首页 > 最新文献

Biometals最新文献

英文 中文
Comparative assessment of pantothenic, aspartic, ascorbic and tartaric acids assisted Pb-phytoextraction by sunflower (Helianthus annuus L.) 向日葵(Helianthus annuus L.)对泛酸、天门冬氨酸、抗坏血酸和酒石酸辅助铅植物萃取的比较评估。
IF 4.1 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-07-29 DOI: 10.1007/s10534-024-00619-9
Asif Ghafoor, Fahad Shafiq, Sumera Anwar, Lixin Zhang, Muhammad Ashraf

Phytoextraction of lead (Pb) is a challenging task due to its extremely low mobility within soil and plant systems. In this study, we tested the influence of some novel chelating agents for Pb-phytoextraction using sunflower. The Pb was applied at control (0.0278 mM) and 4.826 mM Pb as Pb(NO3)2 through soil-spiking. After 10 days of Pb addition, four different organic ligands (aspartic, ascorbic, tartaric, and pantothenic acids) were added to the soil at 1 mM concentration each. respectively. In the absence of any chelate, sunflower plants grown at 4.826 mM Pb level accumulated Pb concentrations up to 104 µg g−1 DW in roots, whereas 64 µg g−1 DW in shoot. By contrast, tartaric acid promoted significantly Pb accumulation in roots (191 µg g−1 DW; + 45.5%) and shoot (131.6 µg g−1 DW; + 51.3%). Pantothenic acid also resulted in a significant Pb-uptake in the sunflower shoots (123 µg g−1 DW; + 47.9%) and in roots (177.3 µg g−1 DW; + 41.3%). The least effective amongst the chelates tested was aspartic acid, but it still contributed to + 40.1% more Pb accumulation in the sunflower root and shoots. In addition, plant growth, biochemical, and ionomic parameters were positively regulated by the organic chelates used. Especially, an increase in leaf Ca, P, and S was evident in Pb-stressed plants in response to chelates. These results highlight that the use of biocompatible organic chelates positively alters plant physio-biochemical traits contributing to higher Pb-sequestration in sunflower plant parts.

Graphical abstract

由于铅(Pb)在土壤和植物系统中的迁移率极低,因此植物萃取铅(Pb)是一项具有挑战性的任务。在这项研究中,我们利用向日葵测试了一些新型螯合剂对铅植物萃取的影响。通过在土壤中添加 Pb(NO3)2 的方式,在对照浓度(0.0278 mM)和 4.826 mM 的浓度下添加铅。添加铅 10 天后,向土壤中添加四种不同的有机配体(天冬氨酸、抗坏血酸、酒石酸和泛酸),浓度分别为 1 mM。在没有任何螯合剂的情况下,向日葵植株在 4.826 mM 铅水平下生长时,根部积累的铅浓度高达 104 µg g-1 DW,而在芽中则为 64 µg g-1 DW。相比之下,酒石酸能显著促进根部(191 µg g-1 DW;+ 45.5%)和芽部(131.6 µg g-1 DW;+ 51.3%)的铅积累。泛酸也导致向日葵芽(123 µg g-1 DW;+ 47.9%)和根(177.3 µg g-1 DW;+ 41.3%)对铅的大量吸收。在测试的螯合剂中,效果最差的是天门冬氨酸,但它仍然使向日葵根和芽中的铅积累增加了 + 40.1%。此外,所使用的有机螯合剂对植物的生长、生化和离子参数都有积极的调节作用。特别是,铅胁迫植物的叶片钙、磷和硒含量在螯合物的作用下明显增加。这些结果突出表明,使用生物相容性有机螯合物可积极改变植物的生理生化特征,有助于提高向日葵植株各部分对铅的吸收。
{"title":"Comparative assessment of pantothenic, aspartic, ascorbic and tartaric acids assisted Pb-phytoextraction by sunflower (Helianthus annuus L.)","authors":"Asif Ghafoor,&nbsp;Fahad Shafiq,&nbsp;Sumera Anwar,&nbsp;Lixin Zhang,&nbsp;Muhammad Ashraf","doi":"10.1007/s10534-024-00619-9","DOIUrl":"10.1007/s10534-024-00619-9","url":null,"abstract":"<div><p>Phytoextraction of lead (Pb) is a challenging task due to its extremely low mobility within soil and plant systems. In this study, we tested the influence of some novel chelating agents for Pb-phytoextraction using sunflower. The Pb was applied at control (0.0278 mM) and 4.826 mM Pb as Pb(NO<sub>3</sub>)<sub>2</sub> through soil-spiking. After 10 days of Pb addition, four different organic ligands (aspartic, ascorbic, tartaric, and pantothenic acids) were added to the soil at 1 mM concentration each. respectively. In the absence of any chelate, sunflower plants grown at 4.826 mM Pb level accumulated Pb concentrations up to 104 µg g<sup>−1</sup> DW in roots, whereas 64 µg g<sup>−1</sup> DW in shoot. By contrast, tartaric acid promoted significantly Pb accumulation in roots (191 µg g<sup>−1</sup> DW; + 45.5%) and shoot (131.6 µg g<sup>−1</sup> DW; + 51.3%). Pantothenic acid also resulted in a significant Pb-uptake in the sunflower shoots (123 µg g<sup>−1</sup> DW; + 47.9%) and in roots (177.3 µg g<sup>−1</sup> DW; + 41.3%). The least effective amongst the chelates tested was aspartic acid, but it still contributed to + 40.1% more Pb accumulation in the sunflower root and shoots. In addition, plant growth, biochemical, and ionomic parameters were positively regulated by the organic chelates used. Especially, an increase in leaf Ca, P, and S was evident in Pb-stressed plants in response to chelates. These results highlight that the use of biocompatible organic chelates positively alters plant physio-biochemical traits contributing to higher Pb-sequestration in sunflower plant parts.</p><h3>Graphical abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":491,"journal":{"name":"Biometals","volume":"37 6","pages":"1471 - 1486"},"PeriodicalIF":4.1,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141786978","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring the neuroprotective role of melatonin against nickel-induced neurotoxicity in the left hippocampus 探索褪黑激素对镍诱导的左侧海马神经毒性的神经保护作用
IF 4.1 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-07-26 DOI: 10.1007/s10534-024-00618-w
Mohamed Yassine El Brouzi, Mouloud Lamtai, Nada Fath, Ayoub Rezqaoui, Oussama Zghari, Abdelghafour El Hamzaoui, Laila Ibouzine-dine, Aboubaker El Hessni, Abdelhalem Mesfioui

