首页 > 最新文献

PLoS Biology最新文献

英文 中文
Decrease in decision noise from adolescence into adulthood mediates an increase in more sophisticated choice behaviors and performance gain. 从青春期到成年期,决策噪音的减少会促进更复杂选择行为的增加和成绩的提高。
IF 9.8 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2024-11-14 eCollection Date: 2024-11-01 DOI: 10.1371/journal.pbio.3002877
Vanessa Scholz, Maria Waltmann, Nadine Herzog, Annette Horstmann, Lorenz Deserno

Learning and decision-making undergo substantial developmental changes, with adolescence being a particular vulnerable window of opportunity. In adolescents, developmental changes in specific choice behaviors have been observed (e.g., goal-directed behavior, motivational influences over choice). Elevated levels of decision noise, i.e., choosing suboptimal options, were reported consistently in adolescents. However, it remains unknown whether these observations, the development of specific and more sophisticated choice processes and higher decision noise, are independent or related. It is conceivable, but has not yet been investigated, that the development of specific choice processes might be impacted by age-dependent changes in decision noise. To answer this, we examined 93 participants (12 to 42 years) who completed 3 reinforcement learning (RL) tasks: a motivational Go/NoGo task assessing motivational influences over choices, a reversal learning task capturing adaptive decision-making in response to environmental changes, and a sequential choice task measuring goal-directed behavior. This allowed testing of (1) cross-task generalization of computational parameters focusing on decision noise; and (2) assessment of mediation effects of noise on specific choice behaviors. Firstly, we found only noise levels to be strongly correlated across RL tasks. Second, and critically, noise levels mediated age-dependent increases in more sophisticated choice behaviors and performance gain. Our findings provide novel insights into the computational processes underlying developmental changes in decision-making: namely a vital role of seemingly unspecific changes in noise in the specific development of more complex choice components. Studying the neurocomputational mechanisms of how varying levels of noise impact distinct aspects of learning and decision processes may also be key to better understand the developmental onset of psychiatric diseases.

学习和决策会经历巨大的发展变化,而青春期是一个特别脆弱的机会窗口。在青少年中,特定选择行为的发展变化已被观察到(如目标导向行为、对选择的动机影响)。据报道,青少年的决策噪音(即选择次优选项)水平不断升高。然而,这些观察结果、特定和更复杂的选择过程的发展以及更高的决策噪音是相互独立还是相互关联,目前仍不得而知。可以想象,特定选择过程的发展可能会受到与年龄相关的决策噪音变化的影响,但这一问题尚未得到研究。为了回答这个问题,我们对完成了 3 项强化学习(RL)任务的 93 名参与者(12 至 42 岁)进行了研究:一项评估动机对选择的影响的 "去/不去"(Go/NoGo)任务,一项捕捉环境变化时适应性决策的逆转学习任务,以及一项测量目标导向行为的顺序选择任务。这样就可以测试(1)以决策噪音为重点的计算参数的跨任务通用性;以及(2)评估噪音对特定选择行为的中介效应。首先,我们发现只有噪音水平在不同的 RL 任务中具有很强的相关性。其次,也是至关重要的一点是,噪声水平对更复杂选择行为和成绩提高的影响与年龄有关。我们的研究结果为决策发展变化背后的计算过程提供了新的见解:即噪声中看似非特异性的变化在更复杂的选择成分的特定发展中起着至关重要的作用。研究不同水平的噪声如何影响学习和决策过程的不同方面的神经计算机制,可能也是更好地理解精神疾病在发育过程中发病的关键。
{"title":"Decrease in decision noise from adolescence into adulthood mediates an increase in more sophisticated choice behaviors and performance gain.","authors":"Vanessa Scholz, Maria Waltmann, Nadine Herzog, Annette Horstmann, Lorenz Deserno","doi":"10.1371/journal.pbio.3002877","DOIUrl":"10.1371/journal.pbio.3002877","url":null,"abstract":"<p><p>Learning and decision-making undergo substantial developmental changes, with adolescence being a particular vulnerable window of opportunity. In adolescents, developmental changes in specific choice behaviors have been observed (e.g., goal-directed behavior, motivational influences over choice). Elevated levels of decision noise, i.e., choosing suboptimal options, were reported consistently in adolescents. However, it remains unknown whether these observations, the development of specific and more sophisticated choice processes and higher decision noise, are independent or related. It is conceivable, but has not yet been investigated, that the development of specific choice processes might be impacted by age-dependent changes in decision noise. To answer this, we examined 93 participants (12 to 42 years) who completed 3 reinforcement learning (RL) tasks: a motivational Go/NoGo task assessing motivational influences over choices, a reversal learning task capturing adaptive decision-making in response to environmental changes, and a sequential choice task measuring goal-directed behavior. This allowed testing of (1) cross-task generalization of computational parameters focusing on decision noise; and (2) assessment of mediation effects of noise on specific choice behaviors. Firstly, we found only noise levels to be strongly correlated across RL tasks. Second, and critically, noise levels mediated age-dependent increases in more sophisticated choice behaviors and performance gain. Our findings provide novel insights into the computational processes underlying developmental changes in decision-making: namely a vital role of seemingly unspecific changes in noise in the specific development of more complex choice components. Studying the neurocomputational mechanisms of how varying levels of noise impact distinct aspects of learning and decision processes may also be key to better understand the developmental onset of psychiatric diseases.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"22 11","pages":"e3002877"},"PeriodicalIF":9.8,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11563475/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142630892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spatiotemporal integration of contextual and sensory information within the cortical hierarchy in human pain experience. 人类疼痛体验中大脑皮层对上下文信息和感觉信息的时空整合。
IF 9.8 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2024-11-13 DOI: 10.1371/journal.pbio.3002910
Suhwan Gim, Seok-Jun Hong, Elizabeth A Reynolds Losin, Choong-Wan Woo

