Abstract In the present study, the fiber-bending around the needle during the piercing process of the carbon fabric is investigated. In this regard, a mathematical model is established to investigate the bending elongation of the carbon fiber around the needle and the interaction between the carbon fiber and the needle tip. Then the mechanical behavior of the carbon fabric when moving down the tip of the steel needle is analyzed. Based on the performed analysis, a shape curve equation that satisfies the puncture needle tip is established. Furthermore, the influence of different needle tip shapes on the mechanical behavior of the carbon fiber is analyzed. The performance of the needle tip is subjected to different loads, including the puncture template, horizontal tension of the fiber to the needle tip, frictional resistance between the fiber and the needle tip, sliding force, and the bending moment. The performed analysis shows that when the shape of the needle tip assumes the form of curve 10, the downward force, horizontal tension, friction resistance, sliding force, and bending moment are minimized. Accordingly, curve 10 is proposed as the optimal shape for the needle tip. The present study is expected to provide theoretical guidance for selecting overall puncture process parameters.
{"title":"Analysis of Mechanical Behavior of Different Needle Tip Shapes During Puncture of Carbon Fiber Fabric","authors":"Jingzhao Yang, Jiuzhi Dong, Yunjun Chen, Xiuming Jiang","doi":"10.2478/aut-2021-0036","DOIUrl":"https://doi.org/10.2478/aut-2021-0036","url":null,"abstract":"Abstract In the present study, the fiber-bending around the needle during the piercing process of the carbon fabric is investigated. In this regard, a mathematical model is established to investigate the bending elongation of the carbon fiber around the needle and the interaction between the carbon fiber and the needle tip. Then the mechanical behavior of the carbon fabric when moving down the tip of the steel needle is analyzed. Based on the performed analysis, a shape curve equation that satisfies the puncture needle tip is established. Furthermore, the influence of different needle tip shapes on the mechanical behavior of the carbon fiber is analyzed. The performance of the needle tip is subjected to different loads, including the puncture template, horizontal tension of the fiber to the needle tip, frictional resistance between the fiber and the needle tip, sliding force, and the bending moment. The performed analysis shows that when the shape of the needle tip assumes the form of curve 10, the downward force, horizontal tension, friction resistance, sliding force, and bending moment are minimized. Accordingly, curve 10 is proposed as the optimal shape for the needle tip. The present study is expected to provide theoretical guidance for selecting overall puncture process parameters.","PeriodicalId":49104,"journal":{"name":"Autex Research Journal","volume":"22 1","pages":"318 - 327"},"PeriodicalIF":1.1,"publicationDate":"2021-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43337426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
G. Priniotakis, L. Marrot, U. Stachewicz, A. Krstić-Furundžić, Enrico Venturini, V. Jonaitienė
Abstract In construction, textiles can be used either for reinforcing the structure or for finishing design. When we talk about function, the interior is no less important than the exterior and architecture of the building. Thus using textiles to reinforce the structure of buildings, textiles often perform a desired function of reinforcing the “finish.” Building textile materials include fibers that are mixed with concrete, fiberglass reinforcement meshes, insulators, etc. Textile architecture covers permanent tensile structures based on polyester or glass fiber fabrics, with polyvinyl chloride (PVC) or polytetrafluoroethylene (PTFE) coating and awnings generally supported by polyester or polyolefin fabrics, with or without coating, especially for gardening. All above topics are covered within this perspective with the experts from the group of smart textiles for building and living within COST Action CA17107 European Network to Connect Research and Innovation Efforts on Advanced Smart Textiles (CONTEXT) [1].
