Pub Date : 2024-08-28DOI: 10.1007/s10534-024-00629-7
Anna Evers, Jackson Kohn, Oliver Baars, James M Harrington, Kosuke Namba, Owen W Duckworth
Adequate micronutrient concentrations in crops are essential for human health and agricultural productivity. However, 30% of plants growing on cultivated soils worldwide are deficient in iron (Fe). Because of low micronutrient bioavailability, graminaceous plants have evolved to exude small molecules, called phytosiderophores, into the soil environment, which strongly complex and promote uptake of trace elements. The development of a synthetic phytosiderophore, proline-2'-deoxymugeneic acid (PDMA), has been shown to promote Fe uptake in rice plants; however, its binding capabilities with other metals, which may impact the ability to promote the uptake of Fe and other trace nutrient metals commonly found in soils, remain unknown. We conducted spectrophotometric titrations to determine the stability constants (logK) of PDMA complexes with Mn(II), Co(II), Cu(II), Ni(II), and Zn(II). We determined that PDMA complex stability constants correlated with: (1) the hydrolysis constants of metal ions (logKOH) in complexes; (2) the ionic potential of complexed metals; and (3) the corresponding complex stability constants of other mugineic acid type phytosiderophores, as well as the trishydroxamate microbial siderophore DFOB. These correlations demonstrate the potential, and limitations, on our ability to predict the stability of phytosiderophore complexes with metal ions with different physicochemical properties and with potentially different coordination structures.
{"title":"Stability of metal ion complexes with the synthetic phytosiderophore proline-2'-deoxymugineic acid.","authors":"Anna Evers, Jackson Kohn, Oliver Baars, James M Harrington, Kosuke Namba, Owen W Duckworth","doi":"10.1007/s10534-024-00629-7","DOIUrl":"https://doi.org/10.1007/s10534-024-00629-7","url":null,"abstract":"<p><p>Adequate micronutrient concentrations in crops are essential for human health and agricultural productivity. However, 30% of plants growing on cultivated soils worldwide are deficient in iron (Fe). Because of low micronutrient bioavailability, graminaceous plants have evolved to exude small molecules, called phytosiderophores, into the soil environment, which strongly complex and promote uptake of trace elements. The development of a synthetic phytosiderophore, proline-2'-deoxymugeneic acid (PDMA), has been shown to promote Fe uptake in rice plants; however, its binding capabilities with other metals, which may impact the ability to promote the uptake of Fe and other trace nutrient metals commonly found in soils, remain unknown. We conducted spectrophotometric titrations to determine the stability constants (logK) of PDMA complexes with Mn(II), Co(II), Cu(II), Ni(II), and Zn(II). We determined that PDMA complex stability constants correlated with: (1) the hydrolysis constants of metal ions (logK<sub>OH</sub>) in complexes; (2) the ionic potential of complexed metals; and (3) the corresponding complex stability constants of other mugineic acid type phytosiderophores, as well as the trishydroxamate microbial siderophore DFOB. These correlations demonstrate the potential, and limitations, on our ability to predict the stability of phytosiderophore complexes with metal ions with different physicochemical properties and with potentially different coordination structures.</p>","PeriodicalId":491,"journal":{"name":"Biometals","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142091363","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The present study is conducted to know the serum lead, copper, iron, and zinc levels, in parallel to hematological parameters, in battery smelting workers to assess lead toxicity. Battery smelting is known to expose workers to high levels of lead, which can have significant negative health effects. Blood samples from 150 participants, including 75 battery smelting workers and 75 controls, were analyzed for metal concentrations and hematological indices. The results revealed significantly elevated levels of lead in the serum of battery smelting workers as compared to control group. Elevated lead levels were also correlated with significantly decreased hemoglobin levels and hematocrit values, manifesting potential anemia in these workers. In addition, disarrangements in serum copper, iron, and zinc levels were also observed, proposing a possible interaction between lead exposure and the metabolism of these essential metals. These findings highlight the need for regular monitoring of battery smelting facilities and environment and to take improved protective measures to prevent lead toxicity and its associated hematological disturbances. This study aims to analyze the effect of occupational lead exposure on blood levels of lead, zinc, iron, and copper in battery workers compared to normal subjects and evaluate their blood counts.
