Pub Date : 2024-05-21DOI: 10.1007/s10534-024-00607-z
Robert C Hider, André M N Silva, Agostino Cilibrizzi
The iron(III) binding properties of citrate and rhizoferrin, a citrate containing siderophore, are compared. Citrate forms many oligonuclear complexes, whereas rhizoferrin forms a single mononuclear complex. The α-hydroxycarboxylate functional group, which is present in both citrate, and rhizoferrin, has a high affinity and selectivity for iron(III) under most biological conditions. The nature of the toxic form of iron found in the blood of patients suffering from many haemoglobinopathies and haemochromatosis is identified as a mixture of iron(III)citrate complexes. The significance of the presence of this iron pool to patients suffering from systemic iron overload is discussed. The wide utilisation of the α-hydroxycarboxylate functional group in siderophore structures is described, as is their photo-induced decarboxylation leading to the release of iron(II) ions. The importance of this facile dissociation to algal iron uptake is discussed.
{"title":"The iron(III) coordinating properties of citrate and α-hydroxycarboxylate containing siderophores.","authors":"Robert C Hider, André M N Silva, Agostino Cilibrizzi","doi":"10.1007/s10534-024-00607-z","DOIUrl":"https://doi.org/10.1007/s10534-024-00607-z","url":null,"abstract":"<p><p>The iron(III) binding properties of citrate and rhizoferrin, a citrate containing siderophore, are compared. Citrate forms many oligonuclear complexes, whereas rhizoferrin forms a single mononuclear complex. The α-hydroxycarboxylate functional group, which is present in both citrate, and rhizoferrin, has a high affinity and selectivity for iron(III) under most biological conditions. The nature of the toxic form of iron found in the blood of patients suffering from many haemoglobinopathies and haemochromatosis is identified as a mixture of iron(III)citrate complexes. The significance of the presence of this iron pool to patients suffering from systemic iron overload is discussed. The wide utilisation of the α-hydroxycarboxylate functional group in siderophore structures is described, as is their photo-induced decarboxylation leading to the release of iron(II) ions. The importance of this facile dissociation to algal iron uptake is discussed.</p>","PeriodicalId":491,"journal":{"name":"Biometals","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141074857","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-07DOI: 10.1007/s10534-024-00604-2
Baolian Ma, Xiaoxue Hu, Xiaowen Ai, Yonglan Zhang
Inflammatory bowel disease (IBD) is a non-specific chronic inflammatory disorder of the gastrointestinal tract, imposing significant burdens on both society and individuals. As a new type of regulated cell death (RCD), ferroptosis is different from classic RCDs such as apoptosis and necrosis in cell morphology, biochemistry and genetics. The main molecular mechanisms of ferroptosis include dysregulation of iron metabolism, impaired antioxidant capacity, mitochondrial dysfunction, accumulation of lipid-associated super-oxides, and membrane disruption. In recent years, increasing evidence has shown that ferroptosis is involved in the pathophysiology of inflammatory bowel disease. However, the exact roles and underlying molecular mechanisms have not been fully elucidated. This article reviews the mechanism of ferroptosis in the occurrence and development of inflammatory bowel disease, in order to provide new ideas for the pathophysiological research of inflammatory bowel disease. Additionally, we discuss potential strategies for the prevention and treatment of inflammatory bowel disease by targeting ferroptosis.