摘要在建筑中,纺织品既可用于加固结构,也可用于装饰设计。当我们谈论功能时,内部的重要性不亚于建筑的外部和建筑。因此,使用纺织品来加固建筑物的结构,纺织品通常具有加固“饰面”的预期功能。建筑纺织品材料包括与混凝土混合的纤维、玻璃纤维加固网、绝缘体等。纺织品建筑涵盖基于聚酯或玻璃纤维织物的永久拉伸结构,带有聚氯乙烯(PVC)或聚四氟乙烯(PTFE)涂层,遮阳篷通常由聚酯或聚烯烃织物支撑,有涂层或无涂层,特别是用于园艺。COST Action CA17107 European Network to Connect Research and Innovation Workings on Advanced smart textiles(CONTEXT)[1]中用于建筑和生活的智能纺织品小组的专家从这个角度涵盖了上述所有主题。
{"title":"Smart Textile for Building and Living","authors":"G. Priniotakis, L. Marrot, U. Stachewicz, A. Krstić-Furundžić, Enrico Venturini, V. Jonaitienė","doi":"10.2478/aut-2021-0041","DOIUrl":"https://doi.org/10.2478/aut-2021-0041","url":null,"abstract":"Abstract In construction, textiles can be used either for reinforcing the structure or for finishing design. When we talk about function, the interior is no less important than the exterior and architecture of the building. Thus using textiles to reinforce the structure of buildings, textiles often perform a desired function of reinforcing the “finish.” Building textile materials include fibers that are mixed with concrete, fiberglass reinforcement meshes, insulators, etc. Textile architecture covers permanent tensile structures based on polyester or glass fiber fabrics, with polyvinyl chloride (PVC) or polytetrafluoroethylene (PTFE) coating and awnings generally supported by polyester or polyolefin fabrics, with or without coating, especially for gardening. All above topics are covered within this perspective with the experts from the group of smart textiles for building and living within COST Action CA17107 European Network to Connect Research and Innovation Efforts on Advanced Smart Textiles (CONTEXT) [1].","PeriodicalId":49104,"journal":{"name":"Autex Research Journal","volume":"22 1","pages":"493 - 496"},"PeriodicalIF":1.1,"publicationDate":"2021-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46445256","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
F. Parés, H. Ventura, F. Xavier Capdevila, M. Ardanuy
Abstract This paper examines the influence of weaving variables such as yarn count, number of layers, warp and weft ratio, materials of the top layer, weft density and interlocking cell shape, and size on the thermal performance of multilayer interlocked woven fabrics. A split-plot design was used to construct a total of 64 fabric structures, which were assessed for thermal performance in terms of resistance to convective, conductive, and radiative heat. It was found that, for equal weft density and yarn number, protective performance improved with the number of fabric layers and with the presence of air cells between these layers, especially if air was not trapped within and could rather pass freely between the cells. An optimal combination of factors for the thermal response to the three types of heat was established via a Derringer–a much needed desirability function. The results of this paper are useful for identifying the interaction between configuration parameters and thermal performance, and hence for the design of improved heat protective clothing.
{"title":"Influence of Multilayer Interlocked Fabrics Structure on Their Thermal Performance","authors":"F. Parés, H. Ventura, F. Xavier Capdevila, M. Ardanuy","doi":"10.2478/aut-2021-0038","DOIUrl":"https://doi.org/10.2478/aut-2021-0038","url":null,"abstract":"Abstract This paper examines the influence of weaving variables such as yarn count, number of layers, warp and weft ratio, materials of the top layer, weft density and interlocking cell shape, and size on the thermal performance of multilayer interlocked woven fabrics. A split-plot design was used to construct a total of 64 fabric structures, which were assessed for thermal performance in terms of resistance to convective, conductive, and radiative heat. It was found that, for equal weft density and yarn number, protective performance improved with the number of fabric layers and with the presence of air cells between these layers, especially if air was not trapped within and could rather pass freely between the cells. An optimal combination of factors for the thermal response to the three types of heat was established via a Derringer–a much needed desirability function. The results of this paper are useful for identifying the interaction between configuration parameters and thermal performance, and hence for the design of improved heat protective clothing.","PeriodicalId":49104,"journal":{"name":"Autex Research Journal","volume":"22 1","pages":"466 - 476"},"PeriodicalIF":1.1,"publicationDate":"2021-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45791362","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sh. Shukhratov, R. Milašius, K. Gafurov, J. Gafurov
Abstract This paper presents the features of yarn structure formation on spinning machine, i.e. yarn twist change when winding. It was considered that the twist distribution was one of the reasons for its decrease along the formed yarn. In this paper, based on analysis of changes in thickness and twist due to axial deformation, we consider a yarn moving at constant speed. Moving dynamics of yarn are studied here by using Euler variables. The correspondences of forward and reverse twist waves’ distribution speeds on presented frequency at various vibration forms are obtained. The parameters of Doppler effect for the waves distributed along the yarn are determined.
