首页 > 最新文献

Biomolecular NMR Assignments最新文献

英文 中文
Correction: 1H, 13C, and 15N resonance assignments of the amyloidogenic peptide SEM2(49-107) by NMR spectroscopy. 修正:核磁共振波谱对淀粉样蛋白肽SEM2(49-107)的1H, 13C和15N共振分配。
IF 0.8 4区 生物学 Q4 BIOPHYSICS Pub Date : 2024-12-27 DOI: 10.1007/s12104-024-10214-1
Anastasia A Troshkina, Vladimir V Klochkov, Aydar G Bikmullin, Evelina A Klochkova, Dmitriy S Blokhin
{"title":"Correction: <sup>1</sup>H, <sup>13</sup>C, and <sup>15</sup>N resonance assignments of the amyloidogenic peptide SEM2(49-107) by NMR spectroscopy.","authors":"Anastasia A Troshkina, Vladimir V Klochkov, Aydar G Bikmullin, Evelina A Klochkova, Dmitriy S Blokhin","doi":"10.1007/s12104-024-10214-1","DOIUrl":"https://doi.org/10.1007/s12104-024-10214-1","url":null,"abstract":"","PeriodicalId":492,"journal":{"name":"Biomolecular NMR Assignments","volume":" ","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142890903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
NMR resonance assignment of a ligand-binding domain of ephrin receptor A2. ephrin受体A2配体结合域的核磁共振配位。
IF 0.8 4区 生物学 Q4 BIOPHYSICS Pub Date : 2024-12-19 DOI: 10.1007/s12104-024-10211-4
Konstantin S Mineev, Santosh L Gande, Verena Linhard, Sattar Khashkhashi Moghaddam, Harald Schwalbe

Ephrin receptors regulate intercellular communication and are thus involved in tumor development. Ephrin receptor A2 (EphA2), in particular, is overexpressed in a variety of cancers and is a proven target for anti-cancer drugs. The N-terminal ligand-binding domain of ephrin receptors is responsible for the recognition of their ligands, ephrins, and is directly involved in receptor activation. Here, we report on the complete 1H, 15N and 13C NMR chemical shift assignment of EphA2 ligand binding domain that provides the basis for NMR-assisted drug design.

Ephrin受体调节细胞间通讯,因此参与肿瘤的发展。尤其是Ephrin受体A2 (EphA2),在多种癌症中过度表达,是抗癌药物的靶点。ephrin受体的n端配体结合域负责其配体,ephrin的识别,并直接参与受体的激活。在这里,我们报道了EphA2配体结合域的完整1H, 15N和13C NMR化学位移分配,为核磁共振辅助药物设计提供了基础。
{"title":"NMR resonance assignment of a ligand-binding domain of ephrin receptor A2.","authors":"Konstantin S Mineev, Santosh L Gande, Verena Linhard, Sattar Khashkhashi Moghaddam, Harald Schwalbe","doi":"10.1007/s12104-024-10211-4","DOIUrl":"https://doi.org/10.1007/s12104-024-10211-4","url":null,"abstract":"<p><p>Ephrin receptors regulate intercellular communication and are thus involved in tumor development. Ephrin receptor A2 (EphA2), in particular, is overexpressed in a variety of cancers and is a proven target for anti-cancer drugs. The N-terminal ligand-binding domain of ephrin receptors is responsible for the recognition of their ligands, ephrins, and is directly involved in receptor activation. Here, we report on the complete <sup>1</sup>H, <sup>15</sup>N and <sup>13</sup>C NMR chemical shift assignment of EphA2 ligand binding domain that provides the basis for NMR-assisted drug design.</p>","PeriodicalId":492,"journal":{"name":"Biomolecular NMR Assignments","volume":" ","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142851992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Backbone resonance assignments of the C-terminal thioesterase domain of tyrocidine synthetase C. 酪氨酸合成酶C-末端硫酯酶结构域的主链共振配位。
IF 0.8 4区 生物学 Q4 BIOPHYSICS Pub Date : 2024-12-11 DOI: 10.1007/s12104-024-10210-5
Mitsuhiro Takeda, Rino Saito, Sho Konno, Takayuki Nagae, Hiroshi Aoyama, Sosuke Yoshinaga, Hiroaki Terasawa, Akihiro Taguchi, Atsuhiko Taniguchi, Yoshio Hayashi, Masaki Mishima

