首页 > 最新文献

Biometals最新文献

英文 中文
Effect of primary copper metabolism disturbance on elemental, protein, and lipid composition of the organs in Jackson toxic milk mouse. 初级铜代谢紊乱对杰克逊毒奶鼠器官元素、蛋白质和脂质组成的影响
IF 4.1 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-04 DOI: 10.1007/s10534-024-00640-y
Krzysztof Hadrian, Magdalena Szczerbowska-Boruchowska, Artur Surówka, Olga Ciepiela, Tomasz Litwin, Adam Przybyłkowski

Toxic milk (txJ) is an autosomal recessive mutation in the Atp7b gene in the C3H/HeJ strain, observed at The Jackson Laboratory in Maine, USA. TxJ mice exhibit symptoms similar to those of human Wilson's disease (WD). The study aimed to verify organ involvement in a mouse model of WD. TxJ mice and control animals were sacrificed at 2, 4, 8, and 14 months of age. Total X-ray Fluorescence Spectroscopy (TXRF) was used to determine the elemental concentration in organs. Tissue chemical composition was measured by Fourier Transform Infrared Spectroscopy (FTIR). Additionally, hybrid mapping of FTIR and microXRF was performed. Elevated concentrations of Cu were observed in the liver, striatum, eye, heart, and duodenum of txJ mice across age groups. In the striatum of the oldest txJ mice, there was lower lipid content and a higher fraction of saturated fats. The secondary structure of striatum proteins was disturbed in txJ mice. In the livers of txJ mice, higher concentrations of saturated fats and disturbances in the secondary structure of proteins were observed. The concentration of neurofilaments was significantly higher in txJ serum. The distribution of Cu deposits in brains was uniform with no prevalence in any anatomic structure in either group, but significant protein structure changes were observed exclusively in the striatum of txJ. In this txJ animal model of WD, pathologic copper accumulation occurs in the duodenum, heart, and eye tissues. Increased copper concentration in the liver and brain results in increased saturated fat content and disturbances in secondary protein structure, leading to hepatic injury and neurodegeneration.

毒性牛奶(txJ)是一种常染色体隐性突变,发生在美国缅因州杰克逊实验室的 C3H/HeJ 品系中的 Atp7b 基因上。TxJ 小鼠表现出与人类威尔逊氏病(WD)相似的症状。该研究旨在验证 WD 小鼠模型的器官受累情况。TxJ小鼠和对照组动物分别在2、4、8和14月龄时被处死。采用全 X 射线荧光光谱法(TXRF)测定器官中的元素浓度。傅立叶变换红外光谱法(FTIR)测量了组织的化学成分。此外,还进行了傅立叶变换红外光谱和 microXRF 的混合绘图。在各年龄组 txJ 小鼠的肝脏、纹状体、眼睛、心脏和十二指肠中观察到铜浓度升高。在年龄最大的 txJ 小鼠的纹状体中,脂质含量较低,饱和脂肪的比例较高。txJ小鼠纹状体蛋白质的二级结构受到干扰。在 txJ 小鼠的肝脏中,观察到饱和脂肪浓度较高,蛋白质二级结构紊乱。txJ血清中神经丝的浓度明显更高。铜沉积物在大脑中的分布是均匀的,在两组小鼠的任何解剖结构中都不普遍存在,但只在 txJ 的纹状体中观察到明显的蛋白质结构变化。在这种 txJ WD 动物模型中,十二指肠、心脏和眼组织中出现了病理性铜蓄积。肝脏和大脑中铜浓度的增加会导致饱和脂肪含量增加和二级蛋白结构紊乱,从而导致肝损伤和神经变性。
{"title":"Effect of primary copper metabolism disturbance on elemental, protein, and lipid composition of the organs in Jackson toxic milk mouse.","authors":"Krzysztof Hadrian, Magdalena Szczerbowska-Boruchowska, Artur Surówka, Olga Ciepiela, Tomasz Litwin, Adam Przybyłkowski","doi":"10.1007/s10534-024-00640-y","DOIUrl":"https://doi.org/10.1007/s10534-024-00640-y","url":null,"abstract":"<p><p>Toxic milk (txJ) is an autosomal recessive mutation in the Atp7b gene in the C3H/HeJ strain, observed at The Jackson Laboratory in Maine, USA. TxJ mice exhibit symptoms similar to those of human Wilson's disease (WD). The study aimed to verify organ involvement in a mouse model of WD. TxJ mice and control animals were sacrificed at 2, 4, 8, and 14 months of age. Total X-ray Fluorescence Spectroscopy (TXRF) was used to determine the elemental concentration in organs. Tissue chemical composition was measured by Fourier Transform Infrared Spectroscopy (FTIR). Additionally, hybrid mapping of FTIR and microXRF was performed. Elevated concentrations of Cu were observed in the liver, striatum, eye, heart, and duodenum of txJ mice across age groups. In the striatum of the oldest txJ mice, there was lower lipid content and a higher fraction of saturated fats. The secondary structure of striatum proteins was disturbed in txJ mice. In the livers of txJ mice, higher concentrations of saturated fats and disturbances in the secondary structure of proteins were observed. The concentration of neurofilaments was significantly higher in txJ serum. The distribution of Cu deposits in brains was uniform with no prevalence in any anatomic structure in either group, but significant protein structure changes were observed exclusively in the striatum of txJ. In this txJ animal model of WD, pathologic copper accumulation occurs in the duodenum, heart, and eye tissues. Increased copper concentration in the liver and brain results in increased saturated fat content and disturbances in secondary protein structure, leading to hepatic injury and neurodegeneration.</p>","PeriodicalId":491,"journal":{"name":"Biometals","volume":" ","pages":""},"PeriodicalIF":4.1,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142370572","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DFT and TD-DFT studies to elucidate the configurational isomers of ferric aerobactin, ferric petrobactin, and their ferric photoproducts. 通过 DFT 和 TD-DFT 研究阐明铁质气孔菌素、铁质岩石菌素及其铁质光产物的构型异构体。
IF 4.1 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-02 DOI: 10.1007/s10534-024-00638-6
Sasha Gardner, Carl J Carrano, Yuezhi Mao, Frithjof C Küpper, Andrew L Cooksy

Iron-chelating siderophores such as aerobactin and petrobactin are produced by marine bacteria to sequester iron under low iron stress. Those that contain a citrate moiety undergo light-catalyzed ligand-to-metal charge transfer, inducing decarboxylation and formation of photoproducts. In this work, we employed density functional theory to obtain the optimized geometries and determine the relative energies and geometric parameters of different configurations of Fe(III)-coordinated aerobactin, petrobactin, and their photoproducts. Time-dependent density functional theory was then used to compute the UV-Vis absorption spectra of these species, and the comparison against experimental spectra further elucidated the structural configurations most likely to be adopted by these compounds. Frequency calculations provided Fe-O force constants on the same order as other siderophores. The relative energies and predicted spectra support the cis-cis C-fac configuration for ferric aerobactin and the cis-trans C-mer configuration for its photoproduct, while only mild support is found for specific configurations of the ferric petrobactin structures (meta-mer and meta-fac for the precursor, cis-cis para-fac for the photoproduct). The predicted ferric petrobactin spectra are found to be fairly insensitive to the configuration of the ferric complex.

