
On the Mass Distribution of Fragments of an Asteroid Disrupted in the Earth’s Atmosphere 关于在地球大气层中被破坏的小行星碎片的质量分布
IF 1.4 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS Pub Date : 2021-06-24 DOI: 10.1155/2021/9914717
I. Brykina, L. Egorova
To model the interaction with the atmosphere of fragments of a disrupted asteroid, which move independently of each other, it is necessary to know their mass distribution. In this regard, an analogy is drawn with fragmentation in high-speed impact experiments performed to simulate the disruption of asteroids at their collisions in outer space. Based on the results of impact experiments and assuming a power law for the mass distribution in a differential form, we obtained the cumulative number of fragments as a function of the fragment mass m normalized to the total mass of fragments, the mass fraction of the largest fragment(s), the number of the largest fragments, and the power index. The formula for the cumulative number of fragments of a disrupted body is used to describe the results of impact experiments for different fragmentation types. The proposed fragment mass distribution is also tested by comparison with the mass distributions of recovered meteorites in the cases of Mbale, Bassikounou, Almahata Sitta, Košice, and Chelyabinsk meteorite falls.
为了模拟一颗相互独立运动的破碎小行星的碎片与大气的相互作用,有必要知道它们的质量分布。在这方面,可以类比为模拟小行星在外层空间碰撞时的破碎而进行的高速撞击实验。基于冲击实验结果,假设质量分布的幂律为微分形式,得到了碎片质量m归一化为碎片总质量、最大碎片质量分数(s)、最大碎片数量和幂指数的累积碎片数函数。用破碎体累积破碎数公式描述了不同破碎类型的冲击实验结果。通过与Mbale, Bassikounou, Almahata Sitta, Košice和车里雅宾斯克陨石坠落的回收陨石的质量分布进行比较,也验证了所提出的碎片质量分布。
{"title":"On the Mass Distribution of Fragments of an Asteroid Disrupted in the Earth’s Atmosphere","authors":"I. Brykina, L. Egorova","doi":"10.1155/2021/9914717","DOIUrl":"https://doi.org/10.1155/2021/9914717","url":null,"abstract":"To model the interaction with the atmosphere of fragments of a disrupted asteroid, which move independently of each other, it is necessary to know their mass distribution. In this regard, an analogy is drawn with fragmentation in high-speed impact experiments performed to simulate the disruption of asteroids at their collisions in outer space. Based on the results of impact experiments and assuming a power law for the mass distribution in a differential form, we obtained the cumulative number of fragments as a function of the fragment mass m normalized to the total mass of fragments, the mass fraction of the largest fragment(s), the number of the largest fragments, and the power index. The formula for the cumulative number of fragments of a disrupted body is used to describe the results of impact experiments for different fragmentation types. The proposed fragment mass distribution is also tested by comparison with the mass distributions of recovered meteorites in the cases of Mbale, Bassikounou, Almahata Sitta, Košice, and Chelyabinsk meteorite falls.","PeriodicalId":48962,"journal":{"name":"Advances in Astronomy","volume":" ","pages":""},"PeriodicalIF":1.4,"publicationDate":"2021-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43174700","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
An Analytical Computational Algorithm for Solving a System of Multipantograph DDEs Using Laplace Variational Iteration Algorithm 用拉普拉斯变分迭代算法求解多摄动DDE系统的解析计算算法
IF 1.4 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS Pub Date : 2021-06-12 DOI: 10.1155/2021/7741166
M. Bahgat, A. Sebaq
In this research, an approximation symbolic algorithm is suggested to obtain an approximate solution of multipantograph system of type delay differential equations (DDEs) using a combination of Laplace transform and variational iteration algorithm (VIA). The corresponding convergence results are acquired, and an efficient algorithm for choosing a feasible Lagrange multiplier is designed in the solving process. The application of the Laplace variational iteration algorithm (LVIA) for the problems is clarified. With graphics and tables, LVIA approximates to a high degree of accuracy with a few numbers of iterates. Also, computational results of the considered examples imply that LVIA is accurate, simple, and appropriate for solving a system of multipantograph delay differential equations (SMPDDEs).