Previous studies have demonstrated that the hippocampus, a crucial region for memory and cognitive functions, is particularly vulnerable to adverse effects of exposure to heavy metals. Nickel (Ni) is a neurotoxic agent that, primarily induces oxidative stress, a process known to contribute to cellular damage, which consequently affects neurological functions. The antioxidant properties of melatonin are a promising option for preventing the adverse effects of Ni, especially by protecting cells against oxidative stress and related damage. In our investigation of the potential neuroprotective effects of melatonin against Ni-induced neurotoxicity, we chose to administer melatonin through intraperitoneal injection in rats following an intrahippocampal injection of Ni into the left hippocampus. This approach allows us a targeted investigation into the influence of melatonin on the neurotoxic effects of Ni, particularly within the crucial context of the hippocampus. In the present study, we demonstrated that melatonin efficiency reduced lactate dehydrogenase level, and preserved antioxidant enzyme activities in Ni-exposed hippocampal tissue. It also mitigated the decline in superoxide dismutase and catalase activities. On the other hand, melatonin could act directly by reducing reactive oxygen species Ni-induced overproduction. Taking to gather these two potential mechanisms of action could be responsible for the adverse effect of Ni on the behavioral alteration observed in our study. This study provides significant insights into the potential of melatonin to mitigate the detrimental effects of Ni on the brain, particularly into the hippocampal region, suggesting its possible implications for the treatment of neurological disorders related to Ni exposure.

以往的研究表明,海马区是记忆和认知功能的关键区域,特别容易受到重金属暴露的不利影响。镍(Ni)是一种神经毒剂,主要会诱发氧化应激,而氧化应激过程会导致细胞损伤,进而影响神经功能。褪黑激素的抗氧化特性是预防镍的不良影响的一个很有前景的选择,特别是通过保护细胞免受氧化应激和相关损伤。在研究褪黑素对镍诱导的神经毒性的潜在神经保护作用时,我们选择在大鼠左侧海马内注射镍后,通过腹腔注射褪黑素。通过这种方法,我们可以有针对性地研究褪黑激素对镍的神经毒性效应的影响,尤其是在海马这一关键区域。在本研究中,我们证实褪黑素能有效降低乳酸脱氢酶水平,并保护镍暴露海马组织中的抗氧化酶活性。褪黑素还能缓解超氧化物歧化酶和过氧化氢酶活性的下降。另一方面,褪黑素可通过减少镍诱导的活性氧的过量产生而直接发挥作用。这两种潜在的作用机制可能是造成我们的研究中观察到的镍对行为改变产生不利影响的原因。这项研究为褪黑激素减轻镍对大脑,特别是海马区的有害影响提供了重要的见解,表明它可能对治疗与镍暴露有关的神经系统疾病具有重要意义。
{"title":"Exploring the neuroprotective role of melatonin against nickel-induced neurotoxicity in the left hippocampus","authors":"Mohamed Yassine El Brouzi,&nbsp;Mouloud Lamtai,&nbsp;Nada Fath,&nbsp;Ayoub Rezqaoui,&nbsp;Oussama Zghari,&nbsp;Abdelghafour El Hamzaoui,&nbsp;Laila Ibouzine-dine,&nbsp;Aboubaker El Hessni,&nbsp;Abdelhalem Mesfioui","doi":"10.1007/s10534-024-00618-w","DOIUrl":"10.1007/s10534-024-00618-w","url":null,"abstract":"<div><p>Previous studies have demonstrated that the hippocampus, a crucial region for memory and cognitive functions, is particularly vulnerable to adverse effects of exposure to heavy metals. Nickel (Ni) is a neurotoxic agent that, primarily induces oxidative stress, a process known to contribute to cellular damage, which consequently affects neurological functions. The antioxidant properties of melatonin are a promising option for preventing the adverse effects of Ni, especially by protecting cells against oxidative stress and related damage. In our investigation of the potential neuroprotective effects of melatonin against Ni-induced neurotoxicity, we chose to administer melatonin through intraperitoneal injection in rats following an intrahippocampal injection of Ni into the left hippocampus. This approach allows us a targeted investigation into the influence of melatonin on the neurotoxic effects of Ni, particularly within the crucial context of the hippocampus. In the present study, we demonstrated that melatonin efficiency reduced lactate dehydrogenase level, and preserved antioxidant enzyme activities in Ni-exposed hippocampal tissue. It also mitigated the decline in superoxide dismutase and catalase activities. On the other hand, melatonin could act directly by reducing reactive oxygen species Ni-induced overproduction. Taking to gather these two potential mechanisms of action could be responsible for the adverse effect of Ni on the behavioral alteration observed in our study. This study provides significant insights into the potential of melatonin to mitigate the detrimental effects of Ni on the brain, particularly into the hippocampal region, suggesting its possible implications for the treatment of neurological disorders related to Ni exposure.</p></div>","PeriodicalId":491,"journal":{"name":"Biometals","volume":"37 6","pages":"1457 - 1469"},"PeriodicalIF":4.1,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141764767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synergistic effects of selenium and zinc on Bletilla striata (Thunb.) Reichb. F. growth and polysaccharide antioxidation 硒和锌对 Bletilla striata (Thunb.) Reichb.生长和多糖抗氧化的协同作用。
IF 4.1 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-07-18 DOI: 10.1007/s10534-024-00621-1
Changli Hu, Chengying Wang, Yan Wu, Long Liang, Liwei Yin, Xu Cheng, Conghu Li, Ting Hu

Selenium (Se) is a beneficial trace element for plants, while zinc (Zn) is a vital micronutrient. Bletilla striata (Thunb.) Reichb. F. is widely recognized as a medicinal herb. In this study, Se and Zn were introduced to determine the medicinal properties of B. striata. The plant’s biomass, polysaccharides, Se and Zn contents, and the antioxidant properties of polysaccharide solutions were all examined. A notable increase in polysaccharide synthesis in B. striata tubers was observed following the application of 0.2 kg ha−1 of Se, and 1.0 kg ha−1 of Zn, either individually or in combination. Se and Zn content in polysaccharides were 3.33 to 3.77 mg kg−1 and 82.82 to 121.78 mg kg−1, at 1.0 kg ha−1 Se and 10.0 kg ha−1 Zn treatments, respectively. These values were 2.1–3.1 times and 1.8–2.8 times higher than those observed in control samples. Polysaccharide antioxidation has resulted in an increase in antioxidant activity as the concentration of polysaccharide solutions increased. The largest scavenging of 1, 1-diphenyl-2-picrylhydrazyl (DPPH) radicals and the most excellent reducing power of the polysaccharide solutions were observed when a mixture of Se and Zn was applied at a rate of 1.0 kg ha−1 and 10.0 kg ha−1. The individual application of Se at 1.0 kg ha−1 and Zn at 10.0 kg ha−1 also resulted in significant DPPH radicals scavenging and reduced power. These data suggested that Se-Zn enriched B. striata is a new source of Se and Zn supplementation and an antioxidant resource.