{"title":"Analysis of serum lead, copper, iron, and zinc and hematological parameters in battery smelting workers: assessing lead toxicity.","authors":"Maleeha Sikandar Memon, Ikram Udiin Ujjan, Marvi Shaikh, Sadia Qamar Arain, Arshi Naz, Huma Abbasi","doi":"10.1007/s10534-024-00623-z","DOIUrl":"https://doi.org/10.1007/s10534-024-00623-z","url":null,"abstract":"<p><p>The present study is conducted to know the serum lead, copper, iron, and zinc levels, in parallel to hematological parameters, in battery smelting workers to assess lead toxicity. Battery smelting is known to expose workers to high levels of lead, which can have significant negative health effects. Blood samples from 150 participants, including 75 battery smelting workers and 75 controls, were analyzed for metal concentrations and hematological indices. The results revealed significantly elevated levels of lead in the serum of battery smelting workers as compared to control group. Elevated lead levels were also correlated with significantly decreased hemoglobin levels and hematocrit values, manifesting potential anemia in these workers. In addition, disarrangements in serum copper, iron, and zinc levels were also observed, proposing a possible interaction between lead exposure and the metabolism of these essential metals. These findings highlight the need for regular monitoring of battery smelting facilities and environment and to take improved protective measures to prevent lead toxicity and its associated hematological disturbances. This study aims to analyze the effect of occupational lead exposure on blood levels of lead, zinc, iron, and copper in battery workers compared to normal subjects and evaluate their blood counts.</p>","PeriodicalId":491,"journal":{"name":"Biometals","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142034830","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-23DOI: 10.1007/s10534-024-00626-w
Mohammed H Zaid, Falah S Al-Fartusie, Yaghub Pazhang, Safaa Kader
Diabetic nephropathy, a common complication of type 2 diabetes (T2DM), is associated with abnormal lipid profiles, liver dysfunction, and kidney impairment. However, research on its association with trace elements in Iraqi patients is limited. The objective of the present study is to evaluate the association between lipid profile, liver function, and trace elements in diabetic nephropathy (DN) patients. In this study, 120 individuals were selected. Sixty of these individuals were labeled as the DN patient group, and 60 individuals were labeled as the healthy control group. A flame atomic absorption spectrophotometer (FAAS) was utilized to assess the levels of zinc (Zn), copper (Cu), and magnesium (Mg), whereas a flameless atomic absorption (FAA) was used to assess manganese (Mn). A colorimetric method was used based on the protocols included in the leaflets by Spinreact kits to determine the levels of lipid profiles and liver function enzymes in the serum. The mean value of high-density lipoprotein (HDL) decreased significantly in the DN patient group compared to the control group (p < 0.001) while cholesterol and low-density lipoprotein (LDL) decreased insignificantly. Conversely, the mean value of triglycerides (TGs) increased significantly in patient group ((p < 0.001) while very low-density lipoprotein (VLDL) increased insignificantly. On the other hand, the mean values of aspartate aminotransferase (AST), alanine transferase (ALT), alkaline phosphatase (ALP), and γ- glutamyl transferase (GGT) were significantly greater in DN patients compared to the healthy controls. Conversely, the mean values of total protein (TP) and albumin (Alb) were significantly lower in the DN patient group. In terms of trace elements, the mean values of Zn, Mg, and Mn were significantly lower in each of the patient groups compared to the healthy group. Conversely, a significant elevation in the means of Cu and Fe was observed in patients compared to the healthy group. Additionally, the findings revealed no association between BMI and lipid profile, liver enzymes, or trace elements. However, an association with age was limited to TGs, ALP, and GGT. The study's results show that the DN patients have abnormalities in their serum trace element levels. This means that these elements could be valuable indicators for monitoring and assessing the progression of DN. Understanding the correlation between lipid profile, liver function, and trace elements could offer valuable insights for managing and preventing diabetic nephropathy. More extensive studies, including an additional group of DM patients without nephropathy complications, are required, and could be used in practice due to the progression of the disease.
{"title":"Evaluation of lipid profile, liver function enzymes, and trace elements in Iraqi diabetic nephropathy patients.","authors":"Mohammed H Zaid, Falah S Al-Fartusie, Yaghub Pazhang, Safaa Kader","doi":"10.1007/s10534-024-00626-w","DOIUrl":"https://doi.org/10.1007/s10534-024-00626-w","url":null,"abstract":"<p><p>Diabetic nephropathy, a common complication of type 2 diabetes (T2DM), is associated with abnormal lipid profiles, liver dysfunction, and kidney impairment. However, research on its association with trace elements in Iraqi patients is limited. The objective of the present study is to evaluate the association between lipid profile, liver function, and trace elements in diabetic nephropathy (DN) patients. In this study, 120 individuals were selected. Sixty of these individuals were labeled as the DN patient group, and 60 individuals were labeled as the healthy control group. A flame atomic absorption spectrophotometer (FAAS) was utilized to assess the levels of zinc (Zn), copper (Cu), and magnesium (Mg), whereas a flameless atomic absorption (FAA) was used to assess manganese (Mn). A colorimetric method was used based on the protocols included in the leaflets by Spinreact kits to determine the