Natural macrocyclic peptides produced by microorganisms serve as valuable resources for therapeutic compounds, including antibiotics, anticancer agents, and immune suppressive agents. Nonribosomal peptide synthetases (NRPSs) are responsible for the biosynthesis of macrocyclic peptides. NRPSs are large multimodular enzymes, and each module recognizes and incorporates one specific amino acid into the polypeptide product. In the final biosynthetic step, the mature linear peptide precursor is subject to head-to-tail cyclization by the thioesterase (TE) domain in the C-terminal module. Since the TE domains can autonomously catalyze the cyclization of diverse linear peptide substrates, isolated TE domains can be used to produce natural product derivatives. To understand the mechanism of TE domains in NRPSs as a base for therapeutic applications, we investigated the TE domain (residues 6236-6486) of tyrocidine synthetase TycC by NMR. Tyrocidine is a cyclic decapeptide with antibiotic activity, and TycC-TE catalyzes the cyclization of the linear decapeptide precursor. Here, we report the backbone resonance assignments of TycC-TE. The assignments of TycC-TE provide the basis for NMR investigations of the structure and substrate-recognition mode of the TE domain in NRPS.

微生物产生的天然大环肽是治疗性化合物的宝贵资源,包括抗生素、抗癌药物和免疫抑制剂。非核糖体肽合成酶(NRPSs)负责大环肽的生物合成。NRPSs是大型多模块酶,每个模块识别并结合一种特定的氨基酸到多肽产物中。在最后的生物合成步骤中,成熟的线性肽前体受到c端模块中硫酯酶(TE)结构域的首尾环化。由于TE结构域可以自主催化多种线性肽底物的环化,因此分离的TE结构域可用于生产天然产物衍生物。为了了解TE结构域在NRPSs中的作用机制,我们通过NMR研究了TycC的TE结构域(残基6236-6486)。Tyrocidine是一种具有抗生素活性的环十肽,TycC-TE催化线性十肽前体的环化。在这里,我们报道了TycC-TE的骨干共振分配。TycC-TE的指派为NRPS中TE结构域的结构和底物识别模式的NMR研究提供了基础。
{"title":"Backbone resonance assignments of the C-terminal thioesterase domain of tyrocidine synthetase C.","authors":"Mitsuhiro Takeda, Rino Saito, Sho Konno, Takayuki Nagae, Hiroshi Aoyama, Sosuke Yoshinaga, Hiroaki Terasawa, Akihiro Taguchi, Atsuhiko Taniguchi, Yoshio Hayashi, Masaki Mishima","doi":"10.1007/s12104-024-10210-5","DOIUrl":"https://doi.org/10.1007/s12104-024-10210-5","url":null,"abstract":"<p><p>Natural macrocyclic peptides produced by microorganisms serve as valuable resources for therapeutic compounds, including antibiotics, anticancer agents, and immune suppressive agents. Nonribosomal peptide synthetases (NRPSs) are responsible for the biosynthesis of macrocyclic peptides. NRPSs are large multimodular enzymes, and each module recognizes and incorporates one specific amino acid into the polypeptide product. In the final biosynthetic step, the mature linear peptide precursor is subject to head-to-tail cyclization by the thioesterase (TE) domain in the C-terminal module. Since the TE domains can autonomously catalyze the cyclization of diverse linear peptide substrates, isolated TE domains can be used to produce natural product derivatives. To understand the mechanism of TE domains in NRPSs as a base for therapeutic applications, we investigated the TE domain (residues 6236-6486) of tyrocidine synthetase TycC by NMR. Tyrocidine is a cyclic decapeptide with antibiotic activity, and TycC-TE catalyzes the cyclization of the linear decapeptide precursor. Here, we report the backbone resonance assignments of TycC-TE. The assignments of TycC-TE provide the basis for NMR investigations of the structure and substrate-recognition mode of the TE domain in NRPS.</p>","PeriodicalId":492,"journal":{"name":"Biomolecular NMR Assignments","volume":" ","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142805711","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
1H, 13C, and 15N resonance assignments of the amyloidogenic peptide SEM2(49-107) by NMR spectroscopy. 淀粉样蛋白肽SEM2(49-107)的1H, 13C和15N共振分配。
IF 0.8 4区 生物学 Q4 BIOPHYSICS Pub Date : 2024-11-29 DOI: 10.1007/s12104-024-10209-y
Anastasia A Troshkina, Vladimir V Klochkov, Aydar G Bikmullin, Evelina A Klochkova, Dmitriy S Blokhin