Pain is not a mere reflection of noxious input. Rather, it is constructed through the dynamic integration of current predictions with incoming sensory input. However, the temporal dynamics of the behavioral and neural processes underpinning this integration remain elusive. In the current study involving 59 human participants, we identified a series of brain mediators that integrated cue-induced expectations with noxious inputs into ongoing pain predictions using a semicircular scale designed to capture rating trajectories. Temporal mediation analysis revealed that during the early-to-mid stages of integration, the frontoparietal and dorsal attention network regions, such as the lateral prefrontal, premotor, and parietal cortex, mediated the cue effects. Conversely, during the mid-to-late stages of integration, the somatomotor network regions mediated the effects of stimulus intensity, suggesting that the integration occurs along the cortical hierarchy from the association to sensorimotor brain systems. Our findings advance the understanding of how the brain integrates contextual and sensory information into pain experience over time.

疼痛并不仅仅是有害输入的反映。相反,它是通过将当前预测与传入的感觉输入进行动态整合而形成的。然而,支撑这种整合的行为和神经过程的时间动态仍然难以捉摸。在目前这项涉及 59 名人类参与者的研究中,我们发现了一系列大脑介导因素,这些介导因素将线索诱导的预期与有毒输入整合到使用半圆形量表设计的持续疼痛预测中,以捕捉评级轨迹。时间中介分析显示,在整合的早期到中期阶段,前顶叶和背侧注意网络区域(如外侧前额叶、运动前叶和顶叶皮层)中介了线索效应。相反,在整合的中后期阶段,躯体运动网络区介导了刺激强度的效应,这表明整合是沿着从联想到感觉运动的大脑皮层系统层次进行的。我们的研究结果加深了人们对大脑如何随着时间的推移将情境和感觉信息整合到疼痛体验中的理解。
{"title":"Spatiotemporal integration of contextual and sensory information within the cortical hierarchy in human pain experience.","authors":"Suhwan Gim, Seok-Jun Hong, Elizabeth A Reynolds Losin, Choong-Wan Woo","doi":"10.1371/journal.pbio.3002910","DOIUrl":"https://doi.org/10.1371/journal.pbio.3002910","url":null,"abstract":"<p><p>Pain is not a mere reflection of noxious input. Rather, it is constructed through the dynamic integration of current predictions with incoming sensory input. However, the temporal dynamics of the behavioral and neural processes underpinning this integration remain elusive. In the current study involving 59 human participants, we identified a series of brain mediators that integrated cue-induced expectations with noxious inputs into ongoing pain predictions using a semicircular scale designed to capture rating trajectories. Temporal mediation analysis revealed that during the early-to-mid stages of integration, the frontoparietal and dorsal attention network regions, such as the lateral prefrontal, premotor, and parietal cortex, mediated the cue effects. Conversely, during the mid-to-late stages of integration, the somatomotor network regions mediated the effects of stimulus intensity, suggesting that the integration occurs along the cortical hierarchy from the association to sensorimotor brain systems. Our findings advance the understanding of how the brain integrates contextual and sensory information into pain experience over time.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"22 11","pages":"e3002910"},"PeriodicalIF":9.8,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142630977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Youthful insight: Nitrogen sequestration in larvae provides clues to coral bleaching. 年轻的洞察力幼虫体内的固氮作用为珊瑚白化提供了线索。
IF 9.8 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2024-11-13 eCollection Date: 2024-11-01 DOI: 10.1371/journal.pbio.3002890
Christian R Voolstra

Impaired nutrient cycling under thermal stress foregoes coral bleaching, the loss of symbiotic algae. A new study in PLOS Biology sheds light on how coral larvae avoid bleaching through nitrogen sequestration to uphold glucose translocation from their algal symbionts.

热应力下的营养循环受损会导致珊瑚白化,即失去共生藻。发表在《PLOS Biology》上的一项新研究揭示了珊瑚幼虫如何通过氮封存来维持藻类共生体的葡萄糖转运,从而避免白化。
{"title":"Youthful insight: Nitrogen sequestration in larvae provides clues to coral bleaching.","authors":"Christian R Voolstra","doi":"10.1371/journal.pbio.3002890","DOIUrl":"10.1371/journal.pbio.3002890","url":null,"abstract":"<p><p>Impaired nutrient cycling under thermal stress foregoes coral bleaching, the loss of symbiotic algae. A new study in PLOS Biology sheds light on how coral larvae avoid bleaching through nitrogen sequestration to uphold glucose translocation from their algal symbionts.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"22 11","pages":"e3002890"},"PeriodicalIF":9.8,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11560035/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142630983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Coral larvae increase nitrogen assimilation to stabilize algal symbiosis and combat bleaching under increased temperature. 珊瑚幼虫增加氮同化,以稳定藻类共生关系,并在温度升高的情况下抵御白化现象。
IF 9.8 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2024-11-12 eCollection Date: 2024-11-01 DOI: 10.1371/journal.pbio.3002875
Ariana S Huffmyer, Jill Ashey, Emma Strand, Eric N Chiles, Xiaoyang Su, Hollie M Putnam