levels of lipid profiles and liver function enzymes in the serum. The mean value of high-density lipoprotein (HDL) decreased significantly in the DN patient group compared to the control group (p < 0.001) while cholesterol and low-density lipoprotein (LDL) decreased insignificantly. Conversely, the mean value of triglycerides (TGs) increased significantly in patient group ((p < 0.001) while very low-density lipoprotein (VLDL) increased insignificantly. On the other hand, the mean values of aspartate aminotransferase (AST), alanine transferase (ALT), alkaline phosphatase (ALP), and γ- glutamyl transferase (GGT) were significantly greater in DN patients compared to the healthy controls. Conversely, the mean values of total protein (TP) and albumin (Alb) were significantly lower in the DN patient group. In terms of trace elements, the mean values of Zn, Mg, and Mn were significantly lower in each of the patient groups compared to the healthy group. Conversely, a significant elevation in the means of Cu and Fe was observed in patients compared to the healthy group. Additionally, the findings revealed no association between BMI and lipid profile, liver enzymes, or trace elements. However, an association with age was limited to TGs, ALP, and GGT. The study's results show that the DN patients have abnormalities in their serum trace element levels. This means that these elements could be valuable indicators for monitoring and assessing the progression of DN. Understanding the correlation between lipid profile, liver function, and trace elements could offer valuable insights for managing and preventing diabetic nephropathy. More extensive studies, including an additional group of DM patients without nephropathy complications, are required, and could be used in practice due to the progression of the disease.</p>","PeriodicalId":491,"journal":{"name":"Biometals","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142046137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-19DOI: 10.1007/s10534-024-00625-x
Ana Raquel Soares de Oliveira, Kyria Jayanne Clímaco Cruz, Jennifer Beatriz Silva Morais, Loanne Rocha Dos Santos, Stéfany Rodrigues de Sousa Melo, Larissa Cristina Fontenelle, Juliana Soares Severo, Jéssica Batista Beserra, Thayanne Gabryelle Visgueira de Sousa, Suelem Torres de Freitas, Emyle Horrana Serafim de Oliveira, Carla Soraya Costa Maia, Emídio Marques de Matos Neto, Francisco Erasmo de Oliveira, Gilberto Simeone Henriques, Dilina do Nascimento Marreiro
Studies have shown that deficiencies in magnesium, selenium, and zinc in individuals with obesity compromise the endogenous antioxidant defense system. This study aimed to evaluate the impact of mineral deficiency on enzymatic antioxidant defense in women with obesity. The study involved 63 women with obesity (BMI ≥ 35 kg/m2) and 77 eutrophic women (BMI between 18.5 and 24.9 kg/m2). Variables such as fasting glucose, glycated hemoglobin, fasting insulin, and serum lipids were analyzed. Insulin resistance was measured using the homeostasis assessment model (HOMA-IR) and beta cell function using the homeostasis assessment model (HOMA-β). Dietary intake of energy, macronutrients (including magnesium, zinc, and selenium), and plasma, erythrocyte, and urinary concentrations of these minerals were measured and analyzed. Serum cortisol, plasma leptin, plasma thiobarbituric acid reactive substances, and the activity of erythrocyte superoxide dismutase (SOD), erythrocyte glutathione peroxidase (GPX), and erythrocyte catalase were also analyzed. Women with obesity had reduced plasma and erythrocyte concentrations and greater urinary excretion of all minerals compared to normal weight women (p < 0.05). There was a positive association between erythrocyte concentrations of zinc and selenium and the activity of the GPX and SOD enzymes in erythrocytes in women with obesity (p < 0.05), in addition to a positive association between serum insulin and the enzyme GPX, which is dependent on dietary selenium (p < 0.05). Individuals with obesity are deficient in magnesium, selenium, and zinc, which appears to impair the antioxidant defense system and contribute to important metabolic disorders such as oxidative stress in these patients.
{"title":"Magnesium, selenium and zinc deficiency compromises antioxidant defense in women with obesity.","authors":"Ana Raquel Soares de Oliveira, Kyria Jayanne Clímaco Cruz, Jennifer Beatriz Silva Morais, Loanne Rocha Dos Santos, Stéfany Rodrigues de Sousa Melo, Larissa Cristina Fontenelle, Juliana Soares Severo, Jéssica Batista Beserra, Thayanne Gabryelle Visgueira de Sousa, Suelem Torres de Freitas, Emyle Horrana Serafim de Oliveira, Carla Soraya Costa Maia, Emídio Marques de Matos Neto, Francisco Erasmo de Oliveira, Gilberto Simeone Henriques, Dilina do Nascimento Marreiro","doi":"10.1007/s10534-024-00625-x","DOIUrl":"https://doi.org/10.1007/s10534-024-00625-x","url":null,"abstract":"<p><p>Studies have shown that deficiencies in magnesium, selenium, and zinc in individuals with obesity compromise the endogenous antioxidant defense system. This study aimed to evaluate the impact of mineral deficiency on enzymatic antioxidant defense in women with obesity. The study involved 63 women with obesity (BMI ≥ 35 kg/m<sup>2</sup>) and 77 eutrophic women (BMI between 18.5 and 24.9 kg/m<sup>2</sup>). Variables such as fasting glucose, glycated hemoglobin, fasting insulin, and serum lipids were analyzed. Insulin resistance was measured using the homeostasis assessment model (HOMA-IR) and beta cell function using the homeostasis assessment model (HOMA-β). Dietary intake of energy, macronutrients (including magnesium, zinc, and selenium), and plasma, erythrocyte, and urinary concentrations of these minerals were measured and analyzed. Serum cortisol, plasma leptin, plasma thiobarbituric acid reactive substances, and the activity of erythrocyte superoxide dismutase (SOD), erythrocyte glutathione peroxidase (GPX), and erythrocyte catalase were also analyzed. Women with obesity had reduced plasma and erythrocyte concentrations and greater urinary excretion of all minerals compared to normal weight women (p < 0.05). There was a positive association between erythrocyte concentrations of zinc and selenium and the activity of the GPX and SOD enzymes in erythrocytes in women with obesity (p < 0.05), in addition to a positive association between serum insulin and the enzyme GPX, which is dependent on dietary selenium (p < 0.05). Individuals with obesity are deficient in magnesium, selenium, and zinc, which appears to impair the antioxidant defense system and contribute to important metabolic disorders such as oxidative stress in these patients.