{"title":"Investigation of Twist Waves Distribution along Structurally Nonuniform Yarn","authors":"Sh. Shukhratov, R. Milašius, K. Gafurov, J. Gafurov","doi":"10.2478/aut-2021-0040","DOIUrl":"https://doi.org/10.2478/aut-2021-0040","url":null,"abstract":"Abstract This paper presents the features of yarn structure formation on spinning machine, i.e. yarn twist change when winding. It was considered that the twist distribution was one of the reasons for its decrease along the formed yarn. In this paper, based on analysis of changes in thickness and twist due to axial deformation, we consider a yarn moving at constant speed. Moving dynamics of yarn are studied here by using Euler variables. The correspondences of forward and reverse twist waves’ distribution speeds on presented frequency at various vibration forms are obtained. The parameters of Doppler effect for the waves distributed along the yarn are determined.","PeriodicalId":49104,"journal":{"name":"Autex Research Journal","volume":"22 1","pages":"488 - 492"},"PeriodicalIF":1.1,"publicationDate":"2021-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41481863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuan Li, Muli Liu, Junping Liu, Yali Yang, Xue Gong
Abstract The local binary pattern (LBP) and its variants have shown their effectiveness in texture images representation. However, most of these LBP methods only focus on the histogram of LBP patterns, ignoring the spatial contextual information among them. In this paper, a uniform three-structure descriptor method was proposed by using three different encoding methods so as to obtain the local spatial contextual information for characterizing the nonuniform texture on the surface of colored spun fabrics. The testing results of 180 samples with 18 different color schemes indicate that the established texture representation model can accurately express the nonuniform texture structure of colored spun fabrics. In addition, the overall correlation index between texture features and sample parameters is 0.027 and 0.024, respectively. When compared with the LBP and its variants, the proposed method obtains a higher representational ability, and simultaneously owns a shorter time complexity. At the same time, the algorithm proposed in this paper enjoys ideal effectiveness and universality for fabric image retrieval. The mean Average Precision (mAP) of the first group of samples is 86.2%; in the second group of samples, the mAP of the sample with low twist coefficient is 89.6%, while the mAP of the sample with high twist coefficient is 88.5%.
{"title":"Texture Representation and Application of Colored Spun Fabric Using Uniform Three-Structure Descriptor","authors":"Yuan Li, Muli Liu, Junping Liu, Yali Yang, Xue Gong","doi":"10.2478/aut-2021-0039","DOIUrl":"https://doi.org/10.2478/aut-2021-0039","url":null,"abstract":"Abstract The local binary pattern (LBP) and its variants have shown their effectiveness in texture images representation. However, most of these LBP methods only focus on the histogram of LBP patterns, ignoring the spatial contextual information among them. In this paper, a uniform three-structure descriptor method was proposed by using three different encoding methods so as to obtain the local spatial contextual information for characterizing the nonuniform texture on the surface of colored spun fabrics. The testing results of 180 samples with 18 different color schemes indicate that the established texture representation model can accurately express the nonuniform texture structure of colored spun fabrics. In addition, the overall correlation index between texture features and sample parameters is 0.027 and 0.024, respectively. When compared with the LBP and its variants, the proposed method obtains a higher representational ability, and simultaneously owns a shorter time complexity. At the same time, the algorithm proposed in this paper enjoys ideal effectiveness and universality for fabric image retrieval. The mean Average Precision (mAP) of the first group of samples is 86.2%; in the second group of samples, the mAP of the sample with low twist coefficient is 89.6%, while the mAP of the sample with high twist coefficient is 88.5%.","PeriodicalId":49104,"journal":{"name":"Autex Research Journal","volume":"22 1","pages":"477 - 487"},"PeriodicalIF":1.1,"publicationDate":"2021-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42064462","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Radosław Dziuba, Katarzyna J. Grabowska, D. Wawro, J. Wietecha, Z. Wysokińska
Abstract The paper aims to present the main tendencies on the global and European natural polymer markets in recent years from the point of view of the requirements and achievements of the European Commission that have been expressed in recent programs and Strategies, with special reference to the Circular Economy New Action Plan and the European Green Deal—the EU Strategies for Climate Neutrality. Natural polymers play an important role among biodegradable products whose role in the production and international trade has been systematically increasing, especially since the middle of the last decade of the new century (2015). Natural polymers are also recommended by the EU from the point of view of their specific importance in the group of biodegradable products.