{"title":"Research progress of ferroptosis and inflammatory bowel disease","authors":"Baolian Ma, Xiaoxue Hu, Xiaowen Ai, Yonglan Zhang","doi":"10.1007/s10534-024-00604-2","DOIUrl":"10.1007/s10534-024-00604-2","url":null,"abstract":"<div><p>Inflammatory bowel disease (IBD) is a non-specific chronic inflammatory disorder of the gastrointestinal tract, imposing significant burdens on both society and individuals. As a new type of regulated cell death (RCD), ferroptosis is different from classic RCDs such as apoptosis and necrosis in cell morphology, biochemistry and genetics. The main molecular mechanisms of ferroptosis include dysregulation of iron metabolism, impaired antioxidant capacity, mitochondrial dysfunction, accumulation of lipid-associated super-oxides, and membrane disruption. In recent years, increasing evidence has shown that ferroptosis is involved in the pathophysiology of inflammatory bowel disease. However, the exact roles and underlying molecular mechanisms have not been fully elucidated. This article reviews the mechanism of ferroptosis in the occurrence and development of inflammatory bowel disease, in order to provide new ideas for the pathophysiological research of inflammatory bowel disease. Additionally, we discuss potential strategies for the prevention and treatment of inflammatory bowel disease by targeting ferroptosis.</p></div>","PeriodicalId":491,"journal":{"name":"Biometals","volume":"37 5","pages":"1039 - 1062"},"PeriodicalIF":4.1,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140848821","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-06DOI: 10.1007/s10534-024-00606-0
Wing-Kee Lee, Frank Thévenod, Elmar J. Prenner
{"title":"Global threat posed by metals and metalloids in the changing environment: a One Health approach to mechanisms of toxicity","authors":"Wing-Kee Lee, Frank Thévenod, Elmar J. Prenner","doi":"10.1007/s10534-024-00606-0","DOIUrl":"10.1007/s10534-024-00606-0","url":null,"abstract":"","PeriodicalId":491,"journal":{"name":"Biometals","volume":"37 3","pages":"539 - 544"},"PeriodicalIF":4.1,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140854308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-06DOI: 10.1007/s10534-024-00595-0
Naveed Ahmed Khan, Adeelah Alvi, Saif Alqassim, Noor Akbar, Bushra Khatoon, Muhammad Kawish, Shaheen Faizi, Muhammad Raza Shah, Bader S. Alawfi, Ruqaiyyah Siddiqui
With the emergence of drug-resistance, there is a need for novel anti-bacterials or to enhance the efficacy of existing drugs. In this study, Patuletin (PA), a flavanoid was loaded onto Gallic acid modified Zinc oxide nanoparticles (PA-GA-ZnO), and evaluated for antibacterial properties against Gram-positive (Bacillus cereus and Streptococcus pneumoniae) and Gram-negative (Samonella enterica and Escherichia coli) bacteria. Characterization of PA, GA-ZnO and PA-GA-ZnO’ nanoparticles was accomplished utilizing fourier-transform infrared spectroscopy, efficiency of drug entrapment, polydispersity index, zeta potential, size, and surface morphology analysis through atomic force microscopy. Using bactericidal assays, the results revealed that ZnO conjugation displayed remarkable effects and enhanced Patuletin’s effects against both Gram-positive and Gram-negative bacteria, with the minimum inhibitory concentration observed at micromolar concentrations. Cytopathogenicity assays exhibited that the drug-nanoconjugates reduced bacterial-mediated human cell death with minimal side effects to human cells. When tested alone, drug-nanoconjugates tested in this study showed limited toxic effects against human cells in vitro. These are promising findings, but future work is needed to understand the molecular mechanisms of effects of drug-nanoconjugates against bacterial pathogens, in addition to in vivo testing to determine their translational value. This study suggests that Patuletin-loaded nano-formulation (PA-GA-ZnO) may be implicated in a multi-target mechanism that affects both Gram-positive and Gram-negative pathogen cell structures, however this needs to be ascertained in future work.
{"title":"Nanomedicine: Patuletin-conjugated with zinc oxide exhibit potent effects against Gram-negative and Gram-positive bacterial pathogens","authors":"Naveed Ahmed Khan, Adeelah Alvi, Saif Alqassim, Noor Akbar, Bushra Khatoon, Muhammad Kawish, Shaheen Faizi, Muhammad Raza Shah, Bader S. Alawfi, Ruqaiyyah Siddiqui","doi":"10.1007/s10534-024-00595-0","DOIUrl":"10.1007/s10534-024-00595-0","url":null,"abstract":"<div><p>With the emergence of drug-resistance, there is a need for novel anti-bacterials or to enhance the efficacy of existing drugs. In this study, Patuletin (PA), a flavanoid was loaded onto Gallic acid modified Zinc oxide nanoparticles (PA-GA-ZnO), and evaluated for antibacterial properties against Gram-positive (<i>Bacillus cereus</i> and <i>Streptococcus pneumoniae</i>) and Gram-negative (<i>Samonella enterica</i> and <i>Escherichia