</p>","PeriodicalId":491,"journal":{"name":"Biometals","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142003297","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-18DOI: 10.1007/s10534-024-00627-9
Bandashisha Kharpan, Jagritima Chetia, Hunshisha Pyngrope, Rajat Nandi, Amit Kumar Pradhan, Pradip C Paul, Diwakar Kumar
In the present work, new Co(II) complexes were synthesized from mesogenic aromatic amino acids based Schiff base ligands, HL1 [Methyl 2-((2-hydroxy-4-(tetradecyloxy)benzylidene)amino)-3-phenylpropanoate] and HL2 [Methyl 2-((2-hydroxy-4-(tetradecyloxy)benzylidene)amino)-3-(1H-indol-2-yl)propanoate]. The compounds were thoroughly characterised using different elemental, thermogravimetric and spectroscopic studies. The in-vitro antileishmanial efficacy of the compounds against Leishmania donovani was evaluated by MTT assay and the antioxidant activity was performed by Mensor's method. The cell viability percentage and IC50 values for both the antileishmanial and antioxidant studies revealed that the cobalt(II) complexes are comparable to the standard, amphotericin B and ascorbic acid, respectively, signifying the potential applications of the biogenic compounds. The CT-DNA interaction experiments study using photophysical techniques indicated that the cobalt(II) complexes exhibited pronounced interactions as compared to the parent ligand. The parent ligands were found to possess mesogenicity as evidenced from the polarizing optical microscope (POM) and differential scanning calorimetry (DSC). The optical band gap of the compounds, as estimated from the Tauc plot of the UV-Vis spectra, lies within the domain of optoelectronic material properties, which was further supported through Density Functional Theory (DFT) study. Moreover, DFT methods have been used to explore the ground state geometry and DFT based reactivity descriptors of the two synthesised ligands, HL1 and HL2 along with their corresponding Co(II) complexes, Co(L1)2 and Co(L2)2. Reactivity descriptors obtained from Conceptual Density Functional Theory (CDFT) analysis reveal that Co(L1)2 is the most stable and Co(L2)2 is the most electrophilic.
{"title":"Investigation of antileishmanial, antioxidant activities, CT-DNA interaction and DFT study of novel cobalt(II) complexes derived from mesogenic aromatic amino acids based Schiff base ligands.","authors":"Bandashisha Kharpan, Jagritima Chetia, Hunshisha Pyngrope, Rajat Nandi, Amit Kumar Pradhan, Pradip C Paul, Diwakar Kumar","doi":"10.1007/s10534-024-00627-9","DOIUrl":"https://doi.org/10.1007/s10534-024-00627-9","url":null,"abstract":"<p><p>In the present work, new Co(II) complexes were synthesized from mesogenic aromatic amino acids based Schiff base ligands, HL<sup>1</sup> [Methyl 2-((2-hydroxy-4-(tetradecyloxy)benzylidene)amino)-3-phenylpropanoate] and HL<sup>2</sup> [Methyl 2-((2-hydroxy-4-(tetradecyloxy)benzylidene)amino)-3-(1H-indol-2-yl)propanoate]. The compounds were thoroughly characterised using different elemental, thermogravimetric and spectroscopic studies. The in-vitro antileishmanial efficacy of the compounds against Leishmania donovani was evaluated by MTT assay and the antioxidant activity was performed by Mensor's method. The cell viability percentage and IC<sub>50</sub> values for both the antileishmanial and antioxidant studies revealed that the cobalt(II) complexes are comparable to the standard, amphotericin B and ascorbic acid, respectively, signifying the potential applications of the biogenic compounds. The CT-DNA interaction experiments study using photophysical techniques indicated that the cobalt(II) complexes exhibited pronounced interactions as compared to the parent ligand. The parent ligands were found to possess mesogenicity as evidenced from the polarizing optical microscope (POM) and differential scanning calorimetry (DSC). The optical band gap of the compounds, as estimated from the Tauc plot of the UV-Vis spectra, lies within the domain of optoelectronic material properties, which was further supported through Density Functional Theory (DFT) study. Moreover, DFT methods have been used to explore the ground state geometry and DFT based reactivity descriptors of the two synthesised ligands, HL<sup>1</sup> and HL<sup>2</sup> along with their corresponding Co(II) complexes, Co(L<sup>1</sup>)<sub>2</sub> and Co(L<sup>2</sup>)<sub>2</sub>. Reactivity descriptors obtained from Conceptual Density Functional Theory (CDFT) analysis reveal that Co(L<sup>1</sup>)<sub>2</sub> is the most stable and Co(L<sup>2</sup>)<sub>2</sub> is the most electrophilic.</p>","PeriodicalId":491,"journal":{"name":"Biometals","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141995036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-17DOI: 10.1007/s10534-024-00624-y
Zhuxia Zhang, Bo Xie, Qi Zhong, Chenxu Dai, Xijin Xu, Xia Huo