It has been shown that human seminal fluid is a major factor in enhancing HIV activity. The SEM2(49-107) peptide is a product of cleavage after ejaculation by internal prostheses of the semenogelin 2 protein, expressed in seminal vesicles. It is established that the peptide SEM2(49-107) forms amyloid fibrils, which increase probability of contracting HIV infection. In this nuclear magnetic resonance (NMR) study, we present almost complete (86%) resonance assignments for the 1H 15N and 13C atoms of the backbone and side-chain of the SEM2(49-107) peptide (BioMagResBank accession number 52356). The secondary structure of SEM2(49-107) peptide was estimated by using two approaches, secondary chemical shifts analysis (CSI) and TALOS-N prediction. Analysis of the secondary structure of the SEM2(49-107) peptide using both methods revealed that the peptide contains helical segments at the C-terminus. Also in this work, we used phase-sensitive 2D HSQC 1H- 15N experiments measuring longitudinal T1 and transverse T2 NMR relaxation times to report predicted secondary structure and backbone dynamics of the SEM2(49-107) peptide. This resonance assignment will form the basis of future NMR research, contributing to a better understanding of the peptide structure and internal dynamics of the molecule.

研究表明,人类精液是增强艾滋病毒活动的一个主要因素。SEM2(49-107)肽是射精后由精胶蛋白2的内部假体裂解的产物,在精囊中表达。已确定肽SEM2(49-107)形成淀粉样原纤维,增加感染HIV的可能性。在这项核磁共振(NMR)研究中,我们对SEM2(49-107)肽(BioMagResBank登录号52356)的主链和侧链的1H 15N和13C原子进行了几乎完整(86%)的共振分配。采用二级化学位移分析(CSI)和TALOS-N预测两种方法对SEM2(49-107)肽的二级结构进行了估计。利用这两种方法对SEM2(49-107)肽的二级结构进行分析,发现该肽在c端含有螺旋状片段。同样在这项工作中,我们使用相敏2D HSQC 1H- 15N实验测量纵向T1和横向T2核磁共振弛豫时间,以报告预测的SEM2(49-107)肽的二级结构和主链动力学。这种共振分配将形成未来核磁共振研究的基础,有助于更好地理解肽的结构和分子的内部动力学。
{"title":"<sup>1</sup>H, <sup>13</sup>C, and <sup>15</sup>N resonance assignments of the amyloidogenic peptide SEM2(49-107) by NMR spectroscopy.","authors":"Anastasia A Troshkina, Vladimir V Klochkov, Aydar G Bikmullin, Evelina A Klochkova, Dmitriy S Blokhin","doi":"10.1007/s12104-024-10209-y","DOIUrl":"10.1007/s12104-024-10209-y","url":null,"abstract":"<p><p>It has been shown that human seminal fluid is a major factor in enhancing HIV activity. The SEM2(49-107) peptide is a product of cleavage after ejaculation by internal prostheses of the semenogelin 2 protein, expressed in seminal vesicles. It is established that the peptide SEM2(49-107) forms amyloid fibrils, which increase probability of contracting HIV infection. In this nuclear magnetic resonance (NMR) study, we present almost complete (86%) resonance assignments for the <sup>1</sup>H <sup>15</sup>N and <sup>13</sup>C atoms of the backbone and side-chain of the SEM2(49-107) peptide (BioMagResBank accession number 52356). The secondary structure of SEM2(49-107) peptide was estimated by using two approaches, secondary chemical shifts analysis (CSI) and TALOS-N prediction. Analysis of the secondary structure of the SEM2(49-107) peptide using both methods revealed that the peptide contains helical segments at the C-terminus. Also in this work, we used phase-sensitive 2D HSQC <sup>1</sup>H- <sup>15</sup>N experiments measuring longitudinal T<sub>1</sub> and transverse T<sub>2</sub> NMR relaxation times to report predicted secondary structure and backbone dynamics of the SEM2(49-107) peptide. This resonance assignment will form the basis of future NMR research, contributing to a better understanding of the peptide structure and internal dynamics of the molecule.</p>","PeriodicalId":492,"journal":{"name":"Biomolecular NMR Assignments","volume":" ","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142749710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
1H, 15N and 13C backbone resonance assignment of the N-terminal region of Zika virus NS4B protein in detergent micelles. 寨卡病毒 NS4B 蛋白 N 端区域在洗涤剂胶束中的 1H、15N 和 13C 骨架共振分配。
IF 0.8 4区 生物学 Q4 BIOPHYSICS Pub Date : 2024-11-07 DOI: 10.1007/s12104-024-10208-z
Yan Li, Ying Ru Loh, Qingxin Li, Dahai Luo, CongBao Kang