本文将拉普拉斯变换和变分迭代算法相结合,提出了一种近似符号算法,以获得型延迟微分方程组(DDE)的近似解。获得了相应的收敛结果,并在求解过程中设计了一种选择可行拉格朗日乘子的有效算法。阐明了拉普拉斯变分迭代算法(LVIA)在这些问题中的应用。通过图形和表格,LVIA通过少量迭代达到了较高的精度。此外,所考虑的例子的计算结果表明,LVIA是准确、简单的,并且适用于求解多路径延迟微分方程组(SMPDDE)。
{"title":"An Analytical Computational Algorithm for Solving a System of Multipantograph DDEs Using Laplace Variational Iteration Algorithm","authors":"M. Bahgat, A. Sebaq","doi":"10.1155/2021/7741166","DOIUrl":"https://doi.org/10.1155/2021/7741166","url":null,"abstract":"In this research, an approximation symbolic algorithm is suggested to obtain an approximate solution of multipantograph system of type delay differential equations (DDEs) using a combination of Laplace transform and variational iteration algorithm (VIA). The corresponding convergence results are acquired, and an efficient algorithm for choosing a feasible Lagrange multiplier is designed in the solving process. The application of the Laplace variational iteration algorithm (LVIA) for the problems is clarified. With graphics and tables, LVIA approximates to a high degree of accuracy with a few numbers of iterates. Also, computational results of the considered examples imply that LVIA is accurate, simple, and appropriate for solving a system of multipantograph delay differential equations (SMPDDEs).","PeriodicalId":48962,"journal":{"name":"Advances in Astronomy","volume":"2021 1","pages":"1-16"},"PeriodicalIF":1.4,"publicationDate":"2021-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44722623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Small Mars Mission Architecture Study 小型火星任务架构研究
IF 1.4 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS Pub Date : 2021-06-10 DOI: 10.1155/2021/5516892
C. Parfitt, A. McSweeney, L. De Backer, C. Orgel, A. Ball, Michael Khan, S. Vijendran
While the vast majority of ESA’s funding for Mars exploration in the 2020s is planned to be invested in ExoMars and Mars Sample Return, there is an interest to assess the possibility of implementing a small mission to Mars in parallel with, or soon after, the completion of the MSR programme. A study was undertaken in the Concurrent Design Facility at ESA ESTEC to assess low-cost mission architectures for small satellite missions to Mars. Given strict programmatic constraints, the focus of the study was on a low-cost (<250MEuro Cost at Completion), short mission development schedule with a cost-driven spacecraft design and mission architecture. The study concluded that small, low-cost Mars missions are technically feasible for launch within the decade.
虽然欧空局在2020年代火星探测的绝大多数资金计划投资于ExoMars和火星样本返回,但有兴趣评估在MSR计划完成的同时或之后不久实施小型火星任务的可能性。欧空局ESTEC的并行设计设施进行了一项研究,以评估小型火星卫星任务的低成本任务架构。考虑到严格的方案限制,研究的重点是低成本(完工成本<250MEuro)、短任务开发时间表以及成本驱动的航天器设计和任务架构。该研究得出结论,小型、低成本的火星任务在十年内发射在技术上是可行的。
{"title":"Small Mars Mission Architecture Study","authors":"C. Parfitt, A. McSweeney, L. De Backer, C. Orgel, A. Ball, Michael Khan, S. Vijendran","doi":"10.1155/2021/5516892","DOIUrl":"https://doi.org/10.1155/2021/5516892","url":null,"abstract":"While the vast majority of ESA’s funding for Mars exploration in the 2020s is planned to be invested in ExoMars and Mars Sample Return, there is an interest to assess the possibility of implementing a small mission to Mars in parallel with, or soon after, the completion of the MSR programme. A study was undertaken in the Concurrent Design Facility at ESA ESTEC to assess low-cost mission architectures for small satellite missions to Mars. Given strict programmatic constraints, the focus of the study was on a low-cost (<250MEuro Cost at Completion), short mission development schedule with a cost-driven spacecraft design and mission architecture. The study concluded that small, low-cost Mars missions are technically feasible for launch within the decade.","PeriodicalId":48962,"journal":{"name":"Advances in Astronomy","volume":" ","pages":"1-12"},"PeriodicalIF":1.4,"publicationDate":"2021-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48700487","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spectral Feature Extraction Using Partial and General Method 基于部分和一般方法的光谱特征提取
IF 1.4 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS Pub Date : 2021-06-08 DOI: 10.1155/2021/6748261
Bin Jiang, Xi Fang, Yang Liu, Xingzhu Wang, Jie Liu
With the rapid growth in astronomical spectra produced by large sky survey telescopes, traditional manual classification processes can no longer fulfill the requirements of precision and efficiency of spectral classification. There is an urgent need to employ machine learning approaches to conduct automated spectral classification tasks. Feature extraction is a critical step which has a great impact on any classification result. In this paper, a novel gradient-based method together with principal component analysis is proposed for the extraction of partial features of stellar spectra, that is, a feature vector indicating obvious local changes in data, which corresponds to the element line positions in the spectra. Furthermore, a general feature vector is utilized as an additional characteristic centering on the overall tendency of spectra, which can indicate stellar effective temperature. The two feature vectors and raw data are input into three neural networks, respectively, for training and each network votes for a predicted category of spectra. By selecting the class having the maximum votes, different types of spectra can be classified with high accuracy. The experimental results prove that a better performance can be achieved using the partial and general methods in this paper. The method could also be applied to other similar one-dimensional spectra, and the concepts proposed could ultimately expand the scope of machine learning application in astronomical spectral processing.