{"title":"Natural Polymers on the Global and European Market - Presentation of Research Results in the Łukasiewicz Research Network – Institute of Biopolymers and Chemical Fibers-Case Studies on the Cellulose and Chitosan Fibers","authors":"Radosław Dziuba, Katarzyna J. Grabowska, D. Wawro, J. Wietecha, Z. Wysokińska","doi":"10.2478/aut-2021-0033","DOIUrl":"https://doi.org/10.2478/aut-2021-0033","url":null,"abstract":"Abstract The paper aims to present the main tendencies on the global and European natural polymer markets in recent years from the point of view of the requirements and achievements of the European Commission that have been expressed in recent programs and Strategies, with special reference to the Circular Economy New Action Plan and the European Green Deal—the EU Strategies for Climate Neutrality. Natural polymers play an important role among biodegradable products whose role in the production and international trade has been systematically increasing, especially since the middle of the last decade of the new century (2015). Natural polymers are also recommended by the EU from the point of view of their specific importance in the group of biodegradable products.","PeriodicalId":49104,"journal":{"name":"Autex Research Journal","volume":"21 1","pages":"445 - 458"},"PeriodicalIF":1.1,"publicationDate":"2021-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48027728","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract The aim of this work is to estimate the effect of loop length and Lycra weight percent (Lwp) on the geometrical and thermo-physiological comfort of elastic plain knitted fabric. Fifty single jersey knitted fabric samples were produced at five levels of Lycra weight percent (Lwp) (4%, 5%, 6%, 7%, and 8%) and loop length (2.7 mm, 2.9 mm, 3.1 mm, 3.3 mm, and 3.4 mm) with full plaited (fp) and half plaited (hp) of bare Lycra. The thermo-physiological comfort properties (thermal conductivity, absorptivity, and water vapor permeability), air permeability, and geometrical properties were measured at standard of each one. The results showed that the elastic single jersey knitted fabric thickness ranged between 3.12 times and 4.2 times of the yarn diameter (d). The fabric thickness increased when loop length is increased and decreased when Lwp is increased. The thermal conductivity, absorptivity, and water vapor resistance (WVR) decreased with Lwp increasing.