coli</i>) bacteria. Characterization of PA, GA-ZnO and PA-GA-ZnO’ nanoparticles was accomplished utilizing fourier-transform infrared spectroscopy, efficiency of drug entrapment, polydispersity index, zeta potential, size, and surface morphology analysis through atomic force microscopy. Using bactericidal assays, the results revealed that ZnO conjugation displayed remarkable effects and enhanced Patuletin’s effects against both Gram-positive and Gram-negative bacteria, with the minimum inhibitory concentration observed at micromolar concentrations. Cytopathogenicity assays exhibited that the drug-nanoconjugates reduced bacterial-mediated human cell death with minimal side effects to human cells. When tested alone, drug-nanoconjugates tested in this study showed limited toxic effects against human cells in vitro. These are promising findings, but future work is needed to understand the molecular mechanisms of effects of drug-nanoconjugates against bacterial pathogens, in addition to in vivo testing to determine their translational value. This study suggests that Patuletin-loaded nano-formulation (PA-GA-ZnO) may be implicated in a multi-target mechanism that affects both Gram-positive and Gram-negative pathogen cell structures, however this needs to be ascertained in future work.</p></div>","PeriodicalId":491,"journal":{"name":"Biometals","volume":"37 5","pages":"1113 - 1125"},"PeriodicalIF":4.1,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140849256","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-01DOI: 10.1007/s10534-024-00591-4
André Luís Condeles, Gabriel Simonetti da Silva, Maria Beatriz Braghetto Hernandes, José Carlos Toledo Junior
Under normal physiological conditions, the endogenous Labile Iron Pool (LIP) constitutes a ubiquitous, dynamic, tightly regulated reservoir of cellular ferrous iron. Furthermore, LIP is loaded into new apo-iron proteins, a process akin to the activity of metallochaperones. Despite such importance on iron metabolism, the LIP identity and binding properties have remained elusive. We hypothesized that LIP binds to cell constituents (generically denoted C) and forms an iron complex termed CLIP. Combining this binding model with the established Calcein (CA) methodology for assessing cytosolic LIP, we have formulated an equation featuring two experimentally quantifiable parameters (the concentrations of the cytosolic free CA and CA and LIP complex termed CALIP) and three unknown parameters (the total concentrations of LIP and C and their thermodynamic affinity constant Kd). The fittings of cytosolic CALIP × CA concentrations data encompassing a few cellular models to this equation with floating unknown parameters were successful. The computed adjusted total LIP (LIPT) and C (CT) concentrations fall within the sub-to-low micromolar range while the computed Kd was in the 10−2 µM range for all cell types. Thus, LIP binds and has high affinity to cellular constituents found in low concentrations and has remarkably similar properties across different cell types, shedding fresh light on the properties of endogenous LIP within cells.
在正常生理条件下,内源性易损铁池(LIP)是一个无处不在、动态的、受到严格调控的细胞亚铁库。此外,LIP 还能被加载到新的载铁蛋白中,这一过程类似于金属合子的活性。尽管 LIP 在铁代谢中具有如此重要的作用,但其身份和结合特性却一直难以捉摸。我们假设 LIP 与细胞成分(通称为 C)结合,并形成一种称为 CLIP 的铁复合物。将这一结合模型与评估细胞膜 LIP 的钙黄绿素(Calcein,CA)成熟方法相结合,我们制定了一个方程,其中包含两个实验量化参数(细胞膜游离 CA 和 CA 与 LIP 复合物(称为 CALIP)的浓度)和三个未知参数(LIP 和 C 的总浓度及其热力学亲和力常数 Kd)。将一些细胞模型的细胞质 CALIP × CA 浓度数据与该方程的浮动未知参数拟合成功。计算出的调整后总 LIP(LIPT)和 C(CT)浓度在亚微摩尔到低微摩尔范围内,而计算出的 Kd 在所有细胞类型的 10-2 µM 范围内。因此,LIP 与低浓度的细胞成分结合并具有很高的亲和力,而且在不同类型的细胞中具有非常相似的特性,这为我们揭示细胞内源性 LIP 的特性提供了新的思路。
{"title":"Insights on the endogenous labile iron pool binding properties","authors":"André Luís Condeles, Gabriel Simonetti da Silva, Maria Beatriz Braghetto Hernandes, José Carlos Toledo Junior","doi":"10.1007/s10534-024-00591-4","DOIUrl":"10.1007/s10534-024-00591-4","url":null,"abstract":"<div><p>Under normal physiological conditions, the endogenous Labile Iron Pool (LIP) constitutes a ubiquitous, dynamic, tightly regulated reservoir of cellular ferrous iron. Furthermore, LIP is loaded into new apo-iron proteins, a process akin to the activity of metallochaperones. Despite such importance on iron metabolism, the LIP identity and binding properties have remained elusive. We hypothesized that LIP binds to cell constituents (generically denoted C) and forms an iron complex termed CLIP. Combining this binding model with the established Calcein (CA) methodology for assessing cytosolic LIP, we have formulated an equation featuring two experimentally quantifiable parameters (the concentrations of the cytosolic free CA and CA and LIP complex termed CALIP) and three unknown parameters (the total concentrations of LIP and C and their thermodynamic affinity constant Kd). The fittings of cytosolic CALIP × CA concentrations data encompassing a few cellular models to this equation with floating unknown parameters were successful. The computed adjusted total LIP (LIP<sub>T</sub>) and C (C<sub>T</sub>) concentrations fall within the sub-to-low micromolar range while the computed Kd was in the 10<sup>−2</sup> µM range for all cell types. Thus, LIP binds and has high affinity to cellular constituents found in low concentrations and has remarkably similar properties across different cell types, shedding fresh light on the properties of endogenous LIP within cells.</p></div>","PeriodicalId":491,"journal":{"name":"Biometals","volume":"37 5","pages":"1065 - 1077"},"PeriodicalIF":4.1,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140837971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-22DOI: 10.1007/s10534-024-00602-4