在低铁压力下,海洋细菌会产生螯合铁的苷元,如气孔菌素和岩石菌素,以螯合铁。含有柠檬酸盐分子的苷元会在光催化下发生配体到金属的电荷转移,诱导脱羧并形成光产物。在这项工作中,我们采用密度泛函理论获得了优化的几何结构,并确定了不同构型的配位铁(III)配位气杆菌素、岩石杆菌素及其光产物的相对能量和几何参数。然后,利用与时间相关的密度泛函理论计算了这些物种的紫外可见吸收光谱,通过与实验光谱的比较,进一步阐明了这些化合物最有可能采用的结构构型。频率计算得出的 Fe-O 力常数与其他嗜苷化合物相同。相对能量和预测光谱支持气孔铁蛋白的顺式-顺式 C-fac构型,支持其光反应产物的顺式-反式 C-mer构型,而石化铁蛋白结构的特定构型(前体为元-mer和元-fac,光反应产物为顺式-顺式对-fac)仅得到轻微支持。研究发现,预测的岩白菜素铁光谱对铁络合物的构型相当不敏感。
{"title":"DFT and TD-DFT studies to elucidate the configurational isomers of ferric aerobactin, ferric petrobactin, and their ferric photoproducts.","authors":"Sasha Gardner, Carl J Carrano, Yuezhi Mao, Frithjof C Küpper, Andrew L Cooksy","doi":"10.1007/s10534-024-00638-6","DOIUrl":"https://doi.org/10.1007/s10534-024-00638-6","url":null,"abstract":"<p><p>Iron-chelating siderophores such as aerobactin and petrobactin are produced by marine bacteria to sequester iron under low iron stress. Those that contain a citrate moiety undergo light-catalyzed ligand-to-metal charge transfer, inducing decarboxylation and formation of photoproducts. In this work, we employed density functional theory to obtain the optimized geometries and determine the relative energies and geometric parameters of different configurations of Fe(III)-coordinated aerobactin, petrobactin, and their photoproducts. Time-dependent density functional theory was then used to compute the UV-Vis absorption spectra of these species, and the comparison against experimental spectra further elucidated the structural configurations most likely to be adopted by these compounds. Frequency calculations provided Fe-O force constants on the same order as other siderophores. The relative energies and predicted spectra support the cis-cis C-fac configuration for ferric aerobactin and the cis-trans C-mer configuration for its photoproduct, while only mild support is found for specific configurations of the ferric petrobactin structures (meta-mer and meta-fac for the precursor, cis-cis para-fac for the photoproduct). The predicted ferric petrobactin spectra are found to be fairly insensitive to the configuration of the ferric complex.</p>","PeriodicalId":491,"journal":{"name":"Biometals","volume":" ","pages":""},"PeriodicalIF":4.1,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142360884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Trace elements and metal nanoparticles: mechanistic approaches to mitigating chemotherapy-induced toxicity-a review of literature evidence. 微量元素和金属纳米颗粒:减轻化疗毒性的机理方法--文献证据综述。
IF 4.1 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-30 DOI: 10.1007/s10534-024-00637-7
Ademola C Famurewa, Mina Y George, Cletus A Ukwubile, Sachindra Kumar, Mehta V Kamal, Vijetha S Belle, Eman M Othman, Sreedhara Ranganath K Pai

Anticancer chemotherapy (ACT) remains a cornerstone in cancer treatment, despite significant advances in pharmacology over recent decades. However, its associated side effect toxicity continues to pose a major concern for both oncology clinicians and patients, significantly impacting treatment protocols and patient quality of life. Current clinical strategies to mitigate ACT-induced toxicity have proven largely unsatisfactory, leaving a critical unmet need to block toxicity mechanisms without diminishing ACT's therapeutic efficacy. This review aims to document the molecular mechanisms underlying ACT toxicity and highlight research efforts exploring the protective effects of trace elements (TEs) and their nanoparticles (NPs) against these mechanisms. Our literature review reveals that the primary driver of ACT toxicity is redox imbalance, which triggers oxidative inflammation, apoptosis, endoplasmic reticulum stress, mitochondrial dysfunction, autophagy, and dysregulation of signaling pathways such as PI3K/mTOR/Akt. Studies suggest that TEs, including zinc, selenium, boron, manganese, and molybdenum, and their NPs, can potentially counteract ACT-induced toxicity by inhibiting oxidative stress-mediated pathways, including NF-κB/TLR4/MAPK/NLRP3, STAT-3/NLRP3, Bcl-2/Bid/p53/caspases, and LC3/Beclin-1/CHOP/ATG6, while also upregulating protective signaling pathways like Sirt1/PPAR-γ/PGC-1α/FOXO-3 and Nrf2/HO-1/ARE. However, evidence regarding the roles of lncRNA and the Wnt/β-catenin pathway in ACT toxicity remains inconsistent, and the impact of TEs and NPs on ACT efficacy is not fully understood. Further research is needed to confirm the protective effects of TEs and their NPs against ACT toxicity in cancer patients. In summary, TEs and their NPs present a promising avenue as adjuvant agents for preventing non-target organ toxicity induced by ACT.