{"title":"Effect of Lycra Weight Percent and Loop Length on Thermo-physiological Properties of Elastic Single Jersey Knitted Fabric","authors":"A. Khalil, P. Těšinova, A. R. Aboalasaad","doi":"10.2478/aut-2021-0030","DOIUrl":"https://doi.org/10.2478/aut-2021-0030","url":null,"abstract":"Abstract The aim of this work is to estimate the effect of loop length and Lycra weight percent (Lwp) on the geometrical and thermo-physiological comfort of elastic plain knitted fabric. Fifty single jersey knitted fabric samples were produced at five levels of Lycra weight percent (Lwp) (4%, 5%, 6%, 7%, and 8%) and loop length (2.7 mm, 2.9 mm, 3.1 mm, 3.3 mm, and 3.4 mm) with full plaited (fp) and half plaited (hp) of bare Lycra. The thermo-physiological comfort properties (thermal conductivity, absorptivity, and water vapor permeability), air permeability, and geometrical properties were measured at standard of each one. The results showed that the elastic single jersey knitted fabric thickness ranged between 3.12 times and 4.2 times of the yarn diameter (d). The fabric thickness increased when loop length is increased and decreased when Lwp is increased. The thermal conductivity, absorptivity, and water vapor resistance (WVR) decreased with Lwp increasing.","PeriodicalId":49104,"journal":{"name":"Autex Research Journal","volume":"22 1","pages":"419 - 426"},"PeriodicalIF":1.1,"publicationDate":"2021-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42754980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abbes Nedra, Sejri Néjib, J. Boubaker, Cheikhrouhou Morched
Abstract To improve quality, production, and service delivery, clothing industries look toward continuous improvement approaches such as lean manufacturing, Six Sigma, and Lean Six Sigma (LSS). Simulation is one of the effective methods which aim to examine different solution scenarios. This study explores how LSS and simulation can be integrated based on the Sim-Lean approach, using a process improvement effort in clothing small–medium enterprises (SMEs). A structured framework integrating these research methodologies is developed, which might benefit a variety of future clothing process improvement efforts, and could inform quality improvement efforts in other industries. The aim is to allow a successful implementation of the approach in the clothing industry to improve the lead time, the daily output, the average staying times (min) of jobs waiting in queues, and the resource utilization.
{"title":"An Integrated Lean Six Sigma Approach to Modeling and Simulation: A Case Study from Clothing SME","authors":"Abbes Nedra, Sejri Néjib, J. Boubaker, Cheikhrouhou Morched","doi":"10.2478/aut-2021-0028","DOIUrl":"https://doi.org/10.2478/aut-2021-0028","url":null,"abstract":"Abstract To improve quality, production, and service delivery, clothing industries look toward continuous improvement approaches such as lean manufacturing, Six Sigma, and Lean Six Sigma (LSS). Simulation is one of the effective methods which aim to examine different solution scenarios. This study explores how LSS and simulation can be integrated based on the Sim-Lean approach, using a process improvement effort in clothing small–medium enterprises (SMEs). A structured framework integrating these research methodologies is developed, which might benefit a variety of future clothing process improvement efforts, and could inform quality improvement efforts in other industries. The aim is to allow a successful implementation of the approach in the clothing industry to improve the lead time, the daily output, the average staying times (min) of jobs waiting in queues, and the resource utilization.","PeriodicalId":49104,"journal":{"name":"Autex Research Journal","volume":"22 1","pages":"305 - 311"},"PeriodicalIF":1.1,"publicationDate":"2021-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44238105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
V. Glombikova, P. Komárková, Michal Vik, Jaroslava Adamcova, R. Nemcokova, M. Viková, A. Havelka
Abstract The study investigates retroreflective fabrics’ efficiency from the point of view of the interaction of their visibility, thermo-physiological comfort properties, and durability (represented by physical-mechanical performance). The effect of the combination of two production technologies (reflective transfer films and screen printing method) and two reflector covering sizes (25% and 85%) was examined. Technique for order of preference by similarity to ideal solution (TOPSIS) method was used to determine the best solution considering the abovementioned tested categories of properties. Retroreflective performance was in congruence with the used design coverage factor of the tested pattern. It was found that retroreflection of the tested pattern produced using screen printing technology was significantly lower than retroreflection of an identical pattern made by a transfer film. On the contrary, in terms of thermo-physiological comfort and physical-mechanical performance of the tested samples, screen printing technology shows significantly better results in almost all tested properties, especially in water vapor permeability, moisture management, and physical-mechanical performance. The solution for the abovementioned contradictory results can be achieved by using a combination of the advantages associated with each of these technology methods. Screen printing can be applied to specific regions of clothing that are exposed to extreme loading or sweating, and the transfer of film elements ensures high visibility with respect to the standards and biomotion principles that are deployed as prevalent benchmarks in the industry.