Jaqueline da Silveira, Ana Paula Cardoso, Christiane Fernandes, Adolfo Horn Junior, Gabriella da Rosa Monte Machado, Karin Silva Caumo
Acanthamoeba spp. emerged as a clinically important pathogen related to amoebic keratitis. It is among the main causes of corneal transplantation and vision loss in ophthalmology. The treatment protocols have a low cure rate, high toxicity, and need for drug combination. Transition metal compounds have shown promising antiprotozoal effects. This study evaluates the amoebicidal activity of copper(II) coordination compounds in combination with chlorhexidine and the cytotoxicity to topical ocular application. These copper(II) coordination compounds were screened against Acanthamoeba castellanii trophozoites (ATCC 50492). The cytotoxicity on rabbit corneal cell line (ATCC—CCL 60) was performed. The compounds showed high amoebicidal potential, with inhibition of trophozoite viability above 80%. The Cp12 and Cp13 compounds showed Minimal Inhibitory Amoebicidal Concentration (MIAC) at 200 µM and mean inhibitory concentration (IC50) values lower than 10 µM. Against the cysts, Cp12 showed a reduction in viability (48%) in the longest incubation period. A synergistic effect for Cp12 with chlorhexidine was observed. The compounds have a dose-dependent effect against rabbit corneal cells. Compound Cp12 has potential for future application in developing ophthalmic formulations against Acanthamoeba keratitis and its use in multipurpose solutions is highlighted.
{"title":"Anti-Acanthamoeba metallopharmaceuticals: Amoebicidal activity and synergistic effect of copper(II) coordination compound","authors":"Jaqueline da Silveira, Ana Paula Cardoso, Christiane Fernandes, Adolfo Horn Junior, Gabriella da Rosa Monte Machado, Karin Silva Caumo","doi":"10.1007/s10534-024-00602-4","DOIUrl":"10.1007/s10534-024-00602-4","url":null,"abstract":"<div><p><i>Acanthamoeba</i> spp. emerged as a clinically important pathogen related to amoebic keratitis. It is among the main causes of corneal transplantation and vision loss in ophthalmology. The treatment protocols have a low cure rate, high toxicity, and need for drug combination. Transition metal compounds have shown promising antiprotozoal effects. This study evaluates the amoebicidal activity of copper(II) coordination compounds in combination with chlorhexidine and the cytotoxicity to topical ocular application. These copper(II) coordination compounds were screened against <i>Acanthamoeba castellanii</i> trophozoites (ATCC 50492). The cytotoxicity on rabbit corneal cell line (ATCC—CCL 60) was performed. The compounds showed high amoebicidal potential, with inhibition of trophozoite viability above 80%. The Cp12 and Cp13 compounds showed Minimal Inhibitory Amoebicidal Concentration (MIAC) at 200 µM and mean inhibitory concentration (IC<sub>50</sub>) values lower than 10 µM. Against the cysts, Cp12 showed a reduction in viability (48%) in the longest incubation period. A synergistic effect for Cp12 with chlorhexidine was observed. The compounds have a dose-dependent effect against rabbit corneal cells. Compound Cp12 has potential for future application in developing ophthalmic formulations against <i>Acanthamoeba</i> keratitis and its use in multipurpose solutions is highlighted.</p></div>","PeriodicalId":491,"journal":{"name":"Biometals","volume":"37 5","pages":"1225 - 1236"},"PeriodicalIF":4.1,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140677312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-20DOI: 10.1007/s10534-024-00603-3
Manolo Ortega-Romero, Elodia Rojas-Lima, Juan Carlos Rubio-Gutiérrez, Octavio Gamaliel Aztatzi-Aguilar, Juana Narváez-Morales, Mariela Esparza-García, Ángel Barrera-Hernández, Miguel Ángel Mejia, Pablo Mendez-Hernández, Mara Medeiros, Olivier Christophe Barbier
Background
In kidney damage, molecular changes can be used as early damage kidney biomarkers, such as Kidney Injury Molecule-1 and Neutrophil gelatinase-associated lipocalin. These biomarkers are associated with toxic metal exposure or disturbed homeostasis of trace elements, which might lead to serious health hazards. This study aimed to evaluate the relationship between exposure to trace elements and early damage kidney biomarkers in a pediatric population.