Rising sea surface temperatures are increasingly causing breakdown in the nutritional relationship between corals and algal endosymbionts (Symbiodiniaceae), threatening the basis of coral reef ecosystems and highlighting the critical role of coral reproduction in reef maintenance. The effects of thermal stress on metabolic exchange (i.e., transfer of fixed carbon photosynthates from symbiont to host) during sensitive early life stages, however, remains understudied. We exposed symbiotic Montipora capitata coral larvae in Hawai'i to high temperature (+2.5°C for 3 days), assessed rates of photosynthesis and respiration, and used stable isotope tracing (4 mM 13C sodium bicarbonate; 4.5 h) to quantify metabolite exchange. While larvae did not show any signs of bleaching and did not experience declines in survival and settlement, metabolic depression was significant under high temperature, indicated by a 19% reduction in respiration rates, but with no change in photosynthesis. Larvae exposed to high temperature showed evidence for maintained translocation of a major photosynthate, glucose, from the symbiont, but there was reduced metabolism of glucose through central carbon metabolism (i.e., glycolysis). The larval host invested in nitrogen cycling by increasing ammonium assimilation, urea metabolism, and sequestration of nitrogen into dipeptides, a mechanism that may support the maintenance of glucose translocation under thermal stress. Host nitrogen assimilation via dipeptide synthesis appears to be used for nitrogen limitation to the Symbiodiniaceae, and we hypothesize that nitrogen limitation contributes to retention of fixed carbon by favoring photosynthate translocation to the host. Collectively, our findings indicate that although these larvae are susceptible to metabolic stress under high temperature, diverting energy to nitrogen assimilation to maintain symbiont population density, photosynthesis, and carbon translocation may allow larvae to avoid bleaching and highlights potential life stage specific metabolic responses to stress.

海面温度上升正日益导致珊瑚与藻类内共生体(共生藻科)之间营养关系的破坏,威胁着珊瑚礁生态系统的基础,并凸显了珊瑚繁殖在珊瑚礁维护中的关键作用。然而,在敏感的生命早期阶段,热应力对代谢交换(即固定碳光合作用从共生体转移到宿主)的影响仍未得到充分研究。我们将夏威夷的共生Montipora capitata珊瑚幼虫暴露在高温下(+2.5°C,持续3天),评估光合作用和呼吸速率,并使用稳定同位素追踪(4 mM 13C 碳酸氢钠;4.5 h)来量化代谢物交换。虽然幼虫没有出现任何褪色迹象,存活率和沉降率也没有下降,但在高温条件下,新陈代谢明显减弱,呼吸速率降低了 19%,但光合作用没有变化。暴露在高温下的幼虫有证据表明,共生体中的主要光合产物葡萄糖的转运得到了维持,但通过中心碳代谢(即糖酵解)进行的葡萄糖代谢却减少了。幼虫宿主通过增加铵同化、尿素代谢和将氮封存到二肽中来促进氮循环,这种机制可能有助于在热胁迫下维持葡萄糖转运。宿主通过二肽合成进行的氮同化似乎被用于对共生藤本植物的氮限制,我们推测氮限制有利于光合作用转移到宿主体内,从而有助于固定碳的保留。总之,我们的研究结果表明,虽然这些幼虫在高温条件下容易受到代谢胁迫,但将能量转移到氮同化以维持共生体种群密度、光合作用和碳转运,可能会使幼虫避免白化,并突出了潜在的生命阶段对胁迫的特定代谢反应。
{"title":"Coral larvae increase nitrogen assimilation to stabilize algal symbiosis and combat bleaching under increased temperature.","authors":"Ariana S Huffmyer, Jill Ashey, Emma Strand, Eric N Chiles, Xiaoyang Su, Hollie M Putnam","doi":"10.1371/journal.pbio.3002875","DOIUrl":"10.1371/journal.pbio.3002875","url":null,"abstract":"<p><p>Rising sea surface temperatures are increasingly causing breakdown in the nutritional relationship between corals and algal endosymbionts (Symbiodiniaceae), threatening the basis of coral reef ecosystems and highlighting the critical role of coral reproduction in reef maintenance. The effects of thermal stress on metabolic exchange (i.e., transfer of fixed carbon photosynthates from symbiont to host) during sensitive early life stages, however, remains understudied. We exposed symbiotic Montipora capitata coral larvae in Hawai'i to high temperature (+2.5°C for 3 days), assessed rates of photosynthesis and respiration, and used stable isotope tracing (4 mM 13C sodium bicarbonate; 4.5 h) to quantify metabolite exchange. While larvae did not show any signs of bleaching and did not experience declines in survival and settlement, metabolic depression was significant under high temperature, indicated by a 19% reduction in respiration rates, but with no change in photosynthesis. Larvae exposed to high temperature showed evidence for maintained translocation of a major photosynthate, glucose, from the symbiont, but there was reduced metabolism of glucose through central carbon metabolism (i.e., glycolysis). The larval host invested in nitrogen cycling by increasing ammonium assimilation, urea metabolism, and sequestration of nitrogen into dipeptides, a mechanism that may support the maintenance of glucose translocation under thermal stress. Host nitrogen assimilation via dipeptide synthesis appears to be used for nitrogen limitation to the Symbiodiniaceae, and we hypothesize that nitrogen limitation contributes to retention of fixed carbon by favoring photosynthate translocation to the host. Collectively, our findings indicate that although these larvae are susceptible to metabolic stress under high temperature, diverting energy to nitrogen assimilation to maintain symbiont population density, photosynthesis, and carbon translocation may allow larvae to avoid bleaching and highlights potential life stage specific metabolic responses to stress.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"22 11","pages":"e3002875"},"PeriodicalIF":9.8,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11556732/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142630881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evolutionarily conserved brainstem architecture enables gravity-guided vertical navigation. 进化保守的脑干结构实现了重力引导的垂直导航。
IF 9.8 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2024-11-12 DOI: 10.1371/journal.pbio.3002902
Yunlu Zhu, Hannah Gelnaw, Franziska Auer, Kyla R Hamling, David E Ehrlich, David Schoppik