随着大型巡天望远镜产生的天文光谱量的快速增长,传统的人工分类方法已经不能满足光谱分类精度和效率的要求。目前迫切需要采用机器学习方法来进行自动光谱分类任务。特征提取是对分类结果影响很大的关键步骤。本文提出了一种基于梯度与主成分分析相结合的恒星光谱部分特征提取方法,即数据局部变化明显的特征向量,该特征向量对应光谱中元素线的位置。此外,以光谱的总体趋势为中心,利用一般特征向量作为附加特征,可以指示恒星的有效温度。将两个特征向量和原始数据分别输入到三个神经网络中进行训练,每个神经网络对预测的光谱类别进行投票。通过选择得票最多的类别,可以对不同类型的光谱进行高精度分类。实验结果表明,采用局部方法和一般方法可以获得较好的性能。该方法也可以应用于其他类似的一维光谱,所提出的概念最终可以扩大机器学习在天文光谱处理中的应用范围。
{"title":"Spectral Feature Extraction Using Partial and General Method","authors":"Bin Jiang, Xi Fang, Yang Liu, Xingzhu Wang, Jie Liu","doi":"10.1155/2021/6748261","DOIUrl":"https://doi.org/10.1155/2021/6748261","url":null,"abstract":"With the rapid growth in astronomical spectra produced by large sky survey telescopes, traditional manual classification processes can no longer fulfill the requirements of precision and efficiency of spectral classification. There is an urgent need to employ machine learning approaches to conduct automated spectral classification tasks. Feature extraction is a critical step which has a great impact on any classification result. In this paper, a novel gradient-based method together with principal component analysis is proposed for the extraction of partial features of stellar spectra, that is, a feature vector indicating obvious local changes in data, which corresponds to the element line positions in the spectra. Furthermore, a general feature vector is utilized as an additional characteristic centering on the overall tendency of spectra, which can indicate stellar effective temperature. The two feature vectors and raw data are input into three neural networks, respectively, for training and each network votes for a predicted category of spectra. By selecting the class having the maximum votes, different types of spectra can be classified with high accuracy. The experimental results prove that a better performance can be achieved using the partial and general methods in this paper. The method could also be applied to other similar one-dimensional spectra, and the concepts proposed could ultimately expand the scope of machine learning application in astronomical spectral processing.","PeriodicalId":48962,"journal":{"name":"Advances in Astronomy","volume":" ","pages":""},"PeriodicalIF":1.4,"publicationDate":"2021-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43682015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Quantized Hill’s Dynamical System 一个量子化的Hill动力系统
IF 1.4 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS Pub Date : 2021-06-07 DOI: 10.1155/2021/9963761
Elbaz I. Abouelmagd, V. Kalantonis, A. Perdiou
In this paper, we present a modified version of Hill’s dynamical system that is called the quantized Hill’s three-body problem in the sense that the equations of motion for the classical Hill’s problem are now derived under the effects of quantum corrections. To do so, the position variables and the parameters that correspond to the quantum corrections of the respective quantized three-body problem are scaled appropriately, and then by taking the limit when the parameter of mass ratio tends to zero, we obtain the relevant equations of motion for the spatial quantized Hill’s problem. Furthermore, the Hamiltonian formula and related equations of motion are also derived.