尽管近几十年来药理学取得了重大进展,但抗癌化疗(ACT)仍是癌症治疗的基石。然而,与之相关的副作用毒性仍然是肿瘤临床医生和患者的一大担忧,严重影响了治疗方案和患者的生活质量。事实证明,目前减轻 ACT 引起的毒性的临床策略在很大程度上并不令人满意,因此,在不降低 ACT 疗效的前提下阻断毒性机制的关键需求尚未得到满足。本综述旨在记录 ACT 毒性的分子机制,并重点介绍探索微量元素 (TE) 及其纳米颗粒 (NP) 对这些机制的保护作用的研究工作。我们的文献综述显示,ACT毒性的主要驱动因素是氧化还原失衡,它会引发氧化性炎症、细胞凋亡、内质网应激、线粒体功能障碍、自噬以及 PI3K/mTOR/Akt 等信号通路的失调。研究表明,包括锌、硒、硼、锰和钼在内的 TE 及其 NPs 有可能通过抑制氧化应激介导的途径来抵消 ACT 诱导的毒性、包括NF-κB/TLR4/MAPK/NLRP3、STAT-3/NLRP3、Bcl-2/Bid/p53/caspases和LC3/Beclin-1/CHOP/ATG6,同时还能上调保护性信号通路,如Sirt1/PPAR-γ/PGC-1α/FOXO-3和Nrf2/HO-1/ARE。然而,有关 lncRNA 和 Wnt/β-catenin 通路在 ACT 毒性中的作用的证据仍不一致,而且 TEs 和 NPs 对 ACT 疗效的影响也不完全清楚。要证实 TEs 及其 NPs 对癌症患者 ACT 毒性的保护作用,还需要进一步的研究。总之,TEs 及其 NPs 是一种很有前景的辅助药物,可用于预防 ACT 引起的非靶器官毒性。
{"title":"Trace elements and metal nanoparticles: mechanistic approaches to mitigating chemotherapy-induced toxicity-a review of literature evidence.","authors":"Ademola C Famurewa, Mina Y George, Cletus A Ukwubile, Sachindra Kumar, Mehta V Kamal, Vijetha S Belle, Eman M Othman, Sreedhara Ranganath K Pai","doi":"10.1007/s10534-024-00637-7","DOIUrl":"https://doi.org/10.1007/s10534-024-00637-7","url":null,"abstract":"<p><p>Anticancer chemotherapy (ACT) remains a cornerstone in cancer treatment, despite significant advances in pharmacology over recent decades. However, its associated side effect toxicity continues to pose a major concern for both oncology clinicians and patients, significantly impacting treatment protocols and patient quality of life. Current clinical strategies to mitigate ACT-induced toxicity have proven largely unsatisfactory, leaving a critical unmet need to block toxicity mechanisms without diminishing ACT's therapeutic efficacy. This review aims to document the molecular mechanisms underlying ACT toxicity and highlight research efforts exploring the protective effects of trace elements (TEs) and their nanoparticles (NPs) against these mechanisms. Our literature review reveals that the primary driver of ACT toxicity is redox imbalance, which triggers oxidative inflammation, apoptosis, endoplasmic reticulum stress, mitochondrial dysfunction, autophagy, and dysregulation of signaling pathways such as PI3K/mTOR/Akt. Studies suggest that TEs, including zinc, selenium, boron, manganese, and molybdenum, and their NPs, can potentially counteract ACT-induced toxicity by inhibiting oxidative stress-mediated pathways, including NF-κB/TLR4/MAPK/NLRP3, STAT-3/NLRP3, Bcl-2/Bid/p53/caspases, and LC3/Beclin-1/CHOP/ATG6, while also upregulating protective signaling pathways like Sirt1/PPAR-γ/PGC-1α/FOXO-3 and Nrf2/HO-1/ARE. However, evidence regarding the roles of lncRNA and the Wnt/β-catenin pathway in ACT toxicity remains inconsistent, and the impact of TEs and NPs on ACT efficacy is not fully understood. Further research is needed to confirm the protective effects of TEs and their NPs against ACT toxicity in cancer patients. In summary, TEs and their NPs present a promising avenue as adjuvant agents for preventing non-target organ toxicity induced by ACT.</p>","PeriodicalId":491,"journal":{"name":"Biometals","volume":" ","pages":""},"PeriodicalIF":4.1,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142338780","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lead-induced changes in plant cell ultrastructure: an overview. 铅诱导的植物细胞超微结构变化:概述
IF 4.1 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-26 DOI: 10.1007/s10534-024-00639-5
Oumaima El Khattabi, Youssef Lamwati, Fatima Henkrar, Blanche Collin, Clement Levard, Fabrice Colin, Abdelaziz Smouni, Mouna Fahr

Lead (Pb) is one of the most harmful toxic metals and causes severe damage to plants even at low concentrations. Pb inhibits plant development, reduces photosynthesis rates, and causes metabolic disfunctions. Plant cells display these alterations in the form of abnormal morphological modifications resulting from ultrastructural changes in the cell wall, plasma membrane, chloroplast, endoplasmic reticulum, mitochondria, and nuclei. Depending on plant tolerance capacity, the ultrastructural changes could be either a sign of toxicity that limits plant development or an adaptive strategy to cope with Pb stress. This paper gathers data on Pb-induced changes in cell ultrastructure observed in many tolerant and hyperaccumulator plants and describes the ultrastructural changes that appear to be mechanisms to alleviate Pb toxicity. The different modifications caused by Pb in cell organelles are summarized and reinforced with hypotheses that provide an overview of plant responses to Pb stress and explain the physiological and morphological changes that occur in tolerant plants. These ultrastructural modifications could help assess the potential of plants for use in phytoremediation.

铅(Pb)是最有害的有毒金属之一,即使浓度很低也会对植物造成严重损害。铅会抑制植物的生长发育,降低光合作用的速率,并导致新陈代谢失调。植物细胞会因细胞壁、质膜、叶绿体、内质网、线粒体和细胞核的超微结构变化而出现异常形态改变。根据植物的耐受能力,超微结构变化既可能是限制植物发育的毒性信号,也可能是应对铅胁迫的适应策略。本文收集了在许多耐受和高积累植物中观察到的由铅引起的细胞超微结构变化的数据,并描述了似乎是减轻铅毒性机制的超微结构变化。文章总结了铅在细胞器中引起的不同变化,并提出了一些假设,这些假设概述了植物对铅胁迫的反应,并解释了耐受铅植物发生的生理和形态变化。这些超微结构变化有助于评估植物用于植物修复的潜力。
{"title":"Lead-induced changes in plant cell ultrastructure: an overview.","authors":"Oumaima El Khattabi, Youssef Lamwati, Fatima Henkrar, Blanche Collin, Clement Levard, Fabrice Colin, Abdelaziz Smouni, Mouna Fahr","doi":"10.1007/s10534-024-00639-5","DOIUrl":"https://doi.org/10.1007/s10534-024-00639-5","url":null,"abstract":"<p><p>Lead (Pb) is one of the most harmful toxic metals and causes severe damage to plants even at low concentrations. Pb inhibits plant development, reduces photosynthesis rates, and causes metabolic disfunctions. Plant cells display these alterations in the form of abnormal morphological modifications resulting from ultrastructural changes in the cell wall, plasma membrane, chloroplast, endoplasmic reticulum, mitochondria, and nuclei. Depending on plant tolerance capacity, the ultrastructural changes could be either a sign of toxicity that limits plant development or an adaptive strategy to cope with Pb stress. This paper gathers data on Pb-induced changes in cell ultrastructure observed in many tolerant and hyperaccumulator plants and describes the ultrastructural changes that appear to be mechanisms to alleviate Pb toxicity. The different modifications caused by Pb in cell organelles are summarized and reinforced with hypotheses that provide an overview of plant responses to Pb stress and explain the physiological and morphological changes that occur in tolerant plants. These ultrastructural modifications could help assess the potential of plants for use in phytoremediation.</p>","PeriodicalId":491,"journal":{"name":"Biometals","volume":" ","pages":""},"PeriodicalIF":4.1,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142338779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cytotoxic and ROS generation activity of anthraquinones chelate complexes with metal ions. 蒽醌类化合物与金属离子的螯合物的细胞毒性和 ROS 生成活性。
IF 4.1 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-21 DOI: 10.1007/s10534-024-00632-y
Viktor A Timoshnikov, Irina A Slepneva, Olga A Chinak, Olga Yu Selyutina, Nikolay E Polyakov

Anthraquinones (AQs) are very effective chemotherapeutic agent, however their fundamental shortcoming is high cardiotoxicity caused by reactive oxygen species (ROS). Therefore, development of improved antitumor drugs with enhanced efficacy but reduced side effects remains a high priority. In the present study we evaluated the cytotoxicity and ROS generation activity of chelate complex of redox-active anthraquinone 2-phenyl-4-(butylamino)naphtho[2,3-h]quinoline-7,12-dione (Q1) with iron and copper ions. Cytotoxicity study was performed using the lung cancer cell line A549 and breast cancer cell line MDA-MB-231. Q1 and Cu-Q1 complex demonstrate high activity in these experiments, but Fe-Q1 complex inactive. The ROS generation activity has been studied by EPR spin trapping technique using A549, MDA-MB-231 cell lines, and T lymphoblast cell line MOLT-4. It was shown that Q1 is able to penetrate into these cells and participate in redox reactions with the formation of a semiquinone radical. Fe(III) chelate complex formation results in much slower kinetics of ROS generation compared with pure Q1, which could be connected with a lower penetration through the cell membrane.