The link between exposure to a particular heavy metal or metalloid and the development of anemia is well established. However, the association between combined exposure to multiple heavy metal(loid)s and anemia in children is still lacking in evidence. In this study, a total of 266 children aged 3 to 7 were recruited from Guiyu, China. Inductively coupled plasma mass spectrometry (ICP-MS) was used to measure blood heavy metal(loid) concentrations. Blood cell count, hemoglobin (HGB), mean corpuscular hemoglobin (MCH), mean corpuscular volume (MCV), mean corpuscular hemoglobin concentration (MCHC), hematocrit (HCT), and red blood cell distribution width (RDW) were measured by an automated hematology analyzer. Erythrocyte-related parameters were negatively correlated with the Cu and Cu/Zn ratios and positively correlated with Cr, Ni, Zn, and Se by Spearman correlation analysis. Only blood Cu level was negatively correlated with HGB [β = -2.74, (95% Cl: -4.49, -0.995)], MCH [β = -0.505, (95% Cl: -0.785, -0.226)], MCV [β = -1.024, (95% Cl: -1.767, -0.281)], and MCHC [β = -2.137, (95% Cl: -3.54, -0.734)] by multiple linear regression analysis. The Bayesian Kernel Machine Regression (BKMR) model analysis indicated a negative correlation between the combined exposure to Cu, Zn, Pb, and Cr and MCH and MCV. The single-factor analysis showed a considerable statistical difference only with Cu on MCV, MCH, and HGB. Furthermore, the interaction analysis highlighted the interdependent effects of Cu and Zn, Pb and Zn, and Cr and Zn on MCH and MCV levels. Additionally, the oxidation and/or antioxidation reactions may play a significant role in the development of metal(loid)-induced anemia risk. It is crucial to investigate the effects of co-exposure to multiple heavy metal(loid) elements on anemia, especially the interrelationships and mechanisms among them.
{"title":"Abnormal erythrocyte-related parameters in children with Pb, Cr, Cu and Zn exposure.","authors":"Zhuxia Zhang, Bo Xie, Qi Zhong, Chenxu Dai, Xijin Xu, Xia Huo","doi":"10.1007/s10534-024-00624-y","DOIUrl":"https://doi.org/10.1007/s10534-024-00624-y","url":null,"abstract":"<p><p>The link between exposure to a particular heavy metal or metalloid and the development of anemia is well established. However, the association between combined exposure to multiple heavy metal(loid)s and anemia in children is still lacking in evidence. In this study, a total of 266 children aged 3 to 7 were recruited from Guiyu, China. Inductively coupled plasma mass spectrometry (ICP-MS) was used to measure blood heavy metal(loid) concentrations. Blood cell count, hemoglobin (HGB), mean corpuscular hemoglobin (MCH), mean corpuscular volume (MCV), mean corpuscular hemoglobin concentration (MCHC), hematocrit (HCT), and red blood cell distribution width (RDW) were measured by an automated hematology analyzer. Erythrocyte-related parameters were negatively correlated with the Cu and Cu/Zn ratios and positively correlated with Cr, Ni, Zn, and Se by Spearman correlation analysis. Only blood Cu level was negatively correlated with HGB [β = -2.74, (95% Cl: -4.49, -0.995)], MCH [β = -0.505, (95% Cl: -0.785, -0.226)], MCV [β = -1.024, (95% Cl: -1.767, -0.281)], and MCHC [β = -2.137, (95% Cl: -3.54, -0.734)] by multiple linear regression analysis. The Bayesian Kernel Machine Regression (BKMR) model analysis indicated a negative correlation between the combined exposure to Cu, Zn, Pb, and Cr and MCH and MCV. The single-factor analysis showed a considerable statistical difference only with Cu on MCV, MCH, and HGB. Furthermore, the interaction analysis highlighted the interdependent effects of Cu and Zn, Pb and Zn, and Cr and Zn on MCH and MCV levels. Additionally, the oxidation and/or antioxidation reactions may play a significant role in the development of metal(loid)-induced anemia risk. It is crucial to investigate the effects of co-exposure to multiple heavy metal(loid) elements on anemia, especially the interrelationships and mechanisms among them.</p>","PeriodicalId":491,"journal":{"name":"Biometals","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141995035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-10DOI: 10.1007/s10534-024-00622-0
Hafiz Abdul Haseeb, Muhammad Aslam Khan, Hassam Rasheed, Muhammad Usman Zahid, Thu Dung Doan, Muhammad Aamir Ramzan Siddique, Uzair Ahmad, Syed Ali Imran Bokhari
Here, we report for the first time, green-synthesized selenium nanoparticles (SeNPs) using pharmacologically potent herb of Polygonum bistorta Linn. for multiple biomedical applications. In the study, a facile and an eco-friendly approach is utilized for synthesis of SeNPs using an aqueous roots extract of P. bistorta Linn. followed by extensive characterization via Fourier transform infrared spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Energy Dispersive X-Ray (EDX) analysis. The XRD and FTIR data determine the phase composition and successful capping of plant extract onto the surface of NPs while SEM and TEM micrographic examination reveals the elliptical and spherical morphology of the particles with a mean size of 69 ± 23 nm. After comprehensive characterization, the NPs are investigated for antifungal, antibacterial, antileishmanial, antioxidant, and biocompatibility properties. The study reveals that Polygonum bistorta Linn. synthesized SeNPs exhibit significant antibacterial and antifungal activities with Staphylococcus aureus and Fusarium oxysporum inducing the highest zone of inhibition of 14 ± 1.0 mm and 20 ± 1.2 mm, respectively at the concentration of 40 mg/mL. The NPs are also found to have antiparasitic potential against promastigote and amastigote forms of Leishmania tropica. Furthermore, the NPs are discovered to have excellent potential in neutralizing harmful free radicals thus exhibiting considerable antioxidant potential. Most importantly, Polygonum bistorta Linn. synthesized SeNPs showed substantial compatibility against blood cells in vitro studies, which signifies the nontoxic nature of the NPs. The study thus concludes that medicinally important Polygonum bistorta Linn. roots can be utilized as an eco-friendly, sustainable, and green source for the synthesis of pharmacologically potent selenium nanoparticles.