在本文中,我们提出了Hill动力系统的一个修改版本,称为量子化Hill三体问题,因为经典Hill问题的运动方程现在是在量子校正的作用下导出的。为此,适当缩放对应于相应量子化三体问题的量子校正的位置变量和参数,然后通过在质量比参数趋于零时取极限,我们获得了空间量子化Hill问题的相关运动方程。此外,还导出了哈密顿公式和相关的运动方程。
{"title":"A Quantized Hill’s Dynamical System","authors":"Elbaz I. Abouelmagd, V. Kalantonis, A. Perdiou","doi":"10.1155/2021/9963761","DOIUrl":"https://doi.org/10.1155/2021/9963761","url":null,"abstract":"In this paper, we present a modified version of Hill’s dynamical system that is called the quantized Hill’s three-body problem in the sense that the equations of motion for the classical Hill’s problem are now derived under the effects of quantum corrections. To do so, the position variables and the parameters that correspond to the quantum corrections of the respective quantized three-body problem are scaled appropriately, and then by taking the limit when the parameter of mass ratio tends to zero, we obtain the relevant equations of motion for the spatial quantized Hill’s problem. Furthermore, the Hamiltonian formula and related equations of motion are also derived.","PeriodicalId":48962,"journal":{"name":"Advances in Astronomy","volume":"2021 1","pages":"1-7"},"PeriodicalIF":1.4,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49439789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Research on Mount Wilson Magnetic Classification Based on Deep Learning 基于深度学习的Mount Wilson磁分类研究
IF 1.4 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS Pub Date : 2021-06-05 DOI: 10.1155/2021/5529383
Yuan He, Yunfei Yang, X. Bai, Song Feng, Bo Liang, W. Dai
The Mount Wilson magnetic classification of sunspot groups is thought to be meaningful to forecast flares’ eruptions. In this paper, we adopt a deep learning method, CornerNet-Saccade, to perform the Mount Wilson magnetic classification of sunspot groups. It includes three stages, generating object locations, detecting objects, and merging detections. The key technologies consist of the backbone as Hourglass-54, the attention mechanism, and the key points’ mechanism including the top-left corners and the bottom-right corners of the object by corner pooling layers. These technologies improve the efficiency of detecting the objects without sacrificing accuracy. A dataset is built by a total of 2486 composited images which are composited with the continuum images and the corresponding magnetograms from HMI and MDI. After training the network, the sunspot groups in a composited solar full image are detected and classified in 3 seconds on average. The test results show that this method has a good performance, with the accuracy, precision, recall, and mAP as 0.94, 0.93, 0.94, and 0.90, respectively. Moreover, the flare productivities of different types of sunspot groups from 2011 to 2020 are calculated. As I tot   ≥  1, the flare productivities of α , β , β γ , β δ , and β γ δ sunspot groups are 0.14, 0.28, 0.61, 0.71, and 0.87, respectively. As I tot   ≥  10, the flare productivities are 0.02, 0.07, 0.27, 0.45, and 0.65, respectively. It means that the β γ , β δ , and β γ δ types are indeed very closely related to the eruption of solar flares, especially the β γ δ type. Based on the reliability of this method, the sunspot groups of the HMI solar full images from 2011 to 2020 are detected and classified, and the detailed data are shared on the website (https://61.166.157.71/MWMCSG.html).
威尔逊山对太阳黑子群的磁性分类被认为对预测耀斑的爆发有意义。在本文中,我们采用了一种深度学习方法CornerNet Sacade来对太阳黑子群进行威尔逊山磁分类。它包括三个阶段,生成对象位置、检测对象和合并检测。关键技术包括Hourglass-54的主干、注意力机制和关键点机制,包括通过角池层的对象的左上角和右下角。这些技术在不牺牲精度的情况下提高了检测物体的效率。数据集由总共2486个合成图像构建,这些合成图像与HMI和MDI的连续图像和相应的磁图合成。在训练网络后,合成的太阳完整图像中的太阳黑子群平均在3秒内被检测和分类。测试结果表明,该方法具有良好的性能,准确度、精密度、召回率和mAP分别为0.94、0.93、0.94和0.90。此外,还计算了2011年至2020年不同类型太阳黑子群的耀斑生产率。正如我所想  ≥  1,α、β、βγ、βδ和βγδ太阳黑子群的耀斑生产率分别为0.14、0.28、0.61、0.71和0.87。正如我所想  ≥  10,火炬生产率分别为0.02、0.07、0.27、0.45和0.65。这意味着βγ、βδ和βγδ类型确实与太阳耀斑的爆发密切相关,尤其是βγδ型。基于该方法的可靠性,对2011年至2020年HMI太阳全图像的太阳黑子群进行了检测和分类,并在网站上共享了详细数据(https://61.166.157.71/MWMCSG.html)。