Zika virus has raised global concerns due to its link to microcephaly and Guillain-Barré syndrome in adults. One of viral nonstructural proteins-NS4B, an integral membrane protein, plays crucial roles in viral replication by interacting with both viral and host proteins, rendering it an attractive drug target for antiviral development. We purified the N-terminal region of ZIKV NS4B (NS4B NTD) and reconstituted it into detergent micelles. Here, we report the assignments of the backbone resonances of NS4B NTD in detergent micelles. The available assignment is useful for understanding its structure and ligand binding to provide useful information for developing NS4B inhibitors.

寨卡病毒与小头畸形和成人格林-巴利综合征有关,已引起全球关注。病毒非结构蛋白之一--NS4B是一种整体膜蛋白,通过与病毒蛋白和宿主蛋白相互作用,在病毒复制过程中发挥着关键作用,使其成为抗病毒开发的一个有吸引力的药物靶点。我们纯化了 ZIKV NS4B 的 N 端区域(NS4B NTD),并将其重组到去垢胶束中。在此,我们报告了NS4B NTD在洗涤剂胶束中的骨架共振分配。现有的分配有助于了解其结构和配体结合,从而为开发 NS4B 抑制剂提供有用的信息。
{"title":"<sup>1</sup>H, <sup>15</sup>N and <sup>13</sup>C backbone resonance assignment of the N-terminal region of Zika virus NS4B protein in detergent micelles.","authors":"Yan Li, Ying Ru Loh, Qingxin Li, Dahai Luo, CongBao Kang","doi":"10.1007/s12104-024-10208-z","DOIUrl":"https://doi.org/10.1007/s12104-024-10208-z","url":null,"abstract":"<p><p>Zika virus has raised global concerns due to its link to microcephaly and Guillain-Barré syndrome in adults. One of viral nonstructural proteins-NS4B, an integral membrane protein, plays crucial roles in viral replication by interacting with both viral and host proteins, rendering it an attractive drug target for antiviral development. We purified the N-terminal region of ZIKV NS4B (NS4B NTD) and reconstituted it into detergent micelles. Here, we report the assignments of the backbone resonances of NS4B NTD in detergent micelles. The available assignment is useful for understanding its structure and ligand binding to provide useful information for developing NS4B inhibitors.</p>","PeriodicalId":492,"journal":{"name":"Biomolecular NMR Assignments","volume":" ","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142589336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Backbone 1H, 15N, and 13C resonance assignments of the FF1 domain from P190A RhoGAP in 5 and 8 M urea P190A RhoGAP 的 FF1 结构域在 5 M 和 8 M 尿素中的 1H、15N 和 13C 骨架共振赋值。
IF 0.8 4区 生物学 Q4 BIOPHYSICS Pub Date : 2024-10-14 DOI: 10.1007/s12104-024-10197-z
Aarão Camilo-Ramos, Dmitry M. Korzhnev, Ramon Pinheiro-Aguiar, Fabio C. L. Almeida

The Rho GTPase (Ras homolog GTPases) system is a crucial signal transducer that regulates various cellular processes, including cell cycle and migration, genetic transcription, and apoptosis. In this study, we investigated the unfolded state of the first FF domain (FF1) of P190A RhoGAP, which features four tandem FF domains. For signal transduction, FF1 is phosphorylated at tyrosine 308 (Y308), which is buried in the hydrophobic core and is inaccessible to kinases in the folded domain. It was proposed, therefore, that the phosphorylation occurs in a transiently populated unfolded state of FF1. To probe the folding pathway of the RhoGAP FF1 domain, here we have performed a nearly complete backbone resonance assignments of a putative partially unfolded state of FF1 in 5 M urea and its fully unfolded state in 8 M urea.