{"title":"Polygonum bistorta Linn. as a green source for synthesis of biocompatible selenium nanoparticles with potent antimicrobial and antioxidant properties.","authors":"Hafiz Abdul Haseeb, Muhammad Aslam Khan, Hassam Rasheed, Muhammad Usman Zahid, Thu Dung Doan, Muhammad Aamir Ramzan Siddique, Uzair Ahmad, Syed Ali Imran Bokhari","doi":"10.1007/s10534-024-00622-0","DOIUrl":"https://doi.org/10.1007/s10534-024-00622-0","url":null,"abstract":"<p><p>Here, we report for the first time, green-synthesized selenium nanoparticles (SeNPs) using pharmacologically potent herb of Polygonum bistorta Linn. for multiple biomedical applications. In the study, a facile and an eco-friendly approach is utilized for synthesis of SeNPs using an aqueous roots extract of P. bistorta Linn. followed by extensive characterization via Fourier transform infrared spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Energy Dispersive X-Ray (EDX) analysis. The XRD and FTIR data determine the phase composition and successful capping of plant extract onto the surface of NPs while SEM and TEM micrographic examination reveals the elliptical and spherical morphology of the particles with a mean size of 69 ± 23 nm. After comprehensive characterization, the NPs are investigated for antifungal, antibacterial, antileishmanial, antioxidant, and biocompatibility properties. The study reveals that Polygonum bistorta Linn. synthesized SeNPs exhibit significant antibacterial and antifungal activities with Staphylococcus aureus and Fusarium oxysporum inducing the highest zone of inhibition of 14 ± 1.0 mm and 20 ± 1.2 mm, respectively at the concentration of 40 mg/mL. The NPs are also found to have antiparasitic potential against promastigote and amastigote forms of Leishmania tropica. Furthermore, the NPs are discovered to have excellent potential in neutralizing harmful free radicals thus exhibiting considerable antioxidant potential. Most importantly, Polygonum bistorta Linn. synthesized SeNPs showed substantial compatibility against blood cells in vitro studies, which signifies the nontoxic nature of the NPs. The study thus concludes that medicinally important Polygonum bistorta Linn. roots can be utilized as an eco-friendly, sustainable, and green source for the synthesis of pharmacologically potent selenium nanoparticles.</p>","PeriodicalId":491,"journal":{"name":"Biometals","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141911249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-29DOI: 10.1007/s10534-024-00620-2
Carmen Steluta Ciobanu, Daniela Predoi, Simona Liliana Iconaru, Mihai Valentin Predoi, Liliana Ghegoiu, Nicolas Buton, Mikael Motelica-Heino
Cu-doped hydroxyapatite (CuHAp) thin films were obtained using spin coating method. To make these thin films, CuHAp suspensions obtained by sol-gel method were used. The coatings obtained were thermally treated at 500 °C. After the thermal treatment, the thin films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM). Moreover, the stability of the suspensions before being used to obtain the thin films was certified by dynamic light scattering (DLS), zeta potential methods and ultrasound measurements. In the XRD patterns, the peaks associated with hexagonal hydroxyapatite were identified in accordance with JCPDS no. 09-0432. EDS and XPS results confirmed the presence of Cu ions in the samples. Data about the morphological features and chemical composition of CuHAp thin films were obtained by performing scanning electron microscopy (SEM) measurements. Our results suggest that the CuHAp thin films surface is continuous and homogenous. The presence of the functional groups in the CuHAp thin films was confirmed by Fourier-transform infrared spectroscopy (FTIR) and Raman spectroscopy studies. Information about the surface topography of the CuHAp thin films has been obtained using atomic force microscopy (AFM). The AFM images determined that the surface topography of the CuHAp thin layer is homogenous and continuous without presenting any unevenness or fissures. The cytotoxicity of CuHAp thin films was assessed using human gingival fibroblasts (HGF-1) cells. The results of the cell viability assays demonstrated that the thin films presented good biocompatible properties towards the HGF-1 cells. Additionally, the adherence and development of HGF-1 cells on the surface of CuHAp thin films were determined using AFM. The AFM surface topographies highlighted that the CuHAp thin film's surface favored the attachment and proliferation of HGF-1 cells on their surface.