{"title":"Research on Mount Wilson Magnetic Classification Based on Deep Learning","authors":"Yuan He, Yunfei Yang, X. Bai, Song Feng, Bo Liang, W. Dai","doi":"10.1155/2021/5529383","DOIUrl":"https://doi.org/10.1155/2021/5529383","url":null,"abstract":"The Mount Wilson magnetic classification of sunspot groups is thought to be meaningful to forecast flares’ eruptions. In this paper, we adopt a deep learning method, CornerNet-Saccade, to perform the Mount Wilson magnetic classification of sunspot groups. It includes three stages, generating object locations, detecting objects, and merging detections. The key technologies consist of the backbone as Hourglass-54, the attention mechanism, and the key points’ mechanism including the top-left corners and the bottom-right corners of the object by corner pooling layers. These technologies improve the efficiency of detecting the objects without sacrificing accuracy. A dataset is built by a total of 2486 composited images which are composited with the continuum images and the corresponding magnetograms from HMI and MDI. After training the network, the sunspot groups in a composited solar full image are detected and classified in 3 seconds on average. The test results show that this method has a good performance, with the accuracy, precision, recall, and mAP as 0.94, 0.93, 0.94, and 0.90, respectively. Moreover, the flare productivities of different types of sunspot groups from 2011 to 2020 are calculated. As \u0000 \u0000 \u0000 \u0000 I\u0000 \u0000 \u0000 tot\u0000 \u0000 \u0000 \u0000  \u0000 \u0000 \u0000 ≥\u0000 \u0000  1, the flare productivities of \u0000 \u0000 α\u0000 ,\u0000 β\u0000 ,\u0000 β\u0000 γ\u0000 ,\u0000 β\u0000 δ\u0000 \u0000 , and \u0000 \u0000 β\u0000 γ\u0000 δ\u0000 \u0000 sunspot groups are 0.14, 0.28, 0.61, 0.71, and 0.87, respectively. As \u0000 \u0000 \u0000 \u0000 I\u0000 \u0000 \u0000 tot\u0000 \u0000 \u0000 \u0000  \u0000 \u0000 \u0000 ≥\u0000 \u0000  10, the flare productivities are 0.02, 0.07, 0.27, 0.45, and 0.65, respectively. It means that the \u0000 \u0000 β\u0000 γ\u0000 ,\u0000 β\u0000 δ\u0000 \u0000 , and \u0000 \u0000 β\u0000 γ\u0000 δ\u0000 \u0000 types are indeed very closely related to the eruption of solar flares, especially the \u0000 \u0000 β\u0000 γ\u0000 δ\u0000 \u0000 type. Based on the reliability of this method, the sunspot groups of the HMI solar full images from 2011 to 2020 are detected and classified, and the detailed data are shared on the website (https://61.166.157.71/MWMCSG.html).","PeriodicalId":48962,"journal":{"name":"Advances in Astronomy","volume":" ","pages":""},"PeriodicalIF":1.4,"publicationDate":"2021-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44273522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
A Numerical Approach to Study Ablation of Large Bolides: Application to Chelyabinsk 研究大型碳化物烧蚀的数值方法:在车里雅宾斯克的应用
IF 1.4 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS Pub Date : 2021-03-26 DOI: 10.1155/2021/8852772
J. Trigo-Rodríguez, J. Dergham, M. Gritsevich, E. Lyytinen, E. Silber, I. Williams
In this study, we investigate the ablation properties of bolides capable of producing meteorites. The casual dashcam recordings from many locations of the Chelyabinsk superbolide associated with the atmospheric entry of an 18 m in diameter near-Earth object (NEO) have provided an excellent opportunity to reconstruct its atmospheric trajectory, deceleration, and heliocentric orbit. In this study, we focus on the study of the ablation properties of the Chelyabinsk bolide on the basis of its deceleration and fragmentation. We explore whether meteoroids exhibiting abrupt fragmentation can be studied by analyzing segments of the trajectory that do not include a disruption episode. We apply that approach to the lower part of the trajectory of the Chelyabinsk bolide to demonstrate that the obtained parameters are consistent. To do that, we implemented a numerical (Runge–Kutta) method appropriate for deriving the ablation properties of bolides based on observations. The method was successfully tested with the cases previously published in the literature. Our model yields fits that agree with observations reasonably well. It also produces a good fit to the main observed characteristics of Chelyabinsk superbolide and provides its averaged ablation coefficient σ = 0.034 s2 km−2. Our study also explores the main implications for impact hazard, concluding that tens of meters in diameter NEOs encountering the Earth in grazing trajectories and exhibiting low geocentric velocities are penetrating deeper into the atmosphere than previously thought and, as such, are capable of producing meteorites and even damage on the ground.