Rho GTPase(Ras 同源物 GTPases)系统是一个重要的信号转导子,它调控各种细胞过程,包括细胞周期和迁移、基因转录和细胞凋亡。在这项研究中,我们研究了 P190A RhoGAP 的第一个 FF 结构域(FF1)的展开状态,该结构域具有四个串联的 FF 结构域。在信号转导过程中,FF1 在酪氨酸 308(Y308)处被磷酸化,该处被埋藏在疏水核心中,折叠结构域中的激酶无法进入。因此,有人提出,磷酸化发生在 FF1 瞬时填充的未折叠状态。为了探究 RhoGAP FF1 结构域的折叠途径,我们对 FF1 在 5 M 尿素中的部分未折叠状态和在 8 M 尿素中的完全未折叠状态进行了近乎完整的骨架共振分析。
{"title":"Backbone 1H, 15N, and 13C resonance assignments of the FF1 domain from P190A RhoGAP in 5 and 8 M urea","authors":"Aarão Camilo-Ramos,&nbsp;Dmitry M. Korzhnev,&nbsp;Ramon Pinheiro-Aguiar,&nbsp;Fabio C. L. Almeida","doi":"10.1007/s12104-024-10197-z","DOIUrl":"10.1007/s12104-024-10197-z","url":null,"abstract":"<div><p>The Rho GTPase (Ras homolog GTPases) system is a crucial signal transducer that regulates various cellular processes, including cell cycle and migration, genetic transcription, and apoptosis. In this study, we investigated the unfolded state of the first FF domain (FF1) of P190A RhoGAP, which features four tandem FF domains. For signal transduction, FF1 is phosphorylated at tyrosine 308 (Y308), which is buried in the hydrophobic core and is inaccessible to kinases in the folded domain. It was proposed, therefore, that the phosphorylation occurs in a transiently populated unfolded state of FF1. To probe the folding pathway of the RhoGAP FF1 domain, here we have performed a nearly complete backbone resonance assignments of a putative partially unfolded state of FF1 in 5 M urea and its fully unfolded state in 8 M urea.</p></div>","PeriodicalId":492,"journal":{"name":"Biomolecular NMR Assignments","volume":"18 2","pages":"257 - 262"},"PeriodicalIF":0.8,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142455160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
NMR assignment of the conserved bacterial DNA replication protein DnaA domain IV 保守细菌 DNA 复制蛋白 DnaA 结构域 IV 的核磁共振分配。
IF 0.8 4区 生物学 Q4 BIOPHYSICS Pub Date : 2024-10-04 DOI: 10.1007/s12104-024-10206-1
Alexander Nguyen Abrams, Geoff Kelly, Julia Hubbard

Chromosomal replication is a ubiquitous and essential cellular process. In bacteria, the master replication initiator DnaA plays a key role in promoting an open complex at the origin (oriC) and recruiting helicase in a tightly regulated process. The C-terminal domain IV specifically recognises consensus sequences of double-stranded DNA in oriC, termed DnaA-boxes, thereby facilitating the initial engagement of DnaA to oriC. Here, we report the 13Cβ and backbone 1H, 15N, and 13C chemical shift assignments of soluble DnaA domain IV from Bacillus subtilis at pH 7.6 and 298 K.

染色体复制是一个无处不在的重要细胞过程。在细菌中,主复制启动子 DnaA 在促进原点(oriC)开放复合物和招募螺旋酶的严格调控过程中发挥着关键作用。其 C 端结构域 IV 能特异性识别 oriC 中双链 DNA 的共识序列(称为 DnaA-boxes),从而促进 DnaA 与 oriC 的初始接合。在此,我们报告了枯草芽孢杆菌可溶性 DnaA 结构域 IV 在 pH 7.6 和 298 K 条件下的 13Cβ 和骨架 1H、15N 和 13C 化学位移赋值。
{"title":"NMR assignment of the conserved bacterial DNA replication protein DnaA domain IV","authors":"Alexander Nguyen Abrams,&nbsp;Geoff Kelly,&nbsp;Julia Hubbard","doi":"10.1007/s12104-024-10206-1","DOIUrl":"10.1007/s12104-024-10206-1","url":null,"abstract":"<div><p>Chromosomal replication is a ubiquitous and essential cellular process. In bacteria, the master replication initiator DnaA plays a key role in promoting an open complex at the origin (<i>oriC</i>) and recruiting helicase in a tightly regulated process. The C-terminal domain IV specifically recognises consensus sequences of double-stranded DNA in <i>oriC</i>, termed DnaA-boxes, thereby facilitating the initial engagement of DnaA to <i>oriC</i>. Here, we report the <sup>13</sup>Cβ and backbone <sup>1</sup>H, <sup>15</sup>N, and <sup>13</sup>C chemical shift assignments of soluble DnaA domain IV from <i>Bacillus subtilis</i> at pH 7.6 and 298 K.</p></div>","PeriodicalId":492,"journal":{"name":"Biomolecular NMR Assignments","volume":"18 2","pages":"315 - 321"},"PeriodicalIF":0.8,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11511705/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142370574","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Imino chemical shift assignments of tRNAAsp, tRNAVal and tRNAPhe from Escherichia coli 大肠杆菌 tRNAAsp、tRNAVal 和 tRNAPhe 的氨基化学位移分布。
IF 0.8 4区 生物学 Q4 BIOPHYSICS Pub Date : 2024-10-04 DOI: 10.1007/s12104-024-10207-0
Marcel-Joseph Yared, Carine Chagneau, Pierre Barraud