{"title":"Copper doped hydroxyapatite nanocomposite thin films: synthesis, physico-chemical and biological evaluation.","authors":"Carmen Steluta Ciobanu, Daniela Predoi, Simona Liliana Iconaru, Mihai Valentin Predoi, Liliana Ghegoiu, Nicolas Buton, Mikael Motelica-Heino","doi":"10.1007/s10534-024-00620-2","DOIUrl":"https://doi.org/10.1007/s10534-024-00620-2","url":null,"abstract":"<p><p>Cu-doped hydroxyapatite (CuHAp) thin films were obtained using spin coating method. To make these thin films, CuHAp suspensions obtained by sol-gel method were used. The coatings obtained were thermally treated at 500 °C. After the thermal treatment, the thin films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM). Moreover, the stability of the suspensions before being used to obtain the thin films was certified by dynamic light scattering (DLS), zeta potential methods and ultrasound measurements. In the XRD patterns, the peaks associated with hexagonal hydroxyapatite were identified in accordance with JCPDS no. 09-0432. EDS and XPS results confirmed the presence of Cu ions in the samples. Data about the morphological features and chemical composition of CuHAp thin films were obtained by performing scanning electron microscopy (SEM) measurements. Our results suggest that the CuHAp thin films surface is continuous and homogenous. The presence of the functional groups in the CuHAp thin films was confirmed by Fourier-transform infrared spectroscopy (FTIR) and Raman spectroscopy studies. Information about the surface topography of the CuHAp thin films has been obtained using atomic force microscopy (AFM). The AFM images determined that the surface topography of the CuHAp thin layer is homogenous and continuous without presenting any unevenness or fissures. The cytotoxicity of CuHAp thin films was assessed using human gingival fibroblasts (HGF-1) cells. The results of the cell viability assays demonstrated that the thin films presented good biocompatible properties towards the HGF-1 cells. Additionally, the adherence and development of HGF-1 cells on the surface of CuHAp thin films were determined using AFM. The AFM surface topographies highlighted that the CuHAp thin film's surface favored the attachment and proliferation of HGF-1 cells on their surface.</p>","PeriodicalId":491,"journal":{"name":"Biometals","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141786979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-29DOI: 10.1007/s10534-024-00619-9
Asif Ghafoor, Fahad Shafiq, Sumera Anwar, Lixin Zhang, Muhammad Ashraf
Phytoextraction of lead (Pb) is a challenging task due to its extremely low mobility within soil and plant systems. In this study, we tested the influence of some novel chelating agents for Pb-phytoextraction using sunflower. The Pb was applied at control (0.0278 mM) and 4.826 mM Pb as Pb(NO3)2 through soil-spiking. After 10 days of Pb addition, four different organic ligands (aspartic, ascorbic, tartaric, and pantothenic acids) were added to the soil at 1 mM concentration each. respectively. In the absence of any chelate, sunflower plants grown at 4.826 mM Pb level accumulated Pb concentrations up to 104 µg g-1 DW in roots, whereas 64 µg g-1 DW in shoot. By contrast, tartaric acid promoted significantly Pb accumulation in roots (191 µg g-1 DW; + 45.5%) and shoot (131.6 µg g-1 DW; + 51.3%). Pantothenic acid also resulted in a significant Pb-uptake in the sunflower shoots (123 µg g-1 DW; + 47.9%) and in roots (177.3 µg g-1 DW; + 41.3%). The least effective amongst the chelates tested was aspartic acid, but it still contributed to + 40.1% more Pb accumulation in the sunflower root and shoots. In addition, plant growth, biochemical, and ionomic parameters were positively regulated by the organic chelates used. Especially, an increase in leaf Ca, P, and S was evident in Pb-stressed plants in response to chelates. These results highlight that the use of biocompatible organic chelates positively alters plant physio-biochemical traits contributing to higher Pb-sequestration in sunflower plant parts.