蒽醌类化合物(AQs)是非常有效的化疗药物,但其根本缺点是活性氧(ROS)导致的高心脏毒性。因此,开发疗效更好、副作用更小的改良型抗肿瘤药物仍是当务之急。在本研究中,我们评估了氧化还原活性蒽醌 2-苯基-4-(丁氨基)萘并[2,3-h]喹啉-7,12-二酮(Q1)与铁和铜离子的螯合物的细胞毒性和 ROS 生成活性。利用肺癌细胞株 A549 和乳腺癌细胞株 MDA-MB-231 进行了细胞毒性研究。在这些实验中,Q1 和 Cu-Q1 复合物表现出较高的活性,而 Fe-Q1 复合物则没有活性。利用 EPR 自旋捕获技术对 A549、MDA-MB-231 细胞系和 T 淋巴细胞系 MOLT-4 的 ROS 生成活性进行了研究。结果表明,Q1 能够渗入这些细胞并参与氧化还原反应,形成半醌自由基。与纯 Q1 相比,铁(III)螯合物的形成导致 ROS 生成的动力学速度大大降低,这可能与穿透细胞膜的能力较低有关。
{"title":"Cytotoxic and ROS generation activity of anthraquinones chelate complexes with metal ions.","authors":"Viktor A Timoshnikov, Irina A Slepneva, Olga A Chinak, Olga Yu Selyutina, Nikolay E Polyakov","doi":"10.1007/s10534-024-00632-y","DOIUrl":"https://doi.org/10.1007/s10534-024-00632-y","url":null,"abstract":"<p><p>Anthraquinones (AQs) are very effective chemotherapeutic agent, however their fundamental shortcoming is high cardiotoxicity caused by reactive oxygen species (ROS). Therefore, development of improved antitumor drugs with enhanced efficacy but reduced side effects remains a high priority. In the present study we evaluated the cytotoxicity and ROS generation activity of chelate complex of redox-active anthraquinone 2-phenyl-4-(butylamino)naphtho[2,3-h]quinoline-7,12-dione (Q1) with iron and copper ions. Cytotoxicity study was performed using the lung cancer cell line A549 and breast cancer cell line MDA-MB-231. Q1 and Cu-Q1 complex demonstrate high activity in these experiments, but Fe-Q1 complex inactive. The ROS generation activity has been studied by EPR spin trapping technique using A549, MDA-MB-231 cell lines, and T lymphoblast cell line MOLT-4. It was shown that Q1 is able to penetrate into these cells and participate in redox reactions with the formation of a semiquinone radical. Fe(III) chelate complex formation results in much slower kinetics of ROS generation compared with pure Q1, which could be connected with a lower penetration through the cell membrane.</p>","PeriodicalId":491,"journal":{"name":"Biometals","volume":" ","pages":""},"PeriodicalIF":4.1,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142278431","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Leptospira interrogans proteome's response to zinc highlights the potential involvement of this metal in translational-machinery and virulence. 讯号钩端螺旋体蛋白质组对锌的反应突显了这种金属在翻译机械和毒力方面的潜在参与。
IF 4.1 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-21 DOI: 10.1007/s10534-024-00634-w
Amanda Silva Hecktheuer, Cassia Moreira Santos, Fabienne Antunes Ferreira, Angela Silva Barbosa, Lourdes Isaac, Marilis Valle Marques, Ricardo Ruiz Mazzon

Leptospires, as motile Gram-negative bacteria, employ sophisticated strategies for efficient invasion and dissemination within their hosts. In response, hosts counteract pathogens through nutritional immunity, a concept involving the deprivation of essential metals such as zinc. Zinc, pivotal in modulating pathogen-host interactions, influences proteins structural, catalytic, and regulatory functions. A comprehensive understanding of how leptospires regulate intracellular zinc availability is crucial for deciphering their survival mechanisms. This study explores the proteomic profile of Leptospira interrogans sv. Copenhageni str. 10A cultivated in Ellinghausen-McCullough-Johnson-Harris medium supplemented with the zinc chelator TPA or ZnCl2. Among the 2161 proteins identified, 488 were subjected to scrutiny, revealing 102 less abundant and 81 more abundant in response to TPA. Of these 488 proteins, 164 were exclusive to the presence of TPA and 141 were exclusive to the zinc-enriched conditions. Differentially expressed proteins were classified into clusters of orthologous groups (COGs) with a distribution in metabolic functions (37.8%), information storage/processing (21.08%), cellular processes/signaling (28.04%), and poorly characterized proteins (10.65%). Differentially expressed proteins are putatively involved in processes like 1-carbon compound metabolism, folate biosynthesis, and amino acid/nucleotide synthesis. Zinc availability significantly impacted key processes putatively related to leptospires' interactions with their host, such as motility, biofilm formation, and immune escape. Under conditions of higher zinc concentration, ribosomal proteins, chaperones and components of transport systems were observed, highlighting interactions between regulatory networks responsive to zinc and iron in L. interrogans. This study not only revealed hypothetical proteins potentially related to zinc homeostasis, but also identified possible virulence mechanisms and pathogen-host adaptation strategies influenced by the availability of this metal. There is an urgent need, based on these data, for further in-depth studies aimed at detailing the role of zinc in these pathways and mechanisms, which may ultimately determine more effective therapeutic approaches to combat Leptospira infections.