Methods
In Tlaxcala, a cross-sectional study was conducted on 914 healthy individuals. The participants underwent a medical review and a socio-environmental questionnaire. Five early damage kidney biomarkers were determined in the urine with Luminex, and molybdenum, copper, selenium, nickel, and iodine were measured with ICP-Mass.
Results
The eGFR showed a median of 103.75 mL/min/1.73 m2. The median levels for molybdenum, copper, selenium, nickel, and iodine were 24.73 ng/mL, 73.35 ng/mL, 4.78 ng/mL, 83.68 ng/mL, and 361.83 ng/mL, respectively. Except for molybdenum and nickel, the other trace elements had significant associations with the eGFR and the early kidney damage biomarkers. Additionally, we report the association of different exposure scenarios with renal parameters.
Discussion
and Conclusions.
Among the explored metals, exposure to Cu and iodine impairs renal function. In contrast, Se may manifest as a beneficial metal. Interactions of Mo-Se and Mo-Iodine seem to alter the expression of NGAL; Mo-Cu for CLU; Mo-Cu, Mo-Se, and Mo-iodine for Cys-C and a-1MG; and Mo-Cu and Mo-iodine for KIM-1; were noticed. Our study could suggest that trace element interactions were associated with early kidney damage biomarkers.
{"title":"Associations among environmental exposure to trace elements and biomarkers of early kidney damage in the pediatric population","authors":"Manolo Ortega-Romero, Elodia Rojas-Lima, Juan Carlos Rubio-Gutiérrez, Octavio Gamaliel Aztatzi-Aguilar, Juana Narváez-Morales, Mariela Esparza-García, Ángel Barrera-Hernández, Miguel Ángel Mejia, Pablo Mendez-Hernández, Mara Medeiros, Olivier Christophe Barbier","doi":"10.1007/s10534-024-00603-3","DOIUrl":"10.1007/s10534-024-00603-3","url":null,"abstract":"<div><h3>Background</h3><p>In kidney damage, molecular changes can be used as early damage kidney biomarkers, such as Kidney Injury Molecule-1 and Neutrophil gelatinase-associated lipocalin. These biomarkers are associated with toxic metal exposure or disturbed homeostasis of trace elements, which might lead to serious health hazards. This study aimed to evaluate the relationship between exposure to trace elements and early damage kidney biomarkers in a pediatric population.</p><h3>Methods</h3><p>In Tlaxcala, a cross-sectional study was conducted on 914 healthy individuals. The participants underwent a medical review and a socio-environmental questionnaire. Five early damage kidney biomarkers were determined in the urine with Luminex, and molybdenum, copper, selenium, nickel, and iodine were measured with ICP-Mass.</p><h3>Results</h3><p>The eGFR showed a median of 103.75 mL/min/1.73 m2. The median levels for molybdenum, copper, selenium, nickel, and iodine were 24.73 ng/mL, 73.35 ng/mL, 4.78 ng/mL, 83.68 ng/mL, and 361.83 ng/mL, respectively. Except for molybdenum and nickel, the other trace elements had significant associations with the eGFR and the early kidney damage biomarkers. Additionally, we report the association of different exposure scenarios with renal parameters.</p><h3>Discussion</h3><p>and Conclusions.</p><p>Among the explored metals, exposure to Cu and iodine impairs renal function. In contrast, Se may manifest as a beneficial metal. Interactions of Mo-Se and Mo-Iodine seem to alter the expression of NGAL; Mo-Cu for CLU; Mo-Cu, Mo-Se, and Mo-iodine for Cys-C and a-1MG; and Mo-Cu and Mo-iodine for KIM-1; were noticed. Our study could suggest that trace element interactions were associated with early kidney damage biomarkers.</p></div>","PeriodicalId":491,"journal":{"name":"Biometals","volume":"37 3","pages":"721 - 737"},"PeriodicalIF":4.1,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140623326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-14DOI: 10.1007/s10534-024-00597-y
Fatemeh Alzahra Neyshabouri, Ali Akbar Ghotbi-Ravandi, Zeinab Shariatmadari, Masoud Tohidfar