The sensation of gravity anchors our perception of the environment and is important for navigation. However, the neural circuits that transform gravity into commands for navigation are undefined. We first determined that larval zebrafish (Danio rerio) navigate vertically by maintaining a consistent heading across a series of upward climb or downward dive bouts. Gravity-blind mutant fish swim with more variable heading and excessive veering, leading to less effective vertical navigation. After targeted photoablation of ascending vestibular neurons and spinal projecting midbrain neurons, but not vestibulospinal neurons, vertical navigation was impaired. These data define a sensorimotor circuit that uses evolutionarily conserved brainstem architecture to transform gravitational signals into persistent heading for vertical navigation. The work lays a foundation to understand how vestibular inputs allow animals to move effectively through their environment.

重力感知是我们感知环境的基础,对导航非常重要。然而,将重力转化为导航指令的神经回路尚未明确。我们首先确定,斑马鱼(Danio rerio)幼体通过在一系列向上攀爬或向下俯冲的过程中保持一致的方向进行垂直导航。重力盲突变型斑马鱼游动时航向变化较大,且过度转向,导致垂直导航效果较差。在对上升前庭神经元和脊髓投射中脑神经元(而非前庭神经元)进行定向光消融后,垂直导航功能受损。这些数据定义了一个传感器运动回路,它利用进化保守的脑干结构将重力信号转化为垂直导航的持续航向。这项工作为了解前庭输入如何使动物在环境中有效移动奠定了基础。
{"title":"Evolutionarily conserved brainstem architecture enables gravity-guided vertical navigation.","authors":"Yunlu Zhu, Hannah Gelnaw, Franziska Auer, Kyla R Hamling, David E Ehrlich, David Schoppik","doi":"10.1371/journal.pbio.3002902","DOIUrl":"10.1371/journal.pbio.3002902","url":null,"abstract":"<p><p>The sensation of gravity anchors our perception of the environment and is important for navigation. However, the neural circuits that transform gravity into commands for navigation are undefined. We first determined that larval zebrafish (Danio rerio) navigate vertically by maintaining a consistent heading across a series of upward climb or downward dive bouts. Gravity-blind mutant fish swim with more variable heading and excessive veering, leading to less effective vertical navigation. After targeted photoablation of ascending vestibular neurons and spinal projecting midbrain neurons, but not vestibulospinal neurons, vertical navigation was impaired. These data define a sensorimotor circuit that uses evolutionarily conserved brainstem architecture to transform gravitational signals into persistent heading for vertical navigation. The work lays a foundation to understand how vestibular inputs allow animals to move effectively through their environment.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"22 11","pages":"e3002902"},"PeriodicalIF":9.8,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142630922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deep mutational scanning of H5 hemagglutinin to inform influenza virus surveillance. 对 H5 血凝素进行深度突变扫描,为流感病毒监测提供信息。
IF 9.8 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2024-11-12 DOI: 10.1371/journal.pbio.3002916
Bernadeta Dadonaite, Jenny J Ahn, Jordan T Ort, Jin Yu, Colleen Furey, Annie Dosey, William W Hannon, Amy L Vincent Baker, Richard J Webby, Neil P King, Yan Liu, Scott E Hensley, Thomas P Peacock, Louise H Moncla, Jesse D Bloom

H5 influenza is considered a potential pandemic threat. Recently, H5 viruses belonging to clade 2.3.4.4b have caused large outbreaks in avian and multiple nonhuman mammalian species. Previous studies have identified molecular phenotypes of the viral hemagglutinin (HA) protein that contribute to pandemic potential in humans, including cell entry, receptor preference, HA stability, and reduced neutralization by polyclonal sera. However, prior experimental work has only measured how these phenotypes are affected by a handful of the >10,000 different possible amino-acid mutations to HA. Here, we use pseudovirus deep mutational scanning to measure how all mutations to a 2.3.4.4b H5 HA affect each phenotype. We identify mutations that allow HA to better bind α2-6-linked sialic acids and show that some viruses already carry mutations that stabilize HA. We also measure how all HA mutations affect neutralization by sera from mice and ferrets vaccinated against or infected with 2.3.4.4b H5 viruses. These antigenic maps enable rapid assessment of when new viral strains have acquired mutations that may create mismatches with candidate vaccine virus, and we show that a mutation present in some recent H5 HAs causes a large antigenic change. Overall, the systematic nature of deep mutational scanning combined with the safety of pseudoviruses enables comprehensive measurements of the phenotypic effects of mutations that can inform real-time interpretation of viral variation observed during surveillance of H5 influenza.