{"title":"Comparative assessment of pantothenic, aspartic, ascorbic and tartaric acids assisted Pb-phytoextraction by sunflower (Helianthus annuus L.).","authors":"Asif Ghafoor, Fahad Shafiq, Sumera Anwar, Lixin Zhang, Muhammad Ashraf","doi":"10.1007/s10534-024-00619-9","DOIUrl":"https://doi.org/10.1007/s10534-024-00619-9","url":null,"abstract":"<p><p>Phytoextraction of lead (Pb) is a challenging task due to its extremely low mobility within soil and plant systems. In this study, we tested the influence of some novel chelating agents for Pb-phytoextraction using sunflower. The Pb was applied at control (0.0278 mM) and 4.826 mM Pb as Pb(NO<sub>3</sub>)<sub>2</sub> through soil-spiking. After 10 days of Pb addition, four different organic ligands (aspartic, ascorbic, tartaric, and pantothenic acids) were added to the soil at 1 mM concentration each. respectively. In the absence of any chelate, sunflower plants grown at 4.826 mM Pb level accumulated Pb concentrations up to 104 µg g<sup>-1</sup> DW in roots, whereas 64 µg g<sup>-1</sup> DW in shoot. By contrast, tartaric acid promoted significantly Pb accumulation in roots (191 µg g<sup>-1</sup> DW; + 45.5%) and shoot (131.6 µg g<sup>-1</sup> DW; + 51.3%). Pantothenic acid also resulted in a significant Pb-uptake in the sunflower shoots (123 µg g<sup>-1</sup> DW; + 47.9%) and in roots (177.3 µg g<sup>-1</sup> DW; + 41.3%). The least effective amongst the chelates tested was aspartic acid, but it still contributed to + 40.1% more Pb accumulation in the sunflower root and shoots. In addition, plant growth, biochemical, and ionomic parameters were positively regulated by the organic chelates used. Especially, an increase in leaf Ca, P, and S was evident in Pb-stressed plants in response to chelates. These results highlight that the use of biocompatible organic chelates positively alters plant physio-biochemical traits contributing to higher Pb-sequestration in sunflower plant parts.</p>","PeriodicalId":491,"journal":{"name":"Biometals","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141786978","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-26DOI: 10.1007/s10534-024-00618-w
Mohamed Yassine El Brouzi, Mouloud Lamtai, Nada Fath, Ayoub Rezqaoui, Oussama Zghari, Abdelghafour El Hamzaoui, Laila Ibouzine-Dine, Aboubaker El Hessni, Abdelhalem Mesfioui
Previous studies have demonstrated that the hippocampus, a crucial region for memory and cognitive functions, is particularly vulnerable to adverse effects of exposure to heavy metals. Nickel (Ni) is a neurotoxic agent that, primarily induces oxidative stress, a process known to contribute to cellular damage, which consequently affects neurological functions. The antioxidant properties of melatonin are a promising option for preventing the adverse effects of Ni, especially by protecting cells against oxidative stress and related damage. In our investigation of the potential neuroprotective effects of melatonin against Ni-induced neurotoxicity, we chose to administer melatonin through intraperitoneal injection in rats following an intrahippocampal injection of Ni into the left hippocampus. This approach allows us a targeted investigation into the influence of melatonin on the neurotoxic effects of Ni, particularly within the crucial context of the hippocampus. In the present study, we demonstrated that melatonin efficiency reduced lactate dehydrogenase level, and preserved antioxidant enzyme activities in Ni-exposed hippocampal tissue. It also mitigated the decline in superoxide dismutase and catalase activities. On the other hand, melatonin could act directly by reducing reactive oxygen species Ni-induced overproduction. Taking to gather these two potential mechanisms of action could be responsible for the adverse effect of Ni on the behavioral alteration observed in our study. This study provides significant insights into the potential of melatonin to mitigate the detrimental effects of Ni on the brain, particularly into the hippocampal region, suggesting its possible implications for the treatment of neurological disorders related to Ni exposure.
{"title":"Exploring the neuroprotective role of melatonin against nickel-induced neurotoxicity in the left hippocampus.","authors":"Mohamed Yassine El Brouzi, Mouloud Lamtai, Nada Fath, Ayoub Rezqaoui, Oussama Zghari, Abdelghafour El Hamzaoui, Laila Ibouzine-Dine, Aboubaker El Hessni, Abdelhalem Mesfioui","doi":"10.1007/s10534-024-00618-w","DOIUrl":"10.1007/s10534-024-00618-w","url":null,"abstract":"<p><p>Previous studies have demonstrated that the hippocampus, a crucial region for memory and cognitive functions, is particularly vulnerable to adverse effects of exposure to heavy metals. Nickel (Ni) is a neurotoxic agent that, primarily induces oxidative stress, a process known to contribute to cellular damage, which consequently affects neurological functions. The antioxidant properties of melatonin are a promising option for preventing the adverse effects of Ni, especially by protecting cells against oxidative stress and related damage. In our investigation of the potential neuroprotective effects of melatonin against Ni-induced neurotoxicity, we chose to administer melatonin through intraperitoneal injection in rats following an intrahippocampal injection of Ni into the left hippocampus. This approach allows us a targeted investigation into the influence of melatonin on the neurotoxic effects of Ni, particularly within the crucial context of the hippocampus. In the present study, we demonstrated that melatonin efficiency reduced lactate dehydrogenase level, and preserved antioxidant enzyme activities in Ni-exposed hippocampal tissue. It also mitigated the decline in superoxide dismutase and catalase activities. On the other hand, melatonin could act directly by reducing reactive oxygen species Ni-induced overproduction. Taking to gather these two potential mechanisms of action could be responsible for the adverse effect of Ni on the behavioral alteration observed in our study. This study provides significant insights into the potential of melatonin to mitigate the detrimental effects of Ni on the brain, particularly into the hippocampal region, suggesting its possible implications for the treatment of neurological disorders related to Ni exposure.</p>","PeriodicalId":491,"journal":{"name":"Biometals","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141764767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}