在这项研究中,我们研究了能够产生陨石的卤化物的烧蚀特性。来自车里雅宾斯克超级固体多个地点的随机行车记录仪记录与18 直径为m的近地天体(NEO)为重建其大气层轨迹、减速和日心轨道提供了极好的机会。在这项研究中,我们重点研究了车里雅宾斯克代谢产物在减速和碎裂的基础上的烧蚀特性。我们探索是否可以通过分析不包括中断事件的轨迹片段来研究表现出突然碎裂的流星体。我们将该方法应用于车里雅宾斯克bolide轨迹的下部,以证明所获得的参数是一致的。为此,我们实现了一种数值(龙格-库塔)方法,该方法适用于根据观测结果推导玻利维亚的烧蚀特性。该方法已成功地与文献中先前发表的案例进行了测试。我们的模型得出的拟合结果与观测结果相当吻合。它还很好地拟合了车里雅宾斯克超级固体的主要观测特征,并提供了其平均烧蚀系数σ = 0.034 s2 km−2。我们的研究还探讨了撞击危险的主要影响,得出的结论是,直径数十米的近地天体以掠掠轨迹与地球相遇,并表现出较低的地心速度,它们比以前想象的更深入大气层,因此能够在地面上产生陨石,甚至造成破坏。
{"title":"A Numerical Approach to Study Ablation of Large Bolides: Application to Chelyabinsk","authors":"J. Trigo-Rodríguez, J. Dergham, M. Gritsevich, E. Lyytinen, E. Silber, I. Williams","doi":"10.1155/2021/8852772","DOIUrl":"https://doi.org/10.1155/2021/8852772","url":null,"abstract":"In this study, we investigate the ablation properties of bolides capable of producing meteorites. The casual dashcam recordings from many locations of the Chelyabinsk superbolide associated with the atmospheric entry of an 18 m in diameter near-Earth object (NEO) have provided an excellent opportunity to reconstruct its atmospheric trajectory, deceleration, and heliocentric orbit. In this study, we focus on the study of the ablation properties of the Chelyabinsk bolide on the basis of its deceleration and fragmentation. We explore whether meteoroids exhibiting abrupt fragmentation can be studied by analyzing segments of the trajectory that do not include a disruption episode. We apply that approach to the lower part of the trajectory of the Chelyabinsk bolide to demonstrate that the obtained parameters are consistent. To do that, we implemented a numerical (Runge–Kutta) method appropriate for deriving the ablation properties of bolides based on observations. The method was successfully tested with the cases previously published in the literature. Our model yields fits that agree with observations reasonably well. It also produces a good fit to the main observed characteristics of Chelyabinsk superbolide and provides its averaged ablation coefficient σ = 0.034 s2 km−2. Our study also explores the main implications for impact hazard, concluding that tens of meters in diameter NEOs encountering the Earth in grazing trajectories and exhibiting low geocentric velocities are penetrating deeper into the atmosphere than previously thought and, as such, are capable of producing meteorites and even damage on the ground.","PeriodicalId":48962,"journal":{"name":"Advances in Astronomy","volume":" ","pages":""},"PeriodicalIF":1.4,"publicationDate":"2021-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43764819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Modification of Gravitational Field Equation due to Invariance of Light Speed and New System of Universe Evolution 光速不变性对引力场方程的修正与宇宙演化新体系
IF 1.4 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS Pub Date : 2021-03-19 DOI: 10.1155/2021/5579060
J. Yang
We make a systematic examination of the basic theory of general relativity and reemphasize the meaning of coordinates. Firstly, we prove that Einsteinʼs gravitational field equation has the light speed invariant solution and black holes are not an inevitable prediction of general relativity. Second, we show that the coupling coefficient of the gravitational field equation is not unique and can be modified as 4 π G to replace the previous − 8 π G , distinguish gravitational mass from the inertial mass, and prove that dark matter and dark energy are not certain existence and the expansion and contraction of the universe are proven cyclic, and a new distance-redshift relation which is more practical is derived. After that, we show that galaxies and celestial bodies are formed by gradual growth rather than by the accumulation of existing matter and prove that new matter is generating gradually in the interior of celestial bodies. For example, the radius of the Earth increases by 0.5 mm every year, and its mass increases by 1.2 trillion tons. A more reasonable derivation of the precession of planetary orbits is given, and the evolution equation of planetary orbits in the expanding space-time is also given. In a word, an alive universe unfolds in front of readers and the current cosmological difficulties are given new interpretations.