H5 流感被认为是一种潜在的大流行威胁。最近,属于 2.3.4.4b 支系的 H5 病毒在禽类和多种非人类哺乳动物中引起了大规模爆发。先前的研究已经确定了病毒血凝素(HA)蛋白的分子表型,这些表型会导致病毒在人类中的大流行,包括细胞进入、受体偏好、HA 稳定性和多克隆血清中和能力降低。然而,之前的实验工作只测量了这些表型如何受到 HA 可能发生的 10,000 多种氨基酸突变中少数几种突变的影响。在这里,我们使用伪病毒深度突变扫描来测量 2.3.4.4b H5 HA 的所有突变如何影响每种表型。我们发现了能使 HA 更好地结合 α2-6 连接的硅酸的突变,并证明一些病毒已经携带了能稳定 HA 的突变。我们还测量了所有 HA 突变如何影响接种 2.3.4.4b H5 病毒或感染 2.3.4.4b H5 病毒的小鼠和雪貂血清的中和作用。通过这些抗原图谱,我们可以快速评估新的病毒株何时获得了可能与候选疫苗病毒产生错配的突变。总之,深度突变扫描的系统性与假病毒的安全性相结合,能够全面测量突变的表型效应,为实时解读监测 H5 流感期间观察到的病毒变异提供信息。
{"title":"Deep mutational scanning of H5 hemagglutinin to inform influenza virus surveillance.","authors":"Bernadeta Dadonaite, Jenny J Ahn, Jordan T Ort, Jin Yu, Colleen Furey, Annie Dosey, William W Hannon, Amy L Vincent Baker, Richard J Webby, Neil P King, Yan Liu, Scott E Hensley, Thomas P Peacock, Louise H Moncla, Jesse D Bloom","doi":"10.1371/journal.pbio.3002916","DOIUrl":"10.1371/journal.pbio.3002916","url":null,"abstract":"<p><p>H5 influenza is considered a potential pandemic threat. Recently, H5 viruses belonging to clade 2.3.4.4b have caused large outbreaks in avian and multiple nonhuman mammalian species. Previous studies have identified molecular phenotypes of the viral hemagglutinin (HA) protein that contribute to pandemic potential in humans, including cell entry, receptor preference, HA stability, and reduced neutralization by polyclonal sera. However, prior experimental work has only measured how these phenotypes are affected by a handful of the >10,000 different possible amino-acid mutations to HA. Here, we use pseudovirus deep mutational scanning to measure how all mutations to a 2.3.4.4b H5 HA affect each phenotype. We identify mutations that allow HA to better bind α2-6-linked sialic acids and show that some viruses already carry mutations that stabilize HA. We also measure how all HA mutations affect neutralization by sera from mice and ferrets vaccinated against or infected with 2.3.4.4b H5 viruses. These antigenic maps enable rapid assessment of when new viral strains have acquired mutations that may create mismatches with candidate vaccine virus, and we show that a mutation present in some recent H5 HAs causes a large antigenic change. Overall, the systematic nature of deep mutational scanning combined with the safety of pseudoviruses enables comprehensive measurements of the phenotypic effects of mutations that can inform real-time interpretation of viral variation observed during surveillance of H5 influenza.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"22 11","pages":"e3002916"},"PeriodicalIF":9.8,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142630903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spatiotemporal requirements of nuclear β-catenin define early sea urchin embryogenesis. 核β-catenin对早期海胆胚胎发生的时空要求
IF 9.8 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2024-11-12 DOI: 10.1371/journal.pbio.3002880
Guy Lhomond, Michael Schubert, Jenifer Croce

Establishment of the 3 primordial germ layers (ectoderm, endoderm, and mesoderm) during early animal development represents an essential prerequisite for the emergence of properly patterned embryos. β-catenin is an ancient protein that is known to play essential roles in this process. However, these roles have chiefly been established through inhibition of β-catenin translation or function at the time of fertilization. Comprehensive analyses reporting the totality of functions played by nuclear β-catenin, during the early embryogenesis of a given animal, i.e., at different developmental stages and in different germ layers, are thus still lacking. In this study, we used an inducible, conditional knockdown system in the sea urchin to characterize all possible requirements of β-catenin for germ layer establishment and patterning. By blocking β-catenin protein production starting at 7 different time points of early development, between fertilization and 12 h post fertilization, we established a clear correlation between the position of a germ layer along the primary embryonic axis (the animal-vegetal axis) and its dependence on nuclear β-catenin activity. For example, in the vegetal hemisphere, we determined that the 3 germ layers (skeletogenic mesoderm, non-skeletogenic mesoderm, and endoderm) require distinct and highly specific durations of β-catenin production for their respective specification, with the most vegetal germ layer, the skeletogenic mesoderm, requiring the shortest duration. Likewise, for the 2 animal territories (ectoderm and anterior neuroectoderm), we established that their restriction, along the animal-vegetal axis, relies on different durations of β-catenin production, and that the longest duration is for the most animal territory, the anterior neuroectoderm. Moreover, we found that 2 of the vegetal germ layers, the non-skeletogenic mesoderm and the endoderm, further require a prolonged period of nuclear β-catenin activity, after their specification, to maintain their respective germ layer identities through time. Finally, we determined that restriction of the anterior neuroectoderm territory depends on at least 2 nuclear β-catenin-dependent inputs and a nuclear β-catenin-independent mechanism. Taken together, this work is the first to comprehensively define the spatiotemporal requirements of β-catenin during the early embryogenesis of a single animal, the sea urchin Paracentrotus lividus, thereby providing new experimental evidence for a better understanding of the roles played by this evolutionary conserved protein during animal development.