Cadmium (Cd) is a widely distributed pollutant that adversely affects plants’ metabolism and productivity. Phytohormones play a vital role in the acclimation of plants to metal stress. On the other hand, phytohormones trigger systemic resistances, including systemic acquired resistance (SAR) and induced systemic resistance (ISR), in plants in response to biotic interactions. The present study aimed to investigate the possible induction of SAR and ISR pathways in relation to the hormonal alteration of barley seedlings in response to Cd stress. Barley seedlings were exposed to 1.5 mg g−1 Cd in the soil for three days. The nutrient content, oxidative status, phytohormones profile, and expression of genes involved in SAR and ISR pathways of barley seedlings were examined. Cd accumulation resulted in a reduction in the nutrient content of barley seedlings. The specific activity of superoxide dismutase and the hydrogen peroxide content significantly increased in response to Cd toxicity. Abscisic acid, jasmonic acid, and ethylene content increased under Cd exposure. Cd treatment resulted in the upregulation of NPR1, PR3, and PR13 genes in SAR pathways. The transcripts of PAL1 and LOX2.2 genes in the ISR pathway were also significantly increased in response to Cd treatment. These findings suggest that hormonal-activated systemic resistances are involved in the response of barley to Cd stress.
镉(Cd)是一种广泛分布的污染物,会对植物的新陈代谢和生产力产生不利影响。植物激素在植物适应金属胁迫方面发挥着重要作用。另一方面,植物激素会触发植物的系统抗性,包括系统获得性抗性(SAR)和诱导性系统抗性(ISR)。本研究旨在探讨大麦幼苗在镉胁迫下激素变化可能诱导的 SAR 和 ISR 途径。大麦幼苗在土壤中暴露于 1.5 mg g-1 Cd 三天。研究考察了大麦幼苗的养分含量、氧化状态、植物激素谱以及参与SAR和ISR途径的基因表达。镉积累导致大麦幼苗养分含量降低。超氧化物歧化酶的比活力和过氧化氢含量在镉毒性下显著增加。镉暴露下,脱落酸、茉莉酸和乙烯含量增加。镉处理导致 SAR 途径中的 NPR1、PR3 和 PR13 基因上调。ISR途径中的PAL1和LOX2.2基因的转录本也在镉处理后显著增加。这些发现表明,激素激活的系统抗性参与了大麦对镉胁迫的响应。
{"title":"Cadmium toxicity promotes hormonal imbalance and induces the expression of genes involved in systemic resistances in barley","authors":"Fatemeh Alzahra Neyshabouri, Ali Akbar Ghotbi-Ravandi, Zeinab Shariatmadari, Masoud Tohidfar","doi":"10.1007/s10534-024-00597-y","DOIUrl":"10.1007/s10534-024-00597-y","url":null,"abstract":"<div><p>Cadmium (Cd) is a widely distributed pollutant that adversely affects plants’ metabolism and productivity. Phytohormones play a vital role in the acclimation of plants to metal stress. On the other hand, phytohormones trigger systemic resistances, including systemic acquired resistance (SAR) and induced systemic resistance (ISR), in plants in response to biotic interactions. The present study aimed to investigate the possible induction of SAR and ISR pathways in relation to the hormonal alteration of barley seedlings in response to Cd stress. Barley seedlings were exposed to 1.5 mg g<sup>−1</sup> Cd in the soil for three days. The nutrient content, oxidative status, phytohormones profile, and expression of genes involved in SAR and ISR pathways of barley seedlings were examined. Cd accumulation resulted in a reduction in the nutrient content of barley seedlings. The specific activity of superoxide dismutase and the hydrogen peroxide content significantly increased in response to Cd toxicity. Abscisic acid, jasmonic acid, and ethylene content increased under Cd exposure. Cd treatment resulted in the upregulation of <i>NPR1</i>, <i>PR3</i>, and <i>PR13</i> genes in SAR pathways. The transcripts of <i>PAL1</i> and <i>LOX2.2</i> genes in the ISR pathway were also significantly increased in response to Cd treatment. These findings suggest that hormonal-activated systemic resistances are involved in the response of barley to Cd stress.</p></div>","PeriodicalId":491,"journal":{"name":"Biometals","volume":"37 5","pages":"1147 - 1160"},"PeriodicalIF":4.1,"publicationDate":"2024-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140577266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Schiff base complexes play a crucial role in bioinorganic chemistry. A novel curcumin/phenylalanine tridentate Schiff base ligand and its palladium (II) complex were synthesized so that they were stable in aqueous buffer. The structure of the complex was investigated using a variety of methods, including DFT, NBO analysis, FMOs, and MESP. The interaction of the complex with a plasmid (pUC19) and CT-DNA was studied. The anticancer, antibacterial, and