我们系统地考察了广义相对论的基本理论,并重新强调了坐标的意义。首先,我们证明了爱因斯坦引力场方程具有光速不变解,黑洞不是广义相对论的必然预测。其次,我们证明了引力场方程的耦合系数不是唯一的,可以修改为4πG来代替之前的−8πG,区分引力质量和惯性质量,并证明暗物质和暗能量不一定存在,宇宙的膨胀和收缩是循环的,并导出了一个更实用的新的距离红移关系式。之后,我们证明星系和天体是通过逐渐增长而不是通过现有物质的积累形成的,并证明新物质正在天体内部逐渐产生。例如,地球的半径增加0.5 毫米,其质量每年增加1.2万亿吨。给出了行星轨道进动的一个更合理的推导,并给出了在膨胀时空中行星轨道的演化方程。总之,一个鲜活的宇宙展现在读者面前,对当前的宇宙学难题给出了新的解释。
{"title":"Modification of Gravitational Field Equation due to Invariance of Light Speed and New System of Universe Evolution","authors":"J. Yang","doi":"10.1155/2021/5579060","DOIUrl":"https://doi.org/10.1155/2021/5579060","url":null,"abstract":"We make a systematic examination of the basic theory of general relativity and reemphasize the meaning of coordinates. Firstly, we prove that Einsteinʼs gravitational field equation has the light speed invariant solution and black holes are not an inevitable prediction of general relativity. Second, we show that the coupling coefficient of the gravitational field equation is not unique and can be modified as \u0000 \u0000 4\u0000 π\u0000 G\u0000 \u0000 to replace the previous \u0000 \u0000 −\u0000 8\u0000 π\u0000 G\u0000 \u0000 , distinguish gravitational mass from the inertial mass, and prove that dark matter and dark energy are not certain existence and the expansion and contraction of the universe are proven cyclic, and a new distance-redshift relation which is more practical is derived. After that, we show that galaxies and celestial bodies are formed by gradual growth rather than by the accumulation of existing matter and prove that new matter is generating gradually in the interior of celestial bodies. For example, the radius of the Earth increases by 0.5 mm every year, and its mass increases by 1.2 trillion tons. A more reasonable derivation of the precession of planetary orbits is given, and the evolution equation of planetary orbits in the expanding space-time is also given. In a word, an alive universe unfolds in front of readers and the current cosmological difficulties are given new interpretations.","PeriodicalId":48962,"journal":{"name":"Advances in Astronomy","volume":" ","pages":""},"PeriodicalIF":1.4,"publicationDate":"2021-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42163197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Conformable Fractional Models of the Stellar Helium Burning via Artificial Neural Networks 基于人工神经网络的恒星氦燃烧的符合分数模型
IF 1.4 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS Pub Date : 2021-03-16 DOI: 10.1155/2021/6662217
Emad A.-B. Abdel-Salam, Mohamed I. Nouh, Yosry A. Azzam, M. S. Jazmati
The helium burning phase represents the second stage that the star used to consume nuclear fuel in its interior. In this stage, the three elements, carbon, oxygen, and neon, are synthesized. The present paper is twofold: firstly, it develops an analytical solution to the system of the conformable fractional differential equations of the helium burning network, where we used, for this purpose, the series expansion method and obtained recurrence relations for the product abundances, that is, helium, carbon, oxygen, and neon. Using four different initial abundances, we calculated 44 gas models covering the range of the fractional parameter <span><svg height="8.69875pt" style="vertical-align:-0.3499298pt" version="1.1" viewbox="-0.0498162 -8.34882 18.648 8.69875" width="18.648pt" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><g transform="matrix(.013,0,0,-0.013,0,0)"></path></g><g transform="matrix(.013,0,0,-0.013,11.017,0)"></path></g></svg><span></span><svg height="8.69875pt" style="vertical-align:-0.3499298pt" version="1.1" viewbox="22.230183800000002 -8.34882 35.39 8.69875" width="35.39pt" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><g transform="matrix(.013,0,0,-0.013,22.28,0)"></path></g><g transform="matrix(.013,0,0,-0.013,28.52,0)"></path></g><g transform="matrix(.013,0,0,-0.013,31.484,0)"></path></g><g transform="matrix(.013,0,0,-0.013,40.63,0)"></path></g><g transform="matrix(.013,0,0,-0.013,51.166,0)"></path></g></svg></span> with step <span><svg height="8.8423pt" style="vertical-align:-0.2064009pt" version="1.1" viewbox="-0.0498162 -8.6359 26.975 8.8423" width="26.975pt" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><g transform="matrix(.013,0,0,-0.013,0,0)"></path></g><g transform="matrix(.013,0,0,-0.013,8.327,0)"><use xlink:href="#g113-223"></use></g><g transform="matrix(.013,0,0,-0.013,19.344,0)"><use xlink:href="#g117-34"></use></g></svg><span></span><span><svg height="8.8423pt" style="vertical-align:-0.2064009pt" version="1.1" viewbox="30.5571838 -8.6359 21.957 8.8423" width="21.957pt" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><g transform="matrix(.013,0,0,-0.013,30.607,0)"><use xlink:href="#g113-49"></use></g><g transform="matrix(.013,0,0,-0.013,36.847,0)"><use xlink:href="#g113-47"></use></g><g transform="matrix(.013,0,0,-0.013,39.811,0)"><use xlink:href="#g113-49"></use></g><g transform="matrix(.013,0,0,-0.013,46.051,0)"><use xlink:href="#g113-54"></use></g></svg>.</span></span> We found that the effects of the fractional parameter on the product abundances are small which coincides with the results obtained by a previous study. Secondly, we introduced the mathematical model of the neural network (NN) and developed a neural network algorithm to simulate the helium burning network using a feed-forward process. A comparison between the NN and the analytical models revealed very good agreement for all