硒(Se)是一种对植物有益的微量元素,而锌(Zn)则是一种重要的微量元素。Bletilla striata (Thunb.) Reichb.F. 被广泛认为是一种药用植物。在这项研究中,引入了硒和锌,以确定条叶万年青的药用特性。研究人员检测了该植物的生物量、多糖、硒和锌含量以及多糖溶液的抗氧化性。在单独或联合施用 0.2 千克/公顷的硒和 1.0 千克/公顷的锌后,横纹叶枯病块茎中的多糖合成明显增加。在施用 1.0 kg ha-1 Se 和 10.0 kg ha-1 Zn 的情况下,多糖中的 Se 和 Zn 含量分别为 3.33 至 3.77 mg kg-1 和 82.82 至 121.78 mg kg-1。这些数值分别是对照样本的 2.1-3.1 倍和 1.8-2.8 倍。多糖抗氧化的结果是,随着多糖溶液浓度的增加,抗氧化活性也随之增加。当 Se 和 Zn 混合物的施用量分别为 1.0 千克/公顷和 10.0 千克/公顷时,多糖溶液对 1,1-二苯基-2-苦基肼(DPPH)自由基的清除率最高,还原能力最强。单独施用 1.0 kg ha-1 的硒和 10.0 kg ha-1 的锌也能显著清除 DPPH 自由基并提高还原力。这些数据表明,富含硒锌的 B. striata 是补充硒和锌的新来源,也是一种抗氧化资源。
{"title":"Synergistic effects of selenium and zinc on Bletilla striata (Thunb.) Reichb. F. growth and polysaccharide antioxidation","authors":"Changli Hu,&nbsp;Chengying Wang,&nbsp;Yan Wu,&nbsp;Long Liang,&nbsp;Liwei Yin,&nbsp;Xu Cheng,&nbsp;Conghu Li,&nbsp;Ting Hu","doi":"10.1007/s10534-024-00621-1","DOIUrl":"10.1007/s10534-024-00621-1","url":null,"abstract":"<div><p>Selenium (Se) is a beneficial trace element for plants, while zinc (Zn) is a vital micronutrient. <i>Bletilla striata</i> (Thunb.) Reichb. F. is widely recognized as a medicinal herb. In this study, Se and Zn were introduced to determine the medicinal properties of <i>B. striata</i>. The plant’s biomass, polysaccharides, Se and Zn contents, and the antioxidant properties of polysaccharide solutions were all examined. A notable increase in polysaccharide synthesis in <i>B. striata</i> tubers was observed following the application of 0.2 kg ha<sup>−1</sup> of Se, and 1.0 kg ha<sup>−1</sup> of Zn, either individually or in combination. Se and Zn content in polysaccharides were 3.33 to 3.77 mg kg<sup>−1</sup> and 82.82 to 121.78 mg kg<sup>−1</sup>, at 1.0 kg ha<sup>−1</sup> Se and 10.0 kg ha<sup>−1</sup> Zn treatments, respectively. These values were 2.1–3.1 times and 1.8–2.8 times higher than those observed in control samples. Polysaccharide antioxidation has resulted in an increase in antioxidant activity as the concentration of polysaccharide solutions increased. The largest scavenging of 1, 1-diphenyl-2-picrylhydrazyl (DPPH) radicals and the most excellent reducing power of the polysaccharide solutions were observed when a mixture of Se and Zn was applied at a rate of 1.0 kg ha<sup>−1</sup> and 10.0 kg ha<sup>−1</sup>. The individual application of Se at 1.0 kg ha<sup>−1</sup> and Zn at 10.0 kg ha<sup>−1</sup> also resulted in significant DPPH radicals scavenging and reduced power. These data suggested that Se-Zn enriched <i>B. striata</i> is a new source of Se and Zn supplementation and an antioxidant resource.</p></div>","PeriodicalId":491,"journal":{"name":"Biometals","volume":"37 6","pages":"1501 - 1510"},"PeriodicalIF":4.1,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141632345","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Publisher Correction: Global threat posed by metals and metalloids in the changing environment: a One Health approach to mechanisms of toxicity 出版商更正:不断变化的环境中金属和类金属对全球构成的威胁:采用 "同一健康 "方法研究毒性机制。
IF 4.1 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-07-12 DOI: 10.1007/s10534-024-00617-x
Wing-Kee Lee, Frank Thévenod, Elmar J. Prenner
{"title":"Publisher Correction: Global threat posed by metals and metalloids in the changing environment: a One Health approach to mechanisms of toxicity","authors":"Wing-Kee Lee,&nbsp;Frank Thévenod,&nbsp;Elmar J. Prenner","doi":"10.1007/s10534-024-00617-x","DOIUrl":"10.1007/s10534-024-00617-x","url":null,"abstract":"","PeriodicalId":491,"journal":{"name":"Biometals","volume":"37 5","pages":"1305 - 1305"},"PeriodicalIF":4.1,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141589317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Novel tetraaza macrocyclic Schiff base complexes of bivalent zinc: microwave-assisted green synthesis, spectroscopic characterization, density functional theory calculations, molecular docking studies, in vitro antimicrobial and anticancer activities 二价锌的新型四氮杂环席夫碱配合物:微波辅助绿色合成、光谱表征、密度泛函理论计算、分子对接研究、体外抗菌和抗癌活性。
IF 4.1 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-06-26 DOI: 10.1007/s10534-024-00616-y
Mamta, Ashu Chaudhary