antioxidant activities of the complex were examined. The statistical analysis of the MTT assay was compared using the 1-way ANOVA and Tukey test. Results showed that the complexes were stable in aqueous buffer, pH 8. The extrinsic fluorescence emission of the plasmid and CT-DNA was quenched while interacting with the complex. The complex had an IC50 of 72.47 µM against MCF-7 cells. The ANOVA and Tukey analysis of MTT data demonstrated a statistically significant difference between groups (P < 0.0001). The minimum inhibitory concentrations (MIC) of the complex for E. coli and S. aureus were 300 and 200 µg/mL, with 96.3 and 95.2% biofilm growth inhibition at 250 µg/mL, respectively. The sample concentrations contributing to 50% radical inhibition in the 1,1-diphenyl-2-picrylhydrazyl (DPPH) test for curcumin, ligand, and palladium (II) complex were 33.62, 21.27, and 51.26 µM, respectively. The results suggest that the complex interaction with DNA is one of the potential mechanisms for eliminating cancer cells and bacteria in the planktonic and biofilm. On the other hand, while stability in an aqueous buffer at pH 8 increases, the modified curcumin antioxidant effect decreases.
{"title":"Synthesis, theoretical analysis, and biological properties of a novel tridentate Schiff base palladium (II) complex","authors":"Samira Jahangiry, Maryam Lashanizadegan, Pouneh Sadat Pourhosseini, Mansoureh Zahedi-Tabrizi","doi":"10.1007/s10534-024-00598-x","DOIUrl":"10.1007/s10534-024-00598-x","url":null,"abstract":"<div><p>Schiff base complexes play a crucial role in bioinorganic chemistry. A novel curcumin/phenylalanine tridentate Schiff base ligand and its palladium (II) complex were synthesized so that they were stable in aqueous buffer. The structure of the complex was investigated using a variety of methods, including DFT, NBO analysis, FMOs, and MESP. The interaction of the complex with a plasmid (pUC19) and CT-DNA was studied. The anticancer, antibacterial, and antioxidant activities of the complex were examined. The statistical analysis of the MTT assay was compared using the 1-way ANOVA and Tukey test. Results showed that the complexes were stable in aqueous buffer, pH 8. The extrinsic fluorescence emission of the plasmid and CT-DNA was quenched while interacting with the complex. The complex had an IC<sub>50</sub> of 72.47 µM against MCF-7 cells. The ANOVA and Tukey analysis of MTT data demonstrated a statistically significant difference between groups (<i>P</i> < 0.0001). The minimum inhibitory concentrations (MIC) of the complex for <i>E. coli</i> and <i>S. aureus</i> were 300 and 200 µg/mL, with 96.3 and 95.2% biofilm growth inhibition at 250 µg/mL, respectively. The sample concentrations contributing to 50% radical inhibition in the 1,1-diphenyl-2-picrylhydrazyl (DPPH) test for curcumin, ligand, and palladium (II) complex were 33.62, 21.27, and 51.26 µM, respectively. The results suggest that the complex interaction with DNA is one of the potential mechanisms for eliminating cancer cells and bacteria in the planktonic and biofilm. On the other hand, while stability in an aqueous buffer at pH 8 increases, the modified curcumin antioxidant effect decreases.</p></div>","PeriodicalId":491,"journal":{"name":"Biometals","volume":"37 5","pages":"1161 - 1176"},"PeriodicalIF":4.1,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140577111","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-05DOI: 10.1007/s10534-024-00590-5
Thomas D. Lockwood