钩端螺旋体作为能动的革兰氏阴性细菌,采用复杂的策略在宿主体内高效入侵和传播。作为回应,宿主通过营养免疫来抵御病原体,这一概念涉及剥夺锌等必需金属。锌在调节病原体与宿主的相互作用方面起着关键作用,它影响蛋白质的结构、催化和调节功能。全面了解钩端螺旋体如何调节细胞内锌的可用性对于破译其生存机制至关重要。本研究探讨了 Leptospira interrogans sv.10A 培养基中培养。在鉴定出的 2161 个蛋白质中,有 488 个接受了仔细检查,发现有 102 个蛋白质对 TPA 的反应量减少,81 个蛋白质对 TPA 的反应量增加。在这 488 个蛋白质中,有 164 个是 TPA 存在条件下的专属蛋白质,141 个是富锌条件下的专属蛋白质。差异表达的蛋白质被划分为同源群(COGs),分布在代谢功能(37.8%)、信息存储/处理(21.08%)、细胞过程/信号转导(28.04%)和特征不明显的蛋白质(10.65%)中。差异表达的蛋白质可能参与了一碳化合物代谢、叶酸生物合成和氨基酸/核苷酸合成等过程。锌的可用性极大地影响了钩端螺旋体与宿主相互作用的关键过程,如运动、生物膜的形成和免疫逃逸。在锌浓度较高的条件下,观察到了核糖体蛋白、伴侣蛋白和运输系统的成分,这突显了钩端螺旋体中对锌和铁敏感的调控网络之间的相互作用。这项研究不仅揭示了可能与锌平衡有关的假定蛋白,还发现了可能的毒力机制和病原体-宿主适应策略受到这种金属的影响。基于这些数据,迫切需要进一步深入研究,以详细了解锌在这些途径和机制中的作用,最终确定更有效的治疗方法来对抗钩端螺旋体感染。
{"title":"The Leptospira interrogans proteome's response to zinc highlights the potential involvement of this metal in translational-machinery and virulence.","authors":"Amanda Silva Hecktheuer, Cassia Moreira Santos, Fabienne Antunes Ferreira, Angela Silva Barbosa, Lourdes Isaac, Marilis Valle Marques, Ricardo Ruiz Mazzon","doi":"10.1007/s10534-024-00634-w","DOIUrl":"https://doi.org/10.1007/s10534-024-00634-w","url":null,"abstract":"<p><p>Leptospires, as motile Gram-negative bacteria, employ sophisticated strategies for efficient invasion and dissemination within their hosts. In response, hosts counteract pathogens through nutritional immunity, a concept involving the deprivation of essential metals such as zinc. Zinc, pivotal in modulating pathogen-host interactions, influences proteins structural, catalytic, and regulatory functions. A comprehensive understanding of how leptospires regulate intracellular zinc availability is crucial for deciphering their survival mechanisms. This study explores the proteomic profile of Leptospira interrogans sv. Copenhageni str. 10A cultivated in Ellinghausen-McCullough-Johnson-Harris medium supplemented with the zinc chelator TPA or ZnCl<sub>2</sub>. Among the 2161 proteins identified, 488 were subjected to scrutiny, revealing 102 less abundant and 81 more abundant in response to TPA. Of these 488 proteins, 164 were exclusive to the presence of TPA and 141 were exclusive to the zinc-enriched conditions. Differentially expressed proteins were classified into clusters of orthologous groups (COGs) with a distribution in metabolic functions (37.8%), information storage/processing (21.08%), cellular processes/signaling (28.04%), and poorly characterized proteins (10.65%). Differentially expressed proteins are putatively involved in processes like 1-carbon compound metabolism, folate biosynthesis, and amino acid/nucleotide synthesis. Zinc availability significantly impacted key processes putatively related to leptospires' interactions with their host, such as motility, biofilm formation, and immune escape. Under conditions of higher zinc concentration, ribosomal proteins, chaperones and components of transport systems were observed, highlighting interactions between regulatory networks responsive to zinc and iron in L. interrogans. This study not only revealed hypothetical proteins potentially related to zinc homeostasis, but also identified possible virulence mechanisms and pathogen-host adaptation strategies influenced by the availability of this metal. There is an urgent need, based on these data, for further in-depth studies aimed at detailing the role of zinc in these pathways and mechanisms, which may ultimately determine more effective therapeutic approaches to combat Leptospira infections.</p>","PeriodicalId":491,"journal":{"name":"Biometals","volume":" ","pages":""},"PeriodicalIF":4.1,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142278432","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental and computational evaluation of anti-malarial and antioxidant potential of transition metal (II) complexes with tridentate schiff base derived from pyrrolopyrimidine 过渡金属 (II) 与源自吡咯并嘧啶的三叉片基配合物的抗疟疾和抗氧化潜力的实验和计算评估
IF 3.5 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-13 DOI: 10.1007/s10534-024-00636-8
Abhay D. Bagul, Manish Kumar, Amer M. Alanazi, Aisha Tufail, Nasir Tufail, Digamber D. Gaikwad, Amit Dubey

In the twenty-first century, we are experiencing persistent waves of diverse pathogen variations, contributing significantly to global illness and death rates. Within this varied spectrum of illnesses, malaria and oxidative damage emerge as prominent obstacles that have persistently affected human health. The motivation for exploring the antioxidant potential of transition metal (II) complexes with tridentate Schiff base ligands is driven by the need for effective treatments against malaria and oxidative stress-related conditions. Both malaria and oxidative damage are significant global health concerns. Transition metal complexes can potentially offer enhanced anti-malarial and antioxidant activities, providing a dual benefit. To explore the aforementioned facts and examine the therapeutic potential, the previously synthesized pyrrolopyrimidinehydrazide-3-chlorobenzaldehyde, such as HPPHmCB ligand(1)andtheirMn(II),Fe(II),Co(II),Ni(II), Pd(II),Cu(II),Zn(II),Cd(II),Hg(II)complexes(2–10) of benzaldehydes and pyrrolopyrimidinehydrazide were proposed for in vitro anti-malarial and antioxidant investigation. These compounds were assessed for their anti-malarial efficacy against Plasmodium falciparum using a micro assay protocol, with IC50 values indicating the concentration required to inhibit parasite maturation by 50%. The Hg(II) complex displays pronounced antimalarial activity with an IC50 value of 1.98 ± 0.08 µM, closely aligning with the efficacy of quinine, whereas Zn(II), Cu(II), Pd(II) complexes demonstrates most significant anti-malarial activity, with IC50 values close to the reference compound quinine. The antioxidant activity of the compounds was evaluated using the DPPH assay, with several metal complexes such as Cu(II)and Zn(II) showing strong potential in neutralizing oxidative stress. Furthermore, molecular docking simulations were conducted to explore the binding interactions of the compounds with PfNDH2, providing insights into their pharmacological potential. The study also examined the electronic properties, solubility, and potential hepatotoxicity of the compounds. The findings suggest that the metal complexes could be promising candidates for further development as anti-malarial agents, offering enhanced potency compared to the base compound.