In the present manuscript, novel macrocyclic Schiff base complexes [Zn(N4MacL1)Cl2–Zn(N4MacL3)Cl2] were synthesized by the reaction of ZnCl2 and macrocyclic ligands (N4MacL1–N4MacL3) derived from diketone and diamines under microwave irradiation method and conventional method. The structures of the obtained complexes were identified by various spectrometric methods such as Fourier transformation infra-red (FT-IR), nuclear magnetic resonance (NMR), high-resolution mass spectrometry (HR-MS), powder X-ray diffraction, molar conductivity, and UV–vis. The structures of the synthesized compounds were optimized by using the def2–TZV/J and def2–SVP/J Coulomb fitting basis sets at B3LYP level in density functional theory (DFT) calculations. The macrocyclic Schiff base complexes exhibited higher activities against Gram-positive bacteria (Staphylococcus aureus and Bacillus cereus), Gram-negative bacteria (Escherichia coli and Xanthomonas campestris), and fungal strains (Fusarium oxysporum and Candida albicans) in comparison to macrocyclic Schiff base ligands. Furthermore, the newly synthesized macrocyclic compounds were assessed for their anticancer activity against three cell lines: A549 (human alveolar adenocarcinoma epithelial cell line), HT-29 (human colorectal adenocarcinoma cell line), and MCF-7 (human breast adenocarcinoma cell line) using the MTT assay. The obtained results showed that the macrocyclic complex [Zn(N4MacL3)Cl2] displayed the highest cytotoxic activity (2.23 ± 0.25 µM, 6.53 ± 0.28 µM, and 7.40 ± 0.45 µM for A549, HT-29, and MCF-7 cancer cell lines, respectively). Additionally, molecular docking investigations were conducted to elucidate potential molecular interactions between the synthesized macrocyclic compounds and target proteins. The results revealed a consistent agreement between the docking calculations and the experimental data.

Graphical abstract

在本手稿中,通过微波辐照法和传统方法,ZnCl2 与来自二酮和二胺的大环配体(N4MacL1-N4MacL3)反应,合成了新型大环希夫碱配合物 [Zn(N4MacL1)Cl2-Zn(N4MacL3)Cl2]。通过傅立叶变换红外光谱(FT-IR)、核磁共振(NMR)、高分辨质谱(HR-MS)、粉末 X 射线衍射、摩尔电导率和紫外可见光等多种光谱方法确定了所获配合物的结构。在密度泛函理论(DFT)计算中,使用 B3LYP 水平的 def2-TZV/J 和 def2-SVP/J 库仑拟合基础集优化了合成化合物的结构。与大环席夫碱配体相比,大环席夫碱配体对革兰氏阳性菌(金黄色葡萄球菌和蜡样芽孢杆菌)、革兰氏阴性菌(大肠杆菌和野油菜黄单胞菌)和真菌菌株(镰刀菌和白色念珠菌)具有更高的活性。此外,还评估了新合成的大环化合物对三种细胞系的抗癌活性:A549(人肺泡腺癌上皮细胞系)、HT-29(人结直肠腺癌细胞系)和 MCF-7(人乳腺癌细胞系)。结果表明,大环复合物[Zn(N4MacL3)Cl2]的细胞毒性活性最高(对 A549、HT-29 和 MCF-7 癌细胞株的毒性活性分别为 2.23 ± 0.25 µM、6.53 ± 0.28 µM 和 7.40 ± 0.45 µM)。此外,还进行了分子对接研究,以阐明合成的大环化合物与靶蛋白之间潜在的分子相互作用。结果表明,对接计算与实验数据一致。
{"title":"Novel tetraaza macrocyclic Schiff base complexes of bivalent zinc: microwave-assisted green synthesis, spectroscopic characterization, density functional theory calculations, molecular docking studies, in vitro antimicrobial and anticancer activities","authors":"Mamta,&nbsp;Ashu Chaudhary","doi":"10.1007/s10534-024-00616-y","DOIUrl":"10.1007/s10534-024-00616-y","url":null,"abstract":"<div><p>In the present manuscript, novel macrocyclic Schiff base complexes [Zn(N<sub>4</sub>MacL<sub>1</sub>)Cl<sub>2</sub>–Zn(N<sub>4</sub>MacL<sub>3</sub>)Cl<sub>2</sub>] were synthesized by the reaction of ZnCl<sub>2</sub> and macrocyclic ligands (N<sub>4</sub>MacL<sub>1</sub>–N<sub>4</sub>MacL<sub>3</sub>) derived from diketone and diamines under microwave irradiation method and conventional method. The structures of the obtained complexes were identified by various spectrometric methods such as Fourier transformation infra-red (FT-IR), nuclear magnetic resonance (NMR), high-resolution mass spectrometry (HR-MS), powder X-ray diffraction, molar conductivity, and UV–vis. The structures of the synthesized compounds were optimized by using the def2–TZV/J and def2–SVP/J Coulomb fitting basis sets at B3LYP level in density functional theory (DFT) calculations. The macrocyclic Schiff base complexes exhibited higher activities against Gram-positive bacteria (<i>Staphylococcus aureus</i> and <i>Bacillus cereus</i>), Gram-negative bacteria (<i>Escherichia coli</i> and <i>Xanthomonas campestris</i>), and fungal strains (<i>Fusarium oxysporum</i> and <i>Candida albicans</i>) in comparison to macrocyclic Schiff base ligands. Furthermore, the newly synthesized macrocyclic compounds were assessed for their anticancer activity against three cell lines: A549 (human alveolar adenocarcinoma epithelial cell line), HT-29 (human colorectal adenocarcinoma cell line), and MCF-7 (human breast adenocarcinoma cell line) using the MTT assay. The obtained results showed that the macrocyclic complex [Zn(N<sub>4</sub>MacL<sub>3</sub>)Cl<sub>2</sub>] displayed the highest cytotoxic activity (2.23 ± 0.25 µM, 6.53 ± 0.28 µM, and 7.40 ± 0.45 µM for A549, HT-29, and MCF-7 cancer cell lines, respectively). Additionally, molecular docking investigations were conducted to elucidate potential molecular interactions between the synthesized macrocyclic compounds and target proteins. The results revealed a consistent agreement between the docking calculations and the experimental data.</p><h3>Graphical abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":491,"journal":{"name":"Biometals","volume":"37 6","pages":"1431 - 1456"},"PeriodicalIF":4.1,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141449299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction: Functional characterization of SLC39 family members ZIP5 and ZIP10 in overexpressing HEK293 cells reveals selective copper transport activity 更正:在过表达 HEK293 细胞中对 SLC39 家族成员 ZIP5 和 ZIP10 的功能特性进行分析,发现它们具有选择性铜转运活性。
IF 4.1 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-06-24 DOI: 10.1007/s10534-024-00615-z
Marcello Polesel, Alvaro Ingles-Prieto, Eirini Christodoulaki, Evandro Ferrada, Cédric Doucerain, Patrick Altermatt, Michelle Knecht, Michael Kuhn, Anna-Lena Steck, Maria Wilhelm, Vania Manolova
{"title":"Correction: Functional characterization of SLC39 family members ZIP5 and ZIP10 in overexpressing HEK293 cells reveals selective copper transport activity","authors":"Marcello Polesel,&nbsp;Alvaro Ingles-Prieto,&nbsp;Eirini Christodoulaki,&nbsp;Evandro Ferrada,&nbsp;Cédric Doucerain,&nbsp;Patrick Altermatt,&nbsp;Michelle Knecht,&nbsp;Michael Kuhn,&nbsp;Anna-Lena Steck,&nbsp;Maria Wilhelm,&nbsp;Vania Manolova","doi":"10.1007/s10534-024-00615-z","DOIUrl":"10.1007/s10534-024-00615-z","url":null,"abstract":"","PeriodicalId":491,"journal":{"name":"Biometals","volume":"37 4","pages":"1037 - 1038"},"PeriodicalIF":4.1,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11254955/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141441911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unveiling the antifungal mechanisms of CTP, a new copper(II)-theophylline/1,10-phenanthroline complex, on drug-resistant non-albicans Candida species 揭示 CTP(一种新的铜(II)-茶碱/1,10-菲啰啉络合物)对耐药非阿氏念珠菌的抗真菌机制。
IF 4.1 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-06-14 DOI: 10.1007/s10534-024-00605-1
Heloisa F. Frota, Pedro F. Barbosa, Carolline M. A. Lorentino, Lorena R. F. Affonso, Lívia S. Ramos, Simone S. C. Oliveira, Lucieri O. P. Souza, Olufunso O. Abosede, Adeniyi S. Ogunlaja, Marta H. Branquinha, André L. S. Santos