β-catenin是一种古老的蛋白质,已知它在这一过程中发挥着重要作用。然而,这些作用主要是在受精时通过抑制β-catenin的翻译或功能而确立的。因此,目前还缺乏对核β-catenin在特定动物早期胚胎发育过程中,即在不同发育阶段和不同胚层中所发挥的全部功能的全面分析报告。在这项研究中,我们利用海胆的诱导性条件性基因敲除系统鉴定了β-catenin在胚层建立和模式化过程中的所有可能需求。通过阻断β-catenin蛋白在受精到受精后12小时之间早期发育过程中7个不同时间点的生成,我们发现胚层在初级胚轴(动物-植物轴)上的位置与其对核β-catenin活性的依赖之间存在明显的相关性。例如,在植物半球,我们发现3个胚层(成骨中胚层、非成骨中胚层和内胚层)在各自的规格化过程中需要不同且高度特异的β-catenin生成持续时间,其中最植物化的胚层(成骨中胚层)需要的时间最短。同样,对于两个动物胚层(外胚层和前神经外胚层),我们确定了它们沿动物-植物轴的限制依赖于不同的β-catenin生成持续时间,而最动物胚层(前神经外胚层)的β-catenin生成持续时间最长。此外,我们还发现植物胚层中的两个胚层,即非骨架形成的中胚层和内胚层,在形成后还需要较长时间的核β-catenin活性,才能长期保持各自胚层的特性。最后,我们确定,前神经外胚层区域的限制至少取决于两个依赖核β-catenin的输入和一个独立于核β-catenin的机制。综上所述,这项研究首次全面界定了β-catenin在单一动物--海胆(Paracentrotus lividus)--早期胚胎发生过程中的时空要求,从而为更好地理解这种进化保守蛋白在动物发育过程中所起的作用提供了新的实验证据。
{"title":"Spatiotemporal requirements of nuclear β-catenin define early sea urchin embryogenesis.","authors":"Guy Lhomond, Michael Schubert, Jenifer Croce","doi":"10.1371/journal.pbio.3002880","DOIUrl":"https://doi.org/10.1371/journal.pbio.3002880","url":null,"abstract":"<p><p>Establishment of the 3 primordial germ layers (ectoderm, endoderm, and mesoderm) during early animal development represents an essential prerequisite for the emergence of properly patterned embryos. β-catenin is an ancient protein that is known to play essential roles in this process. However, these roles have chiefly been established through inhibition of β-catenin translation or function at the time of fertilization. Comprehensive analyses reporting the totality of functions played by nuclear β-catenin, during the early embryogenesis of a given animal, i.e., at different developmental stages and in different germ layers, are thus still lacking. In this study, we used an inducible, conditional knockdown system in the sea urchin to characterize all possible requirements of β-catenin for germ layer establishment and patterning. By blocking β-catenin protein production starting at 7 different time points of early development, between fertilization and 12 h post fertilization, we established a clear correlation between the position of a germ layer along the primary embryonic axis (the animal-vegetal axis) and its dependence on nuclear β-catenin activity. For example, in the vegetal hemisphere, we determined that the 3 germ layers (skeletogenic mesoderm, non-skeletogenic mesoderm, and endoderm) require distinct and highly specific durations of β-catenin production for their respective specification, with the most vegetal germ layer, the skeletogenic mesoderm, requiring the shortest duration. Likewise, for the 2 animal territories (ectoderm and anterior neuroectoderm), we established that their restriction, along the animal-vegetal axis, relies on different durations of β-catenin production, and that the longest duration is for the most animal territory, the anterior neuroectoderm. Moreover, we found that 2 of the vegetal germ layers, the non-skeletogenic mesoderm and the endoderm, further require a prolonged period of nuclear β-catenin activity, after their specification, to maintain their respective germ layer identities through time. Finally, we determined that restriction of the anterior neuroectoderm territory depends on at least 2 nuclear β-catenin-dependent inputs and a nuclear β-catenin-independent mechanism. Taken together, this work is the first to comprehensively define the spatiotemporal requirements of β-catenin during the early embryogenesis of a single animal, the sea urchin Paracentrotus lividus, thereby providing new experimental evidence for a better understanding of the roles played by this evolutionary conserved protein during animal development.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"22 11","pages":"e3002880"},"PeriodicalIF":9.8,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142630980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quorum sensing in Vibrio controls carbon metabolism to optimize growth in changing environmental conditions. 弧菌的法定量感应控制碳代谢,以优化在不断变化的环境条件下的生长。
IF 9.8 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2024-11-11 DOI: 10.1371/journal.pbio.3002891
Chelsea A Simpson, Zach R Celentano, Nicholas W Haas, James B McKinlay, Carey D Nadell, Julia C van Kessel

Bacteria sense population density via the cell-cell communication system called quorum sensing (QS). The evolution of QS and its maintenance or loss in mixed bacterial communities is highly relevant to understanding how cell-cell signaling impacts bacterial fitness and competition, particularly under varying environmental conditions such as nutrient availability. We uncovered a phenomenon in which Vibrio cells grown in minimal medium optimize expression of the methionine and tetrahydrofolate (THF) synthesis genes via QS. Strains that are genetically "locked" at high cell density grow slowly in minimal glucose media and suppressor mutants accumulate via inactivating-mutations in metF (methylenetetrahydrofolate reductase) and luxR (the master QS transcriptional regulator). In mixed cultures, QS mutant strains initially coexist with wild type, but as glucose is depleted, wild type outcompetes the QS mutants. Thus, QS regulation of methionine/THF synthesis is a fitness benefit that links nutrient availability and cell density, preventing accumulation of QS-defective mutants.