在二十一世纪,我们正经历着各种病原体变异的持续浪潮,这在很大程度上导致了全球疾病和死亡率的上升。在各种疾病中,疟疾和氧化损伤是持续影响人类健康的突出障碍。之所以要探索带有三叉席夫碱配体的过渡金属 (II) 复合物的抗氧化潜力,是因为需要针对疟疾和氧化应激相关疾病进行有效治疗。疟疾和氧化损伤都是全球关注的重大健康问题。过渡金属复合物有可能增强抗疟疾和抗氧化活性,提供双重益处。为了探索上述事实并研究其治疗潜力,以前合成的吡咯并嘧啶肼-3-氯苯甲醛(如 HPPHmCB 配体(1))及其锰(II)、铁(II)、钴(II提出了用于体外抗疟疾和抗氧化研究的苯甲醛和吡咯并嘧啶肼的 Fe(II)、Co(II)、Ni(II)、Pd(II)、Cu(II)、Zn(II)、Cd(II)、Hg(II)配合物(2-10)。采用微量检测方案评估了这些化合物对恶性疟原虫的抗疟功效,IC50 值表示抑制寄生虫成熟 50%所需的浓度。汞(II)复合物显示出明显的抗疟活性,其 IC50 值为 1.98 ± 0.08 µM,与奎宁的功效非常接近;而锌(II)、铜(II)、钯(II)复合物则显示出最显著的抗疟活性,其 IC50 值接近参考化合物奎宁。利用 DPPH 法评估了这些化合物的抗氧化活性,其中 Cu(II) 和 Zn(II) 等几种金属配合物在中和氧化应激方面表现出很强的潜力。此外,还进行了分子对接模拟,以探索化合物与 PfNDH2 的结合相互作用,从而深入了解其药理潜力。研究还考察了化合物的电子特性、溶解性和潜在的肝毒性。研究结果表明,这些金属复合物与基础化合物相比药效更强,有望进一步开发成为抗疟疾药物。
{"title":"Experimental and computational evaluation of anti-malarial and antioxidant potential of transition metal (II) complexes with tridentate schiff base derived from pyrrolopyrimidine","authors":"Abhay D. Bagul, Manish Kumar, Amer M. Alanazi, Aisha Tufail, Nasir Tufail, Digamber D. Gaikwad, Amit Dubey","doi":"10.1007/s10534-024-00636-8","DOIUrl":"https://doi.org/10.1007/s10534-024-00636-8","url":null,"abstract":"<p>In the twenty-first century, we are experiencing persistent waves of diverse pathogen variations, contributing significantly to global illness and death rates. Within this varied spectrum of illnesses, malaria and oxidative damage emerge as prominent obstacles that have persistently affected human health. The motivation for exploring the antioxidant potential of transition metal (II) complexes with tridentate Schiff base ligands is driven by the need for effective treatments against malaria and oxidative stress-related conditions. Both malaria and oxidative damage are significant global health concerns. Transition metal complexes can potentially offer enhanced anti-malarial and antioxidant activities, providing a dual benefit. To explore the aforementioned facts and examine the therapeutic potential, the previously synthesized pyrrolopyrimidinehydrazide-3-chlorobenzaldehyde, such as HPPHmCB ligand(1)andtheirMn(II),Fe(II),Co(II),Ni(II), Pd(II),Cu(II),Zn(II),Cd(II),Hg(II)complexes(2–10) of benzaldehydes and pyrrolopyrimidinehydrazide were proposed for in vitro anti-malarial and antioxidant investigation. These compounds were assessed for their anti-malarial efficacy against <i>Plasmodium falciparum</i> using a micro assay protocol, with IC<sub>50</sub> values indicating the concentration required to inhibit parasite maturation by 50%. The Hg(II) complex displays pronounced antimalarial activity with an IC<sub>50</sub> value of 1.98 ± 0.08 µM, closely aligning with the efficacy of quinine, whereas Zn(II), Cu(II), Pd(II) complexes demonstrates most significant anti-malarial activity, with IC<sub>50</sub> values close to the reference compound quinine. The antioxidant activity of the compounds was evaluated using the DPPH assay, with several metal complexes such as Cu(II)and Zn(II) showing strong potential in neutralizing oxidative stress. Furthermore, molecular docking simulations were conducted to explore the binding interactions of the compounds with PfNDH2, providing insights into their pharmacological potential. The study also examined the electronic properties, solubility, and potential hepatotoxicity of the compounds. The findings suggest that the metal complexes could be promising candidates for further development as anti-malarial agents, offering enhanced potency compared to the base compound.</p>","PeriodicalId":491,"journal":{"name":"Biometals","volume":"16 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142255450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Insoluble HIFa protein aggregates by cadmium disrupt hypoxia-prolyl hydroxylase (PHD)-hypoxia inducible factor (HIFa) signaling in renal epithelial (NRK-52E) and interstitial (FAIK3-5) cells 镉的不溶性HIFa蛋白聚集体破坏了肾上皮细胞(NRK-52E)和肾间质细胞(FAIK3-5)中的缺氧-脯氨酰羟化酶(PHD)-缺氧诱导因子(HIFa)信号传导
IF 3.5 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-10 DOI: 10.1007/s10534-024-00631-z
Timm Schreiber, Bettina Scharner, Frank Thévenod

The kidney is the main organ that senses changes in systemic O2 pressure by hypoxia-PHD-HIFa (HPH) signaling, resulting in adaptive target gene activation, including erythropoietin (EPO). The non-essential transition metal cadmium (Cd) is nephrotoxic and disrupts the renal HPH pathway, which may promote Cd-associated chronic renal disease (CKD). A deeper molecular understanding of Cd interference with renal HPH signaling is missing, and no data with renal cell lines are available. In rat kidney NRK-52E cells, which model the proximal tubule, and murine fibroblastoid atypical interstitial kidney (FAIK3-5) cells, which mimic renal EPO-producing cells, the chemical hypoxia mimetic dimethyloxalylglycine (DMOG; 1 mmol/l) or hypoxia (1% O2) activated HPH signaling. Cd2+ (2.5–20 µmol/l for ≤ 24 h) preferentially induced necrosis (trypan blue uptake) of FAIK3-5 cells at high Cd whereas NRK-52E cells specially developed apoptosis (PARP-1 cleavage) at all Cd concentrations. Cd (12.5 µmol/l) abolished HIFa stabilization and prevented upregulation of target genes (quantitative real-time polymerase chain reaction and immunoblotting) induced by DMOG or hypoxia in both cell lines, which was caused by the formation of insoluble HIFa aggregates. Strikingly, hypoxic preconditioning (1% O2 for 18 h) reduced apoptosis of FAIK3-5 and NRK-52E cells at low Cd concentrations and decreased insoluble HIFa proteins. Hence, drugs mimicking hypoxic preconditioning could reduce CKD induced by chronic low Cd exposure.

肾脏是通过缺氧-PHD-HIFa(HPH)信号传导来感知全身氧气压力变化的主要器官,从而导致包括促红细胞生成素(EPO)在内的适应性靶基因激活。非必需过渡金属镉(Cd)具有肾毒性,会破坏肾脏的 HPH 通路,从而可能促进与 Cd 相关的慢性肾病(CKD)。目前还没有关于镉干扰肾脏HPH信号传导的更深入的分子认识,也没有关于肾脏细胞系的数据。在模拟近端肾小管的大鼠肾脏 NRK-52E 细胞和模拟肾脏 EPO 生成细胞的小鼠成纤维细胞非典型间质性肾脏(FAIK3-5)细胞中,化学缺氧模拟物二甲基氧丙基甘氨酸(DMOG;1 毫摩尔/升)或缺氧(1% 氧气)激活了 HPH 信号。Cd2+(2.5-20 µmol/l,作用时间≤24小时)在高镉浓度下优先诱导FAIK3-5细胞坏死(胰蓝摄取),而NRK-52E细胞在所有镉浓度下均发生凋亡(PARP-1裂解)。在这两种细胞系中,镉(12.5 µmol/l)取消了 HIFa 的稳定作用,并阻止了由 DMOG 或缺氧诱导的靶基因上调(定量实时聚合酶链反应和免疫印迹),这是由不溶性 HIFa 聚集体的形成引起的。令人震惊的是,低氧预处理(1% O2 18 小时)减少了 FAIK3-5 和 NRK-52E 细胞在低镉浓度下的凋亡,并减少了不溶性 HIFa 蛋白。因此,模拟缺氧预处理的药物可以减轻慢性低镉暴露诱发的慢性肾功能衰竭。
{"title":"Insoluble HIFa protein aggregates by cadmium disrupt hypoxia-prolyl hydroxylase (PHD)-hypoxia inducible factor (HIFa) signaling in renal epithelial (NRK-52E) and interstitial (FAIK3-5) cells","authors":"Timm Schreiber, Bettina Scharner, Frank Thévenod","doi":"10.1007/s10534-024-00631-z","DOIUrl":"https://doi.org/10.1007/s10534-024-00631-z","url":null,"abstract":"<p>The kidney is the main organ that senses changes in systemic O<sub>2</sub> pressure by hypoxia-PHD-HIFa (HPH) signaling, resulting in adaptive target gene activation, including erythropoietin (EPO). The non-essential transition metal cadmium (Cd) is nephrotoxic and disrupts the renal HPH pathway, which may promote Cd-associated chronic renal disease (CKD). A deeper molecular understanding of Cd interference with renal HPH signaling is missing, and no data with renal cell lines are available. In rat kidney NRK-52E cells, which model the proximal tubule, and murine fibroblastoid atypical interstitial kidney (FAIK3-5) cells, which mimic renal EPO-producing cells, the chemical hypoxia mimetic dimethyloxalylglycine (DMOG; 1 mmol/l) or hypoxia (1% O<sub>2</sub>) activated HPH signaling. Cd<sup>2+</sup> (2.5–20 µmol/l for ≤ 24 h) preferentially induced necrosis (trypan blue uptake) of FAIK3-5 cells at high Cd whereas NRK-52E cells specially developed apoptosis (PARP-1 cleavage) at all Cd concentrations. Cd (12.5 µmol/l) abolished HIFa stabilization and prevented upregulation of target genes (quantitative real-time polymerase chain reaction and immunoblotting) induced by DMOG or hypoxia in both cell lines, which was caused by the formation of insoluble HIFa aggregates. Strikingly, hypoxic preconditioning (1% O<sub>2</sub> for 18 h) reduced apoptosis of FAIK3-5 and NRK-52E cells at low Cd concentrations and decreased insoluble HIFa proteins. Hence, drugs mimicking hypoxic preconditioning could reduce CKD induced by chronic low Cd exposure.</p>","PeriodicalId":491,"journal":{"name":"Biometals","volume":"48 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142209897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New solvated Mo(VI) complexes of isatin based asymmetric bisthiocarbohydrazones as potent bioactive agent: synthesis, DFT-molecular docking studies, biological activity evaluation and crystal structures. 作为强效生物活性剂的异靛基不对称双硫代羧酰肼的新溶解钼(VI)配合物:合成、DFT-分子对接研究、生物活性评价和晶体结构。
IF 4.1 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-06 DOI: 10.1007/s10534-024-00633-x
Yeliz Kaya, Ayşe Erçağ, Savaş Kaya, Avni Berisha, Birnur Akkaya, Yunus Zorlu