Candida species undeniably rank as the most prevalent opportunistic human fungal pathogens worldwide, with Candida albicans as the predominant representative. However, the emergence of non-albicans Candida species (NACs) has marked a significant shift, accompanied by rising incidence rates and concerning trends of antifungal resistance. The search for new strategies to combat antifungal-resistant Candida strains is of paramount importance. Recently, our research group reported the anti-Candida activity of a coordination compound containing copper(II) complexed with theophylline (theo) and 1,10-phenanthroline (phen), known as “CTP” – Cu(theo)2phen(H2O).5H2O. In the present work, we investigated the mechanisms of action of CTP against six medically relevant, antifungal-resistant NACs, including C. auris, C. glabrata, C. haemulonii, C. krusei, C. parapsilosis and C. tropicalis. CTP demonstrated significant efficacy in inhibiting mitochondrial dehydrogenases, leading to heightened intracellular reactive oxygen species production. CTP treatment resulted in substantial damage to the plasma membrane, as evidenced by the passive incorporation of propidium iodide, and induced DNA fragmentation as revealed by the TUNEL assay. Scanning electron microscopy images of post-CTP treatment NACs further illustrated profound alterations in the fungal surface morphology, including invaginations, cavitations and lysis. These surface modifications significantly impacted the ability of Candida cells to adhere to a polystyrene surface and to form robust biofilm structures. Moreover, CTP was effective in disassembling mature biofilms formed by these NACs. In conclusion, CTP represents a promising avenue for the development of novel antifungals with innovative mechanisms of action against clinically relevant NACs that are resistant to antifungals commonly used in clinical settings.

不可否认,念珠菌是全球最常见的机会性人类真菌病原体,其中以白念珠菌为主要代表。然而,非白念珠菌属(NAC)的出现标志着一个重大转变,伴随着发病率的上升和令人担忧的抗真菌耐药性趋势。寻找抗真菌耐药念珠菌菌株的新策略至关重要。最近,我们的研究小组报道了一种含铜(II)与茶碱(theo)和 1,10-菲罗啉(phen)络合的配位化合物(称为 "CTP" - Cu(theo)2phen(H2O).5H2O)的抗念珠菌活性。在本研究中,我们研究了 CTP 对六种医学相关的、抗真菌耐药的 NAC 的作用机制,包括 C.auris、C.glabrata、C.haemulonii、C.krusei、C.parapsilosis 和 C.tropicalis。CTP 在抑制线粒体脱氢酶方面表现出明显的功效,导致细胞内活性氧生成增加。碘化丙啶的被动掺入证明了 CTP 处理对质膜造成了严重破坏,TUNEL 试验也显示了 CTP 会诱导 DNA 断裂。CTP 处理后 NAC 的扫描电子显微镜图像进一步显示了真菌表面形态的深刻变化,包括内陷、空洞和裂解。这些表面修饰极大地影响了念珠菌细胞粘附到聚苯乙烯表面并形成牢固生物膜结构的能力。此外,CTP 还能有效分解这些 NAC 形成的成熟生物膜。总之,CTP 是开发新型抗真菌药物的一个很有前景的途径,这种药物具有创新的作用机制,可对付对临床常用抗真菌药物具有抗药性的临床相关 NAC。
{"title":"Unveiling the antifungal mechanisms of CTP, a new copper(II)-theophylline/1,10-phenanthroline complex, on drug-resistant non-albicans Candida species","authors":"Heloisa F. Frota,&nbsp;Pedro F. Barbosa,&nbsp;Carolline M. A. Lorentino,&nbsp;Lorena R. F. Affonso,&nbsp;Lívia S. Ramos,&nbsp;Simone S. C. Oliveira,&nbsp;Lucieri O. P. Souza,&nbsp;Olufunso O. Abosede,&nbsp;Adeniyi S. Ogunlaja,&nbsp;Marta H. Branquinha,&nbsp;André L. S. Santos","doi":"10.1007/s10534-024-00605-1","DOIUrl":"10.1007/s10534-024-00605-1","url":null,"abstract":"<div><p><i>Candida</i> species undeniably rank as the most prevalent opportunistic human fungal pathogens worldwide, with <i>Candida albicans</i> as the predominant representative. However, the emergence of non-<i>albicans Candida</i> species (NACs) has marked a significant shift, accompanied by rising incidence rates and concerning trends of antifungal resistance. The search for new strategies to combat antifungal-resistant <i>Candida</i> strains is of paramount importance. Recently, our research group reported the anti-<i>Candida</i> activity of a coordination compound containing copper(II) complexed with theophylline (theo) and 1,10-phenanthroline (phen), known as “CTP” – Cu(theo)<sub>2</sub>phen(H<sub>2</sub>O).5H<sub>2</sub>O. In the present work, we investigated the mechanisms of action of CTP against six medically relevant, antifungal-resistant NACs, including <i>C. auris</i>, <i>C. glabrata</i>, <i>C. haemulonii</i>, <i>C. krusei</i>, <i>C. parapsilosis</i> and <i>C. tropicalis</i>. CTP demonstrated significant efficacy in inhibiting mitochondrial dehydrogenases, leading to heightened intracellular reactive oxygen species production. CTP treatment resulted in substantial damage to the plasma membrane, as evidenced by the passive incorporation of propidium iodide, and induced DNA fragmentation as revealed by the TUNEL assay. Scanning electron microscopy images of post-CTP treatment NACs further illustrated profound alterations in the fungal surface morphology, including invaginations, cavitations and lysis. These surface modifications significantly impacted the ability of <i>Candida</i> cells to adhere to a polystyrene surface and to form robust biofilm structures. Moreover, CTP was effective in disassembling mature biofilms formed by these NACs. In conclusion, CTP represents a promising avenue for the development of novel antifungals with innovative mechanisms of action against clinically relevant NACs that are resistant to antifungals commonly used in clinical settings.</p></div>","PeriodicalId":491,"journal":{"name":"Biometals","volume":"37 5","pages":"1237 - 1253"},"PeriodicalIF":4.1,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141316403","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The role of ferroptosis in DM-induced liver injury 铁蛋白沉积在 DM 引起的肝损伤中的作用
IF 4.1 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-06-14 DOI: 10.1007/s10534-024-00600-6
Keping Wu, Jiasi Chen, Jiawen Lin, Enyi Zhu, Xiaochang Xu, Xiuhong Yan, Lang Ju, Mingcheng Huang, Yimin Zhang