Independent trials indicate that either oral Zn2+ or metformin can separately improve COVID-19 outcomes by approximately 40%. Coordination chemistry predicts a mechanistic relationship and therapeutic synergy. Zn2+ deficit is a known risk factor for both COVID-19 and non-infectious inflammation. Most dietary Zn2+ is not absorbed. Metformin is a naked ligand that presumably increases intestinal Zn2+ bioavailability and active absorption by cation transporters known to transport metformin. Intracellular Zn2+ provides a natural buffer of many protease reactions; the variable “set point” is determined by Zn2+ regulation or availability. A Zn2+-interactive protease network is suggested here. The two viral cysteine proteases are therapeutic targets against COVID-19. Viral and many host proteases are submaximally inhibited by exchangeable cell Zn2+. Inhibition of cysteine proteases can improve COVID-19 outcomes and non-infectious inflammation. Metformin reportedly enhances the natural moderating effect of Zn2+ on bioassayed proteome degradation. Firstly, the dissociable metformin–Zn2+ complex could be actively transported by intestinal cation transporters; thereby creating artificial pathways of absorption and increased body Zn2+ content. Secondly, metformin Zn2+ coordination can create a non-natural protease inhibitor independent of cell Zn2+ content. Moderation of peptidolytic reactions by either or both mechanisms could slow (a) viral multiplication (b) viral invasion and (c) the pathogenic host inflammatory response. These combined actions could allow development of acquired immunity to clear the infection before life-threatening inflammation. Nirmatrelvir (Paxlovid®) opposes COVID-19 by selective inhibition the viral main protease by a Zn2+-independent mechanism. Pending safety evaluation, predictable synergistic benefits of metformin and Zn2+, and perhaps metformin/Zn2+/Paxlovid® co-administration should be investigated.
{"title":"Coordination chemistry suggests that independently observed benefits of metformin and Zn2+ against COVID-19 are not independent","authors":"Thomas D. Lockwood","doi":"10.1007/s10534-024-00590-5","DOIUrl":"10.1007/s10534-024-00590-5","url":null,"abstract":"<div><p>Independent trials indicate that either oral Zn<sup>2+</sup> or metformin can separately improve COVID-19 outcomes by approximately 40%. Coordination chemistry predicts a mechanistic relationship and therapeutic synergy. Zn<sup>2+</sup> deficit is a known risk factor for both COVID-19 and non-infectious inflammation. Most dietary Zn<sup>2+</sup> is not absorbed. Metformin is a naked ligand that presumably increases intestinal Zn<sup>2+</sup> bioavailability and active absorption by cation transporters known to transport metformin. Intracellular Zn<sup>2+</sup> provides a natural buffer of many protease reactions; the variable “set point” is determined by Zn<sup>2+</sup> regulation or availability. A Zn<sup>2+</sup>-interactive protease network is suggested here. The two viral cysteine proteases are therapeutic targets against COVID-19. Viral and many host proteases are submaximally inhibited by exchangeable cell Zn<sup>2+</sup>. Inhibition of cysteine proteases can improve COVID-19 outcomes and non-infectious inflammation. Metformin reportedly enhances the natural moderating effect of Zn<sup>2+</sup> on bioassayed proteome degradation. Firstly, the dissociable metformin–Zn<sup>2+</sup> complex could be actively transported by intestinal cation transporters; thereby creating artificial pathways of absorption and increased body Zn<sup>2+</sup> content. Secondly, metformin Zn<sup>2+</sup> coordination can create a non-natural protease inhibitor independent of cell Zn<sup>2+</sup> content. Moderation of peptidolytic reactions by either or both mechanisms could slow (a) viral multiplication (b) viral invasion and (c) the pathogenic host inflammatory response. These combined actions could allow development of acquired immunity to clear the infection before life-threatening inflammation. Nirmatrelvir (Paxlovid®) opposes COVID-19 by selective inhibition the viral main protease by a Zn<sup>2+</sup>-independent mechanism. Pending safety evaluation, predictable synergistic benefits of metformin and Zn<sup>2+</sup>, and perhaps metformin/Zn<sup>2+</sup>/Paxlovid® co-administration should be investigated.</p></div>","PeriodicalId":491,"journal":{"name":"Biometals","volume":"37 4","pages":"983 - 1022"},"PeriodicalIF":4.1,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10534-024-00590-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140577625","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}