Transfer RNAs (tRNAs) are an essential component of the protein synthesis machinery. In order to accomplish their cellular functions, tRNAs go through a highly controlled biogenesis process leading to the production of correctly folded tRNAs. tRNAs in solution adopt the characteristic L-shape form, a stable tertiary conformation imperative for the cellular stability of tRNAs, their thermotolerance, their interaction with protein and RNA complexes and their activity in the translation process. The introduction of post-transcriptional modifications by modification enzymes, the global conformation of tRNAs, and their cellular stability are highly interconnected. We aim to further investigate this existing link by monitoring the maturation of bacterial tRNAs in E. coli extracts using NMR. Here, we report on the 1H, 15N chemical shift assignment of the imino groups and some amino groups of unmodified and modified E. coli tRNAAsp, tRNAVal and tRNAPhe, which are essential for characterizing their maturation process using NMR spectroscopy.

转运核糖核酸(tRNA)是蛋白质合成机制的重要组成部分。为了实现其细胞功能,tRNA 需要经过一个高度受控的生物发生过程,最终产生正确折叠的 tRNA。tRNA 在溶液中呈特征性的 L 形,这种稳定的三级构象对 tRNA 的细胞稳定性、耐热性、与蛋白质和 RNA 复合物的相互作用以及在翻译过程中的活性至关重要。修饰酶对转录后修饰的引入、tRNA 的整体构象及其细胞稳定性是高度相互关联的。我们的目的是通过使用 NMR 监测细菌 tRNA 在大肠杆菌提取物中的成熟过程,进一步研究这一现有联系。在此,我们报告了未修饰和修饰的大肠杆菌 tRNAAsp、tRNAVal 和 tRNAPhe 的亚氨基和部分氨基的 1H、15N 化学位移分配,这对于利用 NMR 光谱鉴定其成熟过程至关重要。
{"title":"Imino chemical shift assignments of tRNAAsp, tRNAVal and tRNAPhe from Escherichia coli","authors":"Marcel-Joseph Yared,&nbsp;Carine Chagneau,&nbsp;Pierre Barraud","doi":"10.1007/s12104-024-10207-0","DOIUrl":"10.1007/s12104-024-10207-0","url":null,"abstract":"<div><p>Transfer RNAs (tRNAs) are an essential component of the protein synthesis machinery. In order to accomplish their cellular functions, tRNAs go through a highly controlled biogenesis process leading to the production of correctly folded tRNAs. tRNAs in solution adopt the characteristic L-shape form, a stable tertiary conformation imperative for the cellular stability of tRNAs, their thermotolerance, their interaction with protein and RNA complexes and their activity in the translation process. The introduction of post-transcriptional modifications by modification enzymes, the global conformation of tRNAs, and their cellular stability are highly interconnected. We aim to further investigate this existing link by monitoring the maturation of bacterial tRNAs in <i>E. coli</i> extracts using NMR. Here, we report on the <sup>1</sup>H, <sup>15</sup>N chemical shift assignment of the imino groups and some amino groups of unmodified and modified <i>E. coli</i> tRNA<sup>Asp</sup>, tRNA<sup>Val</sup> and tRNA<sup>Phe</sup>, which are essential for characterizing their maturation process using NMR spectroscopy.</p></div>","PeriodicalId":492,"journal":{"name":"Biomolecular NMR Assignments","volume":"18 2","pages":"323 - 331"},"PeriodicalIF":0.8,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11511762/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142370573","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Backbone assignments of the biotin carboxyl carrier protein domain of Propionyl CoA carboxylase of Leishmania major and its interaction with its cognate Biotin protein ligase 大利什曼原虫丙酰 CoA 羧化酶生物素羧基载体蛋白结构域的骨架分配及其与同源生物素蛋白连接酶的相互作用。
IF 0.8 4区 生物学 Q4 BIOPHYSICS Pub Date : 2024-09-23 DOI: 10.1007/s12104-024-10205-2
Sonika Bhatnagar, Debodyuti Sadhukhan, Monica Sundd