The liver damage caused by Diabetes Mellitus (DM) has attracted increasing attention in recent years. Liver injury in DM can be caused by ferroptosis, a form of cell death caused by iron overload. However, the role of iron transporters in this context is still not clear. Herein, we attempted to shed light on the pathophysiological mechanism of ferroptosis. DM was induced in 8-week-old male rats by streptozotocin (STZ) before assessment of the degree of liver injury. Together with histopathological changes, variations in glutathione peroxidase 4 (GPX4), glutathione (GSH), superoxide dismutase (SOD), transferrin receptor 1 (TFR1), ferritin heavy chain (FTH), ferritin light chain (FTL), ferroportin and Prussian blue staining, were monitored in rat livers before and after treatment with Fer-1. In the liver of STZ-treated rats, GSH and SOD levels decreased, whereas those of malondialdehyde (MDA) increased. Expression of TFR1, FTH and FTL increased whereas that of glutathione peroxidase 4 (GPX4) and ferroportin did not change significantly. Prussian blue staining showed that iron levels increased. Histopathology showed liver fibrosis and decreased glycogen content. Fer-1 treatment reduced iron and MDA levels but GSH and SOD levels were unchanged. Expression of FTH and FTL was reduced whereas that of ferroportin showed a mild decrease. Fer-1 treatment alleviated liver fibrosis, increased glycogen content and mildly improved liver function. Our study demonstrates that ferroptosis is involved in DM-induced liver injury. Regulating the levels of iron transporters may become a new therapeutic strategy in ferroptosis-induced liver injury.

近年来,糖尿病(DM)引起的肝损伤日益受到关注。DM的肝损伤可由铁中毒引起,铁中毒是铁超载导致的一种细胞死亡形式。然而,铁转运体在其中的作用仍不明确。在此,我们试图揭示铁变态反应的病理生理机制。在评估肝损伤程度之前,先用链脲佐菌素(STZ)诱导 8 周大的雄性大鼠发生 DM。在使用 Fer-1 治疗前后,大鼠肝脏中的谷胱甘肽过氧化物酶 4 (GPX4)、谷胱甘肽 (GSH)、超氧化物歧化酶 (SOD)、转铁蛋白受体 1 (TFR1)、铁蛋白重链 (FTH)、铁蛋白轻链 (FTL)、铁蛋白和普鲁士蓝染色的变化与组织病理学变化一起被监测。在 STZ 处理的大鼠肝脏中,GSH 和 SOD 水平下降,而丙二醛(MDA)水平上升。TFR1、FTH和FTL的表达量增加,而谷胱甘肽过氧化物酶4(GPX4)和铁蛋白的表达量没有明显变化。普鲁士蓝染色显示铁含量增加。组织病理学显示肝纤维化和糖原含量降低。Fer-1 治疗降低了铁和 MDA 水平,但 GSH 和 SOD 水平没有变化。FTH 和 FTL 的表达量减少,而铁蛋白的表达量则轻度下降。Fer-1 治疗缓解了肝纤维化,增加了糖原含量,并轻度改善了肝功能。我们的研究表明,铁蛋白沉积参与了 DM 诱导的肝损伤。调节铁转运体的水平可能成为治疗铁变态反应诱导的肝损伤的一种新策略。
{"title":"The role of ferroptosis in DM-induced liver injury","authors":"Keping Wu,&nbsp;Jiasi Chen,&nbsp;Jiawen Lin,&nbsp;Enyi Zhu,&nbsp;Xiaochang Xu,&nbsp;Xiuhong Yan,&nbsp;Lang Ju,&nbsp;Mingcheng Huang,&nbsp;Yimin Zhang","doi":"10.1007/s10534-024-00600-6","DOIUrl":"10.1007/s10534-024-00600-6","url":null,"abstract":"<div><p>The liver damage caused by Diabetes Mellitus (DM) has attracted increasing attention in recent years. Liver injury in DM can be caused by ferroptosis, a form of cell death caused by iron overload. However, the role of iron transporters in this context is still not clear. Herein, we attempted to shed light on the pathophysiological mechanism of ferroptosis. DM was induced in 8-week-old male rats by streptozotocin (STZ) before assessment of the degree of liver injury. Together with histopathological changes, variations in glutathione peroxidase 4 (GPX4), glutathione (GSH), superoxide dismutase (SOD), transferrin receptor 1 (TFR1), ferritin heavy chain (FTH), ferritin light chain (FTL), ferroportin and Prussian blue staining, were monitored in rat livers before and after treatment with Fer-1. In the liver of STZ-treated rats, GSH and SOD levels decreased, whereas those of malondialdehyde (MDA) increased. Expression of TFR1, FTH and FTL increased whereas that of glutathione peroxidase 4 (GPX4) and ferroportin did not change significantly. Prussian blue staining showed that iron levels increased. Histopathology showed liver fibrosis and decreased glycogen content. Fer-1 treatment reduced iron and MDA levels but GSH and SOD levels were unchanged. Expression of FTH and FTL was reduced whereas that of ferroportin showed a mild decrease. Fer-1 treatment alleviated liver fibrosis, increased glycogen content and mildly improved liver function. Our study demonstrates that ferroptosis is involved in DM-induced liver injury. Regulating the levels of iron transporters may become a new therapeutic strategy in ferroptosis-induced liver injury.</p></div>","PeriodicalId":491,"journal":{"name":"Biometals","volume":"37 5","pages":"1191 - 1200"},"PeriodicalIF":4.1,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141316402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis of biologically active cefpodoxime and vanillin-based schiff base metal complexes with the detailed biological evaluations 合成具有生物活性的头孢泊肟和香草醛基雪夫碱金属配合物,并进行详细的生物学评价。
IF 4.1 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-06-12 DOI: 10.1007/s10534-024-00601-5
Naeem Razaq, Amina Asghar, Amna Mumtaz, Samiah H. Al-Mijalli, Mehr un Nisa, Tauheeda Riaz, Munawar Iqbal, Bilal Shahid