{"title":"Approach to Performance Rating of Retroreflective Textile Material Considering Production Technology and Reflector Size","authors":"V. Glombikova, P. Komárková, Michal Vik, Jaroslava Adamcova, R. Nemcokova, M. Viková, A. Havelka","doi":"10.2478/aut-2021-0035","DOIUrl":"https://doi.org/10.2478/aut-2021-0035","url":null,"abstract":"Abstract The study investigates retroreflective fabrics’ efficiency from the point of view of the interaction of their visibility, thermo-physiological comfort properties, and durability (represented by physical-mechanical performance). The effect of the combination of two production technologies (reflective transfer films and screen printing method) and two reflector covering sizes (25% and 85%) was examined. Technique for order of preference by similarity to ideal solution (TOPSIS) method was used to determine the best solution considering the abovementioned tested categories of properties. Retroreflective performance was in congruence with the used design coverage factor of the tested pattern. It was found that retroreflection of the tested pattern produced using screen printing technology was significantly lower than retroreflection of an identical pattern made by a transfer film. On the contrary, in terms of thermo-physiological comfort and physical-mechanical performance of the tested samples, screen printing technology shows significantly better results in almost all tested properties, especially in water vapor permeability, moisture management, and physical-mechanical performance. The solution for the abovementioned contradictory results can be achieved by using a combination of the advantages associated with each of these technology methods. Screen printing can be applied to specific regions of clothing that are exposed to extreme loading or sweating, and the transfer of film elements ensures high visibility with respect to the standards and biomotion principles that are deployed as prevalent benchmarks in the industry.","PeriodicalId":49104,"journal":{"name":"Autex Research Journal","volume":"22 1","pages":"446 - 457"},"PeriodicalIF":1.1,"publicationDate":"2021-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42634960","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Lateral compact spinning with pneumatic groove is a spinning process to gather fibers by common actions of airflow and mechanical forces. Compared with ring spinning, it can more effectively reduce yarn hairiness and enhance yarn strength. However, fiber motion in the agglomeration area is complex. And, it is important to establish a new fiber model to accurately describing the fiber motion. The objectives of this research were to create a new fiber model to simulate the agglomeration process, to analyze yarn properties of the lateral compact spinning with pneumatic groove, and to compare with other spinning yarns through a series of tests. The new fiber model was based on the finite element method implemented in MATLAB and was to show the fiber motion during the agglomeration area. The simulation generated results were close to the real motion of fibers in spinning. In the lateral compact spinning with pneumatic groove, fiber bundle through the agglomeration area can be gathered, and the output of the fiber bundle was nearly to cylinder before yarn twisted. The experiments demonstrated that the lateral compact spinning with pneumatic groove can improve the yarn properties: increase the yarn twist, enhance the yarn strength, and reduce the yarn hairiness.
{"title":"Numerical Simulation of Fiber Motion in the Condensing Zone of Lateral Compact Spinning with Pneumatic Groove","authors":"Jindan Lyu, Longdi Cheng, Bugao Xu, Z. Hua","doi":"10.2478/aut-2021-0003","DOIUrl":"https://doi.org/10.2478/aut-2021-0003","url":null,"abstract":"Abstract Lateral compact spinning with pneumatic groove is a spinning process to gather fibers by common actions of airflow and mechanical forces. Compared with ring spinning, it can more effectively reduce yarn hairiness and enhance yarn strength. However, fiber motion in the agglomeration area is complex. And, it is important to establish a new fiber model to accurately describing the fiber motion. The objectives of this research were to create a new fiber model to simulate the agglomeration process, to analyze yarn properties of the lateral compact spinning with pneumatic groove, and to compare with other spinning yarns through a series of tests. The new fiber model was based on the finite element method implemented in MATLAB and was to show the fiber motion during the agglomeration area. The simulation generated results were close to the real motion of fibers in spinning. In the lateral compact spinning with pneumatic groove, fiber bundle through the agglomeration area can be gathered, and the output of the fiber bundle was nearly to cylinder before yarn twisted. The experiments demonstrated that the lateral compact spinning with pneumatic groove can improve the yarn properties: increase the yarn twist, enhance the yarn strength, and reduce the yarn hairiness.","PeriodicalId":49104,"journal":{"name":"Autex Research Journal","volume":"22 1","pages":"35 - 41"},"PeriodicalIF":1.1,"publicationDate":"2021-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41669146","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}