细菌通过称为法定量感应(QS)的细胞-细胞通信系统来感知种群密度。QS 的进化及其在混合细菌群落中的维持或丧失与了解细胞-细胞信号如何影响细菌的适应性和竞争(尤其是在营养供应等不同环境条件下)密切相关。我们发现了一种现象,即在极少培养基中生长的弧菌细胞通过 QS 优化蛋氨酸和四氢叶酸(THF)合成基因的表达。高细胞密度基因 "锁定 "的菌株在极少葡萄糖培养基中生长缓慢,抑制突变体通过metF(亚甲基四氢叶酸还原酶)和luxR(QS转录主调节因子)的失活突变而积累。在混合培养中,QS突变株最初与野生型共存,但随着葡萄糖的耗竭,野生型会取代QS突变株。因此,QS 对蛋氨酸/THF 合成的调控是一种适应性益处,它将营养物质的可用性与细胞密度联系起来,防止 QS 缺陷突变体的积累。
{"title":"Quorum sensing in Vibrio controls carbon metabolism to optimize growth in changing environmental conditions.","authors":"Chelsea A Simpson, Zach R Celentano, Nicholas W Haas, James B McKinlay, Carey D Nadell, Julia C van Kessel","doi":"10.1371/journal.pbio.3002891","DOIUrl":"10.1371/journal.pbio.3002891","url":null,"abstract":"<p><p>Bacteria sense population density via the cell-cell communication system called quorum sensing (QS). The evolution of QS and its maintenance or loss in mixed bacterial communities is highly relevant to understanding how cell-cell signaling impacts bacterial fitness and competition, particularly under varying environmental conditions such as nutrient availability. We uncovered a phenomenon in which Vibrio cells grown in minimal medium optimize expression of the methionine and tetrahydrofolate (THF) synthesis genes via QS. Strains that are genetically \"locked\" at high cell density grow slowly in minimal glucose media and suppressor mutants accumulate via inactivating-mutations in metF (methylenetetrahydrofolate reductase) and luxR (the master QS transcriptional regulator). In mixed cultures, QS mutant strains initially coexist with wild type, but as glucose is depleted, wild type outcompetes the QS mutants. Thus, QS regulation of methionine/THF synthesis is a fitness benefit that links nutrient availability and cell density, preventing accumulation of QS-defective mutants.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"22 11","pages":"e3002891"},"PeriodicalIF":9.8,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142630962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mitochondrial calcium uptake orchestrates vertebrate pigmentation via transcriptional regulation of keratin filaments. 线粒体钙摄取通过角蛋白丝的转录调控协调脊椎动物的色素沉着
IF 9.8 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2024-11-11 DOI: 10.1371/journal.pbio.3002895
Jyoti Tanwar, Kriti Ahuja, Akshay Sharma, Paras Sehgal, Gyan Ranjan, Farina Sultan, Anushka Agrawal, Donato D'Angelo, Anshu Priya, Vamsi K Yenamandra, Archana Singh, Anna Raffaello, Muniswamy Madesh, Rosario Rizzuto, Sridhar Sivasubbu, Rajender K Motiani

Mitochondria regulate several physiological functions through mitochondrial Ca2+ dynamics. However, role of mitochondrial Ca2+ signaling in melanosome biology remains unknown. Here, we show that pigmentation requires mitochondrial Ca2+ uptake. In vitro gain and loss of function studies demonstrate that mitochondrial Ca2+ uniporter (MCU) is crucial for melanogenesis while MCU rheostat, MCUb negatively control melanogenesis. Zebrafish, MCU+/- and MCUb-/- mice models show that MCU complex drives pigmentation in vivo. Mechanistically, MCU silencing activates transcription factor NFAT2 to induce expression of keratin (5, 7, and 8) filaments. Interestingly, keratin5 in turn augments mitochondrial Ca2+ uptake and potentiates melanogenesis by regulating melanosome biogenesis and maturation. Hence this signaling module acts as a negative feedback loop that fine-tunes both mitochondrial Ca2+ signaling and pigmentation. Notably, mitoxantrone, an FDA approved drug that inhibits MCU, reduces pigmentation thereby highlighting therapeutic potential of targeting mitochondrial Ca2+ uptake for clinical management of pigmentary disorders. Taken together, we reveal an MCU-NFAT2-Keratin5 driven signaling axis that acts as a critical determinant of mitochondrial Ca2+ uptake and pigmentation. Given the vital role of mitochondrial Ca2+ signaling and keratin filaments in cellular physiology, this feedback loop could be operational in a variety of other patho-physiological processes.