New solvated Mo(VI) complexes were isolated from the reaction of [MoO2(acac)2] with asymmetric isatin bisthiocarbohydrazone ligands. The ligands were obtained from the reaction of isatin monothiocarbohydrazone with 3,5-dibromo salicylaldehyde (L1), 3,5-dichloro salicylaldehyde (L2) and 3-chloro-5-bromo salicylaldehyde (L3), respectively. In the complexes, the ligands serve as ONS donors and coordinate to the [MoO2]2+ nucleus. The bonding sites are azomethine nitrogen atom, phenolic oxygen atom and thiol sulfur atom. The sixth coordination site is completed by an oxygen atom from an ethanol solvent. The ethanol-coordinated Mo(VI) complexes, C1-C3, [MoO2L(EtOH)] (L: L1-L3), were characterized using elemental analysis, IR and 1H NMR spectroscopies, and conductivity measurements. By crystallizing ethanol-solvated solid complexes from an EtOH/DMSO mixture, DMSO-solvated complexes (C4-C6) suitable for X-ray crystallography were obtained. Crystal structure analysis supports the proposed complex structures and geometries, but the ethanol in the sixth coordination site has been replaced by DMSO. When the anticarcinogenic effects of the ligands and complexes (C1-C3) on the C6 cell line were examined, it was found that the complexes showed higher activity than the ligands. The C3 complex appears to have the best anti-cancer activity compared to doxorubicin. Additionally, all compounds were determined to have high total antioxidant capacity. Data obtained from theoretical studies (DFT and docking) support experimental studies.

从[MoO2(acac)2]与不对称异铂双硫代羧基腙配体的反应中分离出了新的溶解钼(VI)配合物。这些配体分别由异铂一硫代腙与 3,5-二溴水杨醛(L1)、3,5-二氯水杨醛(L2)和 3-氯-5-溴水杨醛(L3)反应得到。在这些配合物中,配体作为 ONS 给体,与 [MoO2]2+ 核配位。成键位点为偶氮甲基氮原子、酚氧原子和硫醇硫原子。第六个配位位点由来自乙醇溶剂的氧原子完成。研究人员利用元素分析、红外光谱、1H NMR 光谱和电导率测量法对 C1-C3 [MoO2L(EtOH)](L:L1-L3)乙醇配位钼(VI)配合物进行了表征。通过从 EtOH/DMSO 混合物中结晶出乙醇溶解的固体络合物,得到了适合 X 射线晶体学的 DMSO 溶解络合物(C4-C6)。晶体结构分析支持所提出的复合物结构和几何形状,但第六配位位点的乙醇已被二甲基亚砜取代。在研究配体和配合物(C1-C3)对 C6 细胞系的抗癌作用时,发现配合物比配体显示出更高的活性。与多柔比星相比,C3 复合物似乎具有最好的抗癌活性。此外,所有化合物都具有很高的总抗氧化能力。理论研究(DFT 和对接)获得的数据支持了实验研究。
{"title":"New solvated Mo(VI) complexes of isatin based asymmetric bisthiocarbohydrazones as potent bioactive agent: synthesis, DFT-molecular docking studies, biological activity evaluation and crystal structures.","authors":"Yeliz Kaya, Ayşe Erçağ, Savaş Kaya, Avni Berisha, Birnur Akkaya, Yunus Zorlu","doi":"10.1007/s10534-024-00633-x","DOIUrl":"https://doi.org/10.1007/s10534-024-00633-x","url":null,"abstract":"<p><p>New solvated Mo(VI) complexes were isolated from the reaction of [MoO<sub>2</sub>(acac)<sub>2</sub>] with asymmetric isatin bisthiocarbohydrazone ligands. The ligands were obtained from the reaction of isatin monothiocarbohydrazone with 3,5-dibromo salicylaldehyde (L1), 3,5-dichloro salicylaldehyde (L2) and 3-chloro-5-bromo salicylaldehyde (L3), respectively. In the complexes, the ligands serve as ONS donors and coordinate to the [MoO<sub>2</sub>]<sup>2+</sup> nucleus. The bonding sites are azomethine nitrogen atom, phenolic oxygen atom and thiol sulfur atom. The sixth coordination site is completed by an oxygen atom from an ethanol solvent. The ethanol-coordinated Mo(VI) complexes, C1-C3, [MoO<sub>2</sub>L(EtOH)] (L: L1-L3), were characterized using elemental analysis, IR and <sup>1</sup>H NMR spectroscopies, and conductivity measurements. By crystallizing ethanol-solvated solid complexes from an EtOH/DMSO mixture, DMSO-solvated complexes (C4-C6) suitable for X-ray crystallography were obtained. Crystal structure analysis supports the proposed complex structures and geometries, but the ethanol in the sixth coordination site has been replaced by DMSO. When the anticarcinogenic effects of the ligands and complexes (C1-C3) on the C6 cell line were examined, it was found that the complexes showed higher activity than the ligands. The C3 complex appears to have the best anti-cancer activity compared to doxorubicin. Additionally, all compounds were determined to have high total antioxidant capacity. Data obtained from theoretical studies (DFT and docking) support experimental studies.</p>","PeriodicalId":491,"journal":{"name":"Biometals","volume":" ","pages":""},"PeriodicalIF":4.1,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142138930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Iron oxide nanoparticles derived from Polyalthia korintii (Dunal) Benth. & Hook. F leaves extract exhibits biological and dye degradation potentials 从 Polyalthia korintii (Dunal) Benth. & Hook.F 叶提取物具有生物和染料降解潜力。
IF 4.1 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-05 DOI: 10.1007/s10534-024-00610-4
K. E. Hana Mol, Tancia Rosalin, K. K. Elyas