Propionyl CoA carboxylase (PCC) is a multimeric enzyme composed of two types of subunits, α and β arranged in α6β6 stoichiometry. The α-subunit consists of an N-terminal carboxylase domain, a carboxyl transferase domains, and a C-terminal biotin carboxyl carrier protein domain (BCCP). The β-subunit is made up of an N- and a C- carboxyl transferase domain. During PCC catalysis, the BCCP domain plays a central role by transporting a carboxyl group from the α-subunit to the β-subunit, and finally to propionyl CoA carboxylase, resulting in the formation of methyl malonyl CoA. A point mutation in any of the subunits interferes with multimer assembly and function. Due to the association of this enzyme with propionic acidemia, a genetic metabolic disorder found in humans, PCC has become an enzyme of wide spread interest. Interestingly, unicellular eukaryotes like Leishmania also possess a PCC in their mitochondria that displays high sequence conservation with the human enzyme. Thus, to understand the function of this enzyme at the molecular level, we have initiated studies on Leishmania major PCC (LmPCC). Here we report chemical shift assignments of LmPCC BCCP domain using NMR. Conformational changes in LmPCC BCCP domain upon biotinylation, as well as upon interaction with its cognate biotinylating enzyme (Biotin protein ligase from L. major) have also been reported. Our studies disclose residues important for LmPCC BCCP interaction and function.

丙酰基 CoA 羧化酶(PCC)是一种多聚酶,由α和β两种亚基组成,以α6β6 的比例排列。α亚基由一个 N 端羧化酶结构域、一个羧基转移酶结构域和一个 C 端生物素羧基载体蛋白结构域(BCP)组成。β亚基由一个 N 端羧基转移酶结构域和一个 C 端羧基转移酶结构域组成。在 PCC 催化过程中,BCCP 结构域起着核心作用,它将羧基从 α-亚基转移到 β-亚基,最后转移到丙酰基 CoA 羧化酶,从而形成甲基丙二酰 CoA。任何一个亚基的点突变都会干扰多聚体的组装和功能。由于这种酶与丙酸血症(一种在人类中发现的遗传代谢紊乱)有关,PCC 已成为一种广受关注的酶。有趣的是,单细胞真核生物(如利什曼原虫)的线粒体中也有一种与人类酶序列高度一致的 PCC。因此,为了在分子水平上了解这种酶的功能,我们启动了对利什曼原虫主要 PCC(LmPCC)的研究。在此,我们利用核磁共振技术报告了 LmPCC BCCP 结构域的化学位移。我们还报告了 LmPCC BCCP 结构域在生物素化以及与其同源生物素化酶(大头利什曼原虫生物素蛋白连接酶)相互作用时的构象变化。我们的研究揭示了对 LmPCC BCCP 的相互作用和功能非常重要的残基。
{"title":"Backbone assignments of the biotin carboxyl carrier protein domain of Propionyl CoA carboxylase of Leishmania major and its interaction with its cognate Biotin protein ligase","authors":"Sonika Bhatnagar,&nbsp;Debodyuti Sadhukhan,&nbsp;Monica Sundd","doi":"10.1007/s12104-024-10205-2","DOIUrl":"10.1007/s12104-024-10205-2","url":null,"abstract":"<div><p>Propionyl CoA carboxylase (PCC) is a multimeric enzyme composed of two types of subunits, α and β arranged in α<sub>6</sub>β<sub>6</sub> stoichiometry. The α-subunit consists of an N-terminal carboxylase domain, a carboxyl transferase domains, and a C-terminal biotin carboxyl carrier protein domain (BCCP). The β-subunit is made up of an N- and a C- carboxyl transferase domain. During PCC catalysis, the BCCP domain plays a central role by transporting a carboxyl group from the α-subunit to the β-subunit, and finally to propionyl CoA carboxylase, resulting in the formation of methyl malonyl CoA. A point mutation in any of the subunits interferes with multimer assembly and function. Due to the association of this enzyme with propionic acidemia, a genetic metabolic disorder found in humans, PCC has become an enzyme of wide spread interest. Interestingly, unicellular eukaryotes like <i>Leishmania</i> also possess a PCC in their mitochondria that displays high sequence conservation with the human enzyme. Thus, to understand the function of this enzyme at the molecular level, we have initiated studies on <i>Leishmania major</i> PCC (<i>Lm</i>PCC). Here we report chemical shift assignments of <i>Lm</i>PCC BCCP domain using NMR. Conformational changes in <i>Lm</i>PCC BCCP domain upon biotinylation, as well as upon interaction with its cognate biotinylating enzyme (Biotin protein ligase from <i>L. major</i>) have also been reported. Our studies disclose residues important for <i>Lm</i>PCC BCCP interaction and function.</p></div>","PeriodicalId":492,"journal":{"name":"Biomolecular NMR Assignments","volume":"18 2","pages":"309 - 314"},"PeriodicalIF":0.8,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142306875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
1H, 15N and 13C resonance assignments of the S2A and H64A double mutant of human carbonic anhydrase II 人类碳酸酐酶 II 的 S2A 和 H64A 双突变体的 1H、15N 和 13C 共振分配。
IF 0.8 4区 生物学 Q4 BIOPHYSICS Pub Date : 2024-09-21 DOI: 10.1007/s12104-024-10203-4
Neelam, Mandar Bopardikar, Himanshu Singh