氦燃烧阶段是恒星内部消耗核燃料的第二阶段。在这个阶段,碳、氧和氖这三种元素被合成。本文分为两部分:首先,对氦燃烧网络的符合分数阶微分方程组给出了解析解,为此,我们采用了级数展开法,得到了产物丰度即氦、碳、氧、氖的递推关系。利用4种不同的初始丰度,我们计算了44种气体模型,覆盖了分数参数的阶跃范围。我们发现分数参数对产物丰度的影响很小,这与前人的研究结果一致。其次,引入了神经网络(NN)的数学模型,并开发了一种采用前馈过程模拟氦燃烧网络的神经网络算法。神经网络与解析模型的比较表明,所有气体模型都具有很好的一致性。我们发现,神经网络可以被认为是求解和建模核燃烧网络的有力工具,并且可以应用于其他核恒星燃烧网络。
{"title":"Conformable Fractional Models of the Stellar Helium Burning via Artificial Neural Networks","authors":"Emad A.-B. Abdel-Salam, Mohamed I. Nouh, Yosry A. Azzam, M. S. Jazmati","doi":"10.1155/2021/6662217","DOIUrl":"https://doi.org/10.1155/2021/6662217","url":null,"abstract":"The helium burning phase represents the second stage that the star used to consume nuclear fuel in its interior. In this stage, the three elements, carbon, oxygen, and neon, are synthesized. The present paper is twofold: firstly, it develops an analytical solution to the system of the conformable fractional differential equations of the helium burning network, where we used, for this purpose, the series expansion method and obtained recurrence relations for the product abundances, that is, helium, carbon, oxygen, and neon. Using four different initial abundances, we calculated 44 gas models covering the range of the fractional parameter &lt;span&gt;&lt;svg height=\"8.69875pt\" style=\"vertical-align:-0.3499298pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.34882 18.648 8.69875\" width=\"18.648pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,0,0)\"&gt;&lt;/path&gt;&lt;/g&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,11.017,0)\"&gt;&lt;/path&gt;&lt;/g&gt;&lt;/svg&gt;&lt;span&gt;&lt;/span&gt;&lt;svg height=\"8.69875pt\" style=\"vertical-align:-0.3499298pt\" version=\"1.1\" viewbox=\"22.230183800000002 -8.34882 35.39 8.69875\" width=\"35.39pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,22.28,0)\"&gt;&lt;/path&gt;&lt;/g&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,28.52,0)\"&gt;&lt;/path&gt;&lt;/g&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,31.484,0)\"&gt;&lt;/path&gt;&lt;/g&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,40.63,0)\"&gt;&lt;/path&gt;&lt;/g&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,51.166,0)\"&gt;&lt;/path&gt;&lt;/g&gt;&lt;/svg&gt;&lt;/span&gt; with step &lt;span&gt;&lt;svg height=\"8.8423pt\" style=\"vertical-align:-0.2064009pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 26.975 8.8423\" width=\"26.975pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,0,0)\"&gt;&lt;/path&gt;&lt;/g&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,8.327,0)\"&gt;&lt;use xlink:href=\"#g113-223\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,19.344,0)\"&gt;&lt;use xlink:href=\"#g117-34\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;/svg&gt;&lt;span&gt;&lt;/span&gt;&lt;span&gt;&lt;svg height=\"8.8423pt\" style=\"vertical-align:-0.2064009pt\" version=\"1.1\" viewbox=\"30.5571838 -8.6359 21.957 8.8423\" width=\"21.957pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,30.607,0)\"&gt;&lt;use xlink:href=\"#g113-49\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,36.847,0)\"&gt;&lt;use xlink:href=\"#g113-47\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,39.811,0)\"&gt;&lt;use xlink:href=\"#g113-49\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,46.051,0)\"&gt;&lt;use xlink:href=\"#g113-54\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;/svg&gt;.&lt;/span&gt;&lt;/span&gt; We found that the effects of the fractional parameter on the product abundances are small which coincides with the results obtained by a previous study. Secondly, we introduced the mathematical model of the neural network (NN) and developed a neural network algorithm to simulate the helium burning network using a feed-forward process. A comparison between the NN and the analytical models revealed very good agreement for all ","PeriodicalId":48962,"journal":{"name":"Advances in Astronomy","volume":"84 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2021-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138505970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Advances in Astronomy
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1