Schiff bases of existing antimicrobial drugs are an area, which is still to be comprehensively explored to improve drug efficiency against consistently resisting bacterial species. In this study, we have targeted a new and eco-friendly method of condensation reaction that allows the "green synthesis" as well as improved biological efficacy. The transition metal complexes of cefpodoxime with well-enhanced biological activities were synthesized. The condensation reaction product of cefpodoxime and vanillin was further reacted with suitable metal salts of [Mn (II), Cu (II), Fe (II), Zn (II), and Ni (II)] with 1:2 molar ratio (metal: ligand). The characterization of all the products were carried out by using UV–Visible, elemental analyzer, FTIR, 1H-NMR, ICP-OES, and LC–MS. Electronic data obtained by UV–Visible proved the octahedral geometry of metal complexes. The biological activities Schiff base ligand and its transition metal complexes were tested by using in-vitro anti-bacterial analysis against various Gram-negative, as well as Gram-positive bacterial strains. Proteinase and protein denaturation inhibition assays were utilized to evaluate the products in-vitro anti-inflammatory activities. The in vitro antioxidant activity of the ligand and its complexes was evaluated by utilizing the 2,2-diphenyl-1-picrylhydrazyl (DPPH) in-vitro method. The final results proved metal complexes to be more effective against bacterial microorganisms as compared to respective parent drug as well as their free ligands. Patch Dock, a molecular docking tool, was used to dock complexes 1a-5e with the crystal structure of GlcN-6-P synthase (ID: 1MOQ). According to the docking results, complex 2b exhibited a highest score (8,882; ACE = –580.43 kcal/mol) that is well correlated with a high inhibition as compared to other complexes which corresponds to the antibacterial screening outcomes.

现有抗菌药物的希夫碱是一个仍有待全面探索的领域,以提高药物对持续耐药细菌的疗效。在这项研究中,我们采用了一种新型、环保的缩合反应方法,既能实现 "绿色合成",又能提高生物药效。我们合成了具有良好生物活性的头孢泊肟过渡金属配合物。头孢泊肟和香兰素的缩合反应产物与合适的金属盐[Mn (II)、Cu (II)、Fe (II)、Zn (II)和Ni (II)]以 1:2 的摩尔比(金属:配体)进一步反应。所有产物的表征都是通过紫外可见光、元素分析仪、傅立叶变换红外光谱、1H-NMR、ICP-OES 和 LC-MS 进行的。紫外可见光获得的电子数据证明了金属配合物的八面体几何形状。通过对各种革兰氏阴性和阳性细菌菌株进行体外抗菌分析,测试了希夫碱配体及其过渡金属配合物的生物活性。利用蛋白酶和蛋白质变性抑制试验评估了产品的体外抗炎活性。利用 2,2-二苯基-1-苦基肼(DPPH)体外法评估了配体及其复合物的体外抗氧化活性。最终结果表明,与各自的母体药物及其游离配体相比,金属配合物对细菌微生物更有效。利用分子对接工具 Patch Dock 将 1a-5e 复合物与 GlcN-6-P 合酶(ID:1MOQ)的晶体结构对接。根据对接结果,复合物 2b 的得分最高(8,882;ACE = -580.43 kcal/mol),与其他复合物相比,它具有较高的抑制作用,这与抗菌筛选结果相符。
{"title":"Synthesis of biologically active cefpodoxime and vanillin-based schiff base metal complexes with the detailed biological evaluations","authors":"Naeem Razaq,&nbsp;Amina Asghar,&nbsp;Amna Mumtaz,&nbsp;Samiah H. Al-Mijalli,&nbsp;Mehr un Nisa,&nbsp;Tauheeda Riaz,&nbsp;Munawar Iqbal,&nbsp;Bilal Shahid","doi":"10.1007/s10534-024-00601-5","DOIUrl":"10.1007/s10534-024-00601-5","url":null,"abstract":"<div><p>Schiff bases of existing antimicrobial drugs are an area, which is still to be comprehensively explored to improve drug efficiency against consistently resisting bacterial species. In this study, we have targeted a new and eco-friendly method of condensation reaction that allows the \"green synthesis\" as well as improved biological efficacy. The transition metal complexes of cefpodoxime with well-enhanced biological activities were synthesized. The condensation reaction product of cefpodoxime and vanillin was further reacted with suitable metal salts of [Mn (II), Cu (II), Fe (II), Zn (II), and Ni (II)] with 1:2 molar ratio (metal: ligand). The characterization of all the products were carried out by using UV–Visible, elemental analyzer, FTIR, <sup>1</sup>H-NMR, ICP-OES, and LC–MS. Electronic data obtained by UV–Visible proved the octahedral geometry of metal complexes. The biological activities Schiff base ligand and its transition metal complexes were tested by using <i>in-vitro</i> anti-bacterial analysis against various Gram-negative, as well as Gram-positive bacterial strains. Proteinase and protein denaturation inhibition assays were utilized to evaluate the products <i>in-vitro</i> anti-inflammatory activities. The in vitro antioxidant activity of the ligand and its complexes was evaluated by utilizing the 2,2-diphenyl-1-picrylhydrazyl (DPPH) <i>in-vitro</i> method. The final results proved metal complexes to be more effective against bacterial microorganisms as compared to respective parent drug as well as their free ligands. <i>Patch Dock</i>, a molecular docking tool, was used to dock complexes 1a-5e with the crystal structure of GlcN-6-P synthase (ID: 1MOQ). According to the docking results, complex <b>2b</b> exhibited a highest score (8,882; ACE = –580.43 kcal/mol) that is well correlated with a high inhibition as compared to other complexes which corresponds to the antibacterial screening outcomes.</p></div>","PeriodicalId":491,"journal":{"name":"Biometals","volume":"37 5","pages":"1201 - 1224"},"PeriodicalIF":4.1,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141305090","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Arsenite tolerance and removal potential of the indigenous halophilic bacterium, Halomonas elongata SEK2 本地嗜卤细菌 Halomonas elongata SEK2 的亚砷酸盐耐受性和去除潜力。
IF 4.1 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-06-01 DOI: 10.1007/s10534-024-00612-2
Nazanin Tavoosi, Abbas Akhavan Sepahi, Vahid Kiarostami, Mohammad Ali Amoozegar