Green synthesis of iron oxide nanoparticles using plant extracts is of tremendous interest owing to its cost effectiveness, ecofriendly and high efficiency compared to physical and chemical approaches. In the current study, we describe a green approach for producing iron oxide nanoparticles utilizing Polyalthia korintii aqueous leaf extract (PINPs). The prepared PINPs were assessed of their biological and dye degradation potentials. The physico-chemical characterization of PINPs using UV–Visible spectrophotometer, Fourier Transform Infrared Spectroscopy, X-Ray Diffraction studies, Field emission Scanning Electron Microscopy and Energy Dispersive X-ray spectroscopy analysis confirmed the synthesized sample comprised of iron oxide entity, predominantly spherical with the size range of 40–60 nm. Total Phenolic Content of PINPs is 59.36 ± 1.64 µg GAE/mg. The PINPs exhibited 89.78 ± 0.07% DPPH free radical scavenging and 28.7 ± 0.21% ABTS cation scavenging activities. The antibacterial activities were tested against different gram-positive and gram-negative bacteria and PINPs were more effective against Enterococcus faecalis and Klebsiella pneumoniae. Cytotoxicity of PINPs against K562 and HCT116 were measured and IC50 values were found to be 84.99 ± 4.3 µg/ml and 79.70 ± 6.2 µg/ml for 48 h respectively. The selective toxicity of PINPs was demonstrated by their lowest activity on lymphocytes, HEK293 cells, and erythrocytes. The toxicity (LC 50 values) against first, second, third and fourth instar larvae of Culex quinquefasciatus was 40 ± 1.5 mg/mL, 45 ± 0.8 mg/mL, 99 ± 2.1 mg/mL and 120 ± 3.5 mg/mL respectively. Finally, PINPs were utilized to as a catalyst for removal of textile dyes like Methylene blue and methyl orange in a fenton-like reaction. The results showed 100% dye degradation efficiency in a fenton like reaction within 35 min. Thus, the green synthesized PINPs exhibit antioxidant, antibacterial, antiproliferative, larvicidal and dye degradation potentials, indicating their suitability for biological and environmental applications.

与物理和化学方法相比,利用植物提取物绿色合成氧化铁纳米颗粒具有成本效益、生态友好和高效率等优点,因此引起了人们的极大兴趣。在当前的研究中,我们介绍了一种利用聚伞花科植物水性叶提取物(PINPs)生产氧化铁纳米粒子的绿色方法。对制备的 PINPs 进行了生物和染料降解潜力评估。使用紫外-可见分光光度计、傅立叶变换红外光谱仪、X 射线衍射研究、场发射扫描电子显微镜和能量色散 X 射线光谱分析对 PINPs 进行了物理化学表征,证实合成样品由氧化铁实体组成,主要呈球形,尺寸范围为 40-60 纳米。PINPs 的总酚类含量为 59.36 ± 1.64 µg GAE/mg。PINPs 的 DPPH 自由基清除率为 89.78 ± 0.07%,ABTS 阳离子清除率为 28.7 ± 0.21%。对不同革兰氏阳性和革兰氏阴性细菌的抗菌活性进行了测试,结果表明 PINPs 对粪肠球菌和肺炎克雷伯菌更有效。检测了 PINPs 对 K562 和 HCT116 的细胞毒性,发现 48 小时的 IC50 值分别为 84.99 ± 4.3 µg/ml 和 79.70 ± 6.2 µg/ml。PINPs 对淋巴细胞、HEK293 细胞和红细胞的活性最低,这证明了 PINPs 的选择性毒性。对库蚊一、二、三和四龄幼虫的毒性(LC 50 值)分别为 40 ± 1.5 毫克/毫升、45 ± 0.8 毫克/毫升、99 ± 2.1 毫克/毫升和 120 ± 3.5 毫克/毫升。最后,利用 PINPs 作为催化剂,在类似芬顿反应中去除亚甲基蓝和甲基橙等纺织染料。结果表明,在类似芬顿反应中,35 分钟内染料降解效率达到 100%。因此,绿色合成的 PINPs 具有抗氧化、抗菌、抗增殖、杀幼虫剂和降解染料的潜力,表明它们适合生物和环境应用。
{"title":"Iron oxide nanoparticles derived from Polyalthia korintii (Dunal) Benth. & Hook. F leaves extract exhibits biological and dye degradation potentials","authors":"K. E. Hana Mol,&nbsp;Tancia Rosalin,&nbsp;K. K. Elyas","doi":"10.1007/s10534-024-00610-4","DOIUrl":"10.1007/s10534-024-00610-4","url":null,"abstract":"<div><p>Green synthesis of iron oxide nanoparticles using plant extracts is of tremendous interest owing to its cost effectiveness, ecofriendly and high efficiency compared to physical and chemical approaches. In the current study, we describe a green approach for producing iron oxide nanoparticles utilizing <i>Polyalthia korintii</i> aqueous leaf extract (PINPs). The prepared PINPs were assessed of their biological and dye degradation potentials. The physico-chemical characterization of PINPs using UV–Visible spectrophotometer, Fourier Transform Infrared Spectroscopy, X-Ray Diffraction studies, Field emission Scanning Electron Microscopy and Energy Dispersive X-ray spectroscopy analysis confirmed the synthesized sample comprised of iron oxide entity, predominantly spherical with the size range of 40–60 nm. Total Phenolic Content of PINPs is 59.36 ± 1.64 µg GAE/mg. The PINPs exhibited 89.78 ± 0.07% DPPH free radical scavenging and 28.7 ± 0.21% ABTS cation scavenging activities. The antibacterial activities were tested against different gram-positive and gram-negative bacteria and PINPs were more effective against <i>Enterococcus faecalis</i> and <i>Klebsiella pneumoniae</i>. Cytotoxicity of PINPs against K562 and HCT116 were measured and IC50 values were found to be 84.99 ± 4.3 µg/ml and 79.70 ± 6.2 µg/ml for 48 h respectively. The selective toxicity of PINPs was demonstrated by their lowest activity on lymphocytes, HEK293 cells, and erythrocytes. The toxicity (LC 50 values) against first, second, third and fourth instar larvae of <i>Culex quinquefasciatus</i> was 40 ± 1.5 mg/mL, 45 ± 0.8 mg/mL, 99 ± 2.1 mg/mL and 120 ± 3.5 mg/mL respectively. Finally, PINPs were utilized to as a catalyst for removal of textile dyes like Methylene blue and methyl orange in a fenton-like reaction. The results showed 100% dye degradation efficiency in a fenton like reaction within 35 min. Thus, the green synthesized PINPs exhibit antioxidant, antibacterial, antiproliferative, larvicidal and dye degradation potentials, indicating their suitability for biological and environmental applications.</p></div>","PeriodicalId":491,"journal":{"name":"Biometals","volume":"37 5","pages":"1289 - 1303"},"PeriodicalIF":4.1,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142131557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Biometals
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1