线粒体通过线粒体 Ca2+ 动态调节多种生理功能。然而,线粒体 Ca2+ 信号在黑色素体生物学中的作用仍然未知。在这里,我们发现色素沉着需要线粒体摄取 Ca2+。体外功能增益和缺失研究表明,线粒体 Ca2+ uniporter(MCU)对黑色素生成至关重要,而 MCU rheostat、MCUb 则对黑色素生成有负面控制作用。斑马鱼、MCU+/- 和 MCUb-/- 小鼠模型表明,MCU 复合物驱动体内色素沉着。从机理上讲,MCU沉默会激活转录因子NFAT2,诱导角蛋白(5、7和8)丝的表达。有趣的是,角蛋白5反过来又会增加线粒体对 Ca2+ 的摄取,并通过调节黑色素小体的生物生成和成熟来促进黑色素生成。因此,这一信号模块就像一个负反馈回路,对线粒体 Ca2+ 信号和色素沉着进行微调。值得注意的是,美国 FDA 批准的抑制 MCU 的药物米托蒽醌可减少色素沉着,从而突出了针对线粒体 Ca2+ 摄取的治疗潜力,可用于色素性疾病的临床治疗。综上所述,我们揭示了一个由 MCU-NFAT2-Keratin5 驱动的信号轴,它是线粒体 Ca2+ 摄取和色素沉着的关键决定因素。鉴于线粒体 Ca2+ 信号转导和角蛋白丝在细胞生理学中的重要作用,这一反馈环可能在其他各种病理生理过程中发挥作用。
{"title":"Mitochondrial calcium uptake orchestrates vertebrate pigmentation via transcriptional regulation of keratin filaments.","authors":"Jyoti Tanwar, Kriti Ahuja, Akshay Sharma, Paras Sehgal, Gyan Ranjan, Farina Sultan, Anushka Agrawal, Donato D'Angelo, Anshu Priya, Vamsi K Yenamandra, Archana Singh, Anna Raffaello, Muniswamy Madesh, Rosario Rizzuto, Sridhar Sivasubbu, Rajender K Motiani","doi":"10.1371/journal.pbio.3002895","DOIUrl":"https://doi.org/10.1371/journal.pbio.3002895","url":null,"abstract":"<p><p>Mitochondria regulate several physiological functions through mitochondrial Ca2+ dynamics. However, role of mitochondrial Ca2+ signaling in melanosome biology remains unknown. Here, we show that pigmentation requires mitochondrial Ca2+ uptake. In vitro gain and loss of function studies demonstrate that mitochondrial Ca2+ uniporter (MCU) is crucial for melanogenesis while MCU rheostat, MCUb negatively control melanogenesis. Zebrafish, MCU+/- and MCUb-/- mice models show that MCU complex drives pigmentation in vivo. Mechanistically, MCU silencing activates transcription factor NFAT2 to induce expression of keratin (5, 7, and 8) filaments. Interestingly, keratin5 in turn augments mitochondrial Ca2+ uptake and potentiates melanogenesis by regulating melanosome biogenesis and maturation. Hence this signaling module acts as a negative feedback loop that fine-tunes both mitochondrial Ca2+ signaling and pigmentation. Notably, mitoxantrone, an FDA approved drug that inhibits MCU, reduces pigmentation thereby highlighting therapeutic potential of targeting mitochondrial Ca2+ uptake for clinical management of pigmentary disorders. Taken together, we reveal an MCU-NFAT2-Keratin5 driven signaling axis that acts as a critical determinant of mitochondrial Ca2+ uptake and pigmentation. Given the vital role of mitochondrial Ca2+ signaling and keratin filaments in cellular physiology, this feedback loop could be operational in a variety of other patho-physiological processes.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"22 11","pages":"e3002895"},"PeriodicalIF":9.8,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142630959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-level visual prediction errors in early visual cortex. 早期视觉皮层的高级视觉预测错误
IF 9.8 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2024-11-11 eCollection Date: 2024-11-01 DOI: 10.1371/journal.pbio.3002829
David Richter, Tim C Kietzmann, Floris P de Lange

Perception is shaped by both incoming sensory input and expectations derived from our prior knowledge. Numerous studies have shown stronger neural activity for surprising inputs, suggestive of predictive processing. However, it is largely unclear what predictions are made across the cortical hierarchy, and therefore what kind of surprise drives this up-regulation of activity. Here, we leveraged fMRI in human volunteers and deep neural network (DNN) models to arbitrate between 2 hypotheses: prediction errors may signal a local mismatch between input and expectation at each level of the cortical hierarchy, or prediction errors may be computed at higher levels and the resulting surprise signal is broadcast to earlier areas in the cortical hierarchy. Our results align with the latter hypothesis. Prediction errors in both low- and high-level visual cortex responded to high-level, but not low-level, visual surprise. This scaling with high-level surprise in early visual cortex strongly diverged from feedforward tuning. Combined, our results suggest that high-level predictions constrain sensory processing in earlier areas, thereby aiding perceptual inference.

感知受传入的感官输入和来自我们先前知识的预期的双重影响。大量研究表明,令人惊讶的输入会产生更强的神经活动,这表明存在预测性处理。然而,目前还不清楚大脑皮层中的预测是什么,因此也不清楚是什么样的惊喜驱动了这种神经活动的上调。在这里,我们利用人类志愿者的 fMRI 和深度神经网络(DNN)模型在两种假说之间进行了权衡:预测错误可能是大脑皮层层次结构中每一层输入与期望之间局部不匹配的信号,或者预测错误可能是在较高层次上计算的,由此产生的惊喜信号被广播到大脑皮层层次结构中较早的区域。我们的结果与后一种假设一致。低级和高级视觉皮层中的预测错误都对高级而非低级视觉惊奇做出了反应。在早期视觉皮层中,这种与高层次惊讶的比例关系与前馈调谐有很大的不同。综合来看,我们的研究结果表明,高级预测会制约早期区域的感觉处理,从而帮助知觉推断。
{"title":"High-level visual prediction errors in early visual cortex.","authors":"David Richter, Tim C Kietzmann, Floris P de Lange","doi":"10.1371/journal.pbio.3002829","DOIUrl":"10.1371/journal.pbio.3002829","url":null,"abstract":"<p><p>Perception is shaped by both incoming sensory input and expectations derived from our prior knowledge. Numerous studies have shown stronger neural activity for surprising inputs, suggestive of predictive processing. However, it is largely unclear what predictions are made across the cortical hierarchy, and therefore what kind of surprise drives this up-regulation of activity. Here, we leveraged fMRI in human volunteers and deep neural network (DNN) models to arbitrate between 2 hypotheses: prediction errors may signal a local mismatch between input and expectation at each level of the cortical hierarchy, or prediction errors may be computed at higher levels and the resulting surprise signal is broadcast to earlier areas in the cortical hierarchy. Our results align with the latter hypothesis. Prediction errors in both low- and high-level visual cortex responded to high-level, but not low-level, visual surprise. This scaling with high-level surprise in early visual cortex strongly diverged from feedforward tuning. Combined, our results suggest that high-level predictions constrain sensory processing in earlier areas, thereby aiding perceptual inference.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"22 11","pages":"e3002829"},"PeriodicalIF":9.8,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11554119/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142630930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
PLoS Biology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1