The indigenous halophilic arsenite-resistant bacterium Halomonas elongata strain SEK2 isolated from the high saline soil of Malek Mohammad hole, Lut Desert, Iran, could tolerate high concentrations of arsenate (As5+) and arsenite (As3+) up to 800 and 40 mM in the SW-10 agar medium, respectively. The isolated strain was able to tolerate considerable concentrations of other toxic heavy metals and oxyanions, including Cadmium (Cd2+), Chromate (Cr6+), lead (Pb2+), and selenite (Se4+), regarding the high salinity of the culture media (with a total salt concentration of 10% (w/v)), the tolerance potential of the isolate SEK2 was unprecedented. The bioremoval potential of the isolate SEK2 was examined through the Silver diethyldithiocarbamate (SDDC) method and demonstrated that the strain SEK2 could remove 60% of arsenite from arsenite-containing growth medium after 48 h of incubation without converting it to arsenate. The arsenite adsorption or uptake by the halophilic bacterium was investigated and substantiated through Fourier-transform infrared spectroscopy (FTIR), Scanning Electron Microscope (SEM), and Energy Dispersive X-ray (EDX) analyses. Furthermore, Transmission electron microscope (TEM) analysis revealed ultra-structural alterations in the presence of arsenite that could be attributed to intracellular accumulation of arsenite by the bacterial cell. Genome sequencing analysis revealed the presence of arsenite resistance as well as other heavy metals/oxyanion resistance genes in the genome of this bacterial strain. Therefore, Halomonas elongata strain SEK2 was identified as an arsenite-resistant halophilic bacterium for the first time that could be used for arsenite bioremediation in saline arsenite-polluted environments.

从伊朗卢特沙漠马利克-穆罕默德洞的高盐度土壤中分离出的本地嗜卤抗砷细菌 Halomonas elongata 菌株 SEK2 在 SW-10 琼脂培养基中可耐受分别高达 800 和 40 mM 的高浓度砷酸盐(As5+)和亚砷酸盐(As3+)。分离出的菌株还能耐受相当高浓度的其他有毒重金属和氧阴离子,包括镉(Cd2+)、铬酸盐(Cr6+)、铅(Pb2+)和亚硒酸盐(Se4+),在培养基盐度较高(总盐浓度为 10%(w/v))的情况下,分离出的 SEK2 的耐受潜力是前所未有的。通过二乙基二硫代氨基甲酸银(SDDC)法检测了分离株 SEK2 的生物去除潜力,结果表明,培养 48 小时后,分离株 SEK2 可从含亚砷酸盐的生长培养基中去除 60% 的亚砷酸盐,而不会将其转化为砷酸盐。傅立叶变换红外光谱(FTIR)、扫描电子显微镜(SEM)和能量色散 X 射线(EDX)分析证实了嗜卤细菌对亚砷酸盐的吸附或吸收。此外,透射电子显微镜(TEM)分析表明,在亚砷酸盐存在的情况下,细菌细胞的超结构发生了改变,这可能是由于亚砷酸盐在细胞内积累所致。基因组测序分析表明,该细菌菌株的基因组中存在亚砷酸盐抗性基因以及其他重金属/氧化物抗性基因。因此,Halomonas elongata 菌株 SEK2 被首次鉴定为耐亚砷酸盐的嗜卤细菌,可用于亚砷酸盐污染的盐碱环境的生物修复。
{"title":"Arsenite tolerance and removal potential of the indigenous halophilic bacterium, Halomonas elongata SEK2","authors":"Nazanin Tavoosi,&nbsp;Abbas Akhavan Sepahi,&nbsp;Vahid Kiarostami,&nbsp;Mohammad Ali Amoozegar","doi":"10.1007/s10534-024-00612-2","DOIUrl":"10.1007/s10534-024-00612-2","url":null,"abstract":"<div><p>The indigenous halophilic arsenite-resistant bacterium <i>Halomonas elongata</i> strain SEK2 isolated from the high saline soil of Malek Mohammad hole, Lut Desert, Iran, could tolerate high concentrations of arsenate (As<sup>5+</sup>) and arsenite (As<sup>3+</sup>) up to 800 and 40 mM in the SW-10 agar medium, respectively. The isolated strain was able to tolerate considerable concentrations of other toxic heavy metals and oxyanions, including Cadmium (Cd<sup>2+</sup>), Chromate (Cr<sup>6+</sup>), lead (Pb<sup>2+</sup>), and selenite (Se<sup>4+</sup>), regarding the high salinity of the culture media (with a total salt concentration of 10% (w/v)), the tolerance potential of the isolate SEK2 was unprecedented. The bioremoval potential of the isolate SEK2 was examined through the Silver diethyldithiocarbamate (SDDC) method and demonstrated that the strain SEK2 could remove 60% of arsenite from arsenite-containing growth medium after 48 h of incubation without converting it to arsenate. The arsenite adsorption or uptake by the halophilic bacterium was investigated and substantiated through Fourier-transform infrared spectroscopy (FTIR), Scanning Electron Microscope (SEM), and Energy Dispersive X-ray (EDX) analyses. Furthermore, Transmission electron microscope (TEM) analysis revealed ultra-structural alterations in the presence of arsenite that could be attributed to intracellular accumulation of arsenite by the bacterial cell. Genome sequencing analysis revealed the presence of arsenite resistance as well as other heavy metals/oxyanion resistance genes in the genome of this bacterial strain. Therefore, <i>Halomonas elongata</i> strain SEK2 was identified as an arsenite-resistant halophilic bacterium for the first time that could be used for arsenite bioremediation in saline arsenite-polluted environments.</p></div>","PeriodicalId":491,"journal":{"name":"Biometals","volume":"37 6","pages":"1393 - 1409"},"PeriodicalIF":4.1,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141185845","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Biometals
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1