Protein-water interactions profoundly influence protein structure and dynamics. Consequently, the function of many biomacromolecules is directly related to the presence and exchange of water molecules. While structural water molecules can be readily identified through X-ray crystallography, the dynamics within functional protein-water networks remain largely elusive. Therefore, to understand the role of biological water in protein dynamics and function, we have introduced S2A and H64A mutations in human Carbonic Anhydrase II (hCAII), a model system to study protein-water interactions. The mutations of serine to alanine at position 2 and histidine to alanine at position 64 cause an increase in hydrophobicity in the N-terminus and active site loop thereby restricting water entry and disrupting the water network in the Zn2+-binding pocket. To pave the way for a detailed investigation into the structural, functional, and mechanistic aspects of the Ser2Ala/His64Ala double mutant of hCAII, we present here almost complete sequence-specific resonance assignments for 1H, 15N, and 13C. These assignments serve as the basis for comprehensive studies on the dynamics of the protein-water network within the Zn2+-binding pocket and its role in catalysis.

蛋白质与水的相互作用深刻影响着蛋白质的结构和动力学。因此,许多生物大分子的功能与水分子的存在和交换直接相关。虽然结构性水分子可以通过 X 射线晶体学很容易地识别出来,但功能性蛋白质-水网络内的动力学在很大程度上仍然难以捉摸。因此,为了了解生物水在蛋白质动力学和功能中的作用,我们在人碳酸酐酶 II(hCAII)这一研究蛋白质与水相互作用的模型系统中引入了 S2A 和 H64A 突变。将第 2 位的丝氨酸突变为丙氨酸以及将第 64 位的组氨酸突变为丙氨酸会增加 N 端和活性位点环的疏水性,从而限制水的进入并破坏 Zn2+ 结合袋中的水网络。为了对 hCAII 的 Ser2Ala/His64Ala 双突变体的结构、功能和机理方面进行详细研究,我们在此提出了几乎完整的序列特异性 1H、15N 和 13C 共振赋值。这些测定为全面研究 Zn2+ 结合袋内蛋白质-水网络的动力学及其在催化作用中的作用奠定了基础。
{"title":"1H, 15N and 13C resonance assignments of the S2A and H64A double mutant of human carbonic anhydrase II","authors":"Neelam,&nbsp;Mandar Bopardikar,&nbsp;Himanshu Singh","doi":"10.1007/s12104-024-10203-4","DOIUrl":"10.1007/s12104-024-10203-4","url":null,"abstract":"<div><p>Protein-water interactions profoundly influence protein structure and dynamics. Consequently, the function of many biomacromolecules is directly related to the presence and exchange of water molecules. While structural water molecules can be readily identified through X-ray crystallography, the dynamics within functional protein-water networks remain largely elusive. Therefore, to understand the role of biological water in protein dynamics and function, we have introduced S2A and H64A mutations in human Carbonic Anhydrase II (hCAII), a model system to study protein-water interactions. The mutations of serine to alanine at position 2 and histidine to alanine at position 64 cause an increase in hydrophobicity in the N-terminus and active site loop thereby restricting water entry and disrupting the water network in the Zn<sup>2+</sup>-binding pocket. To pave the way for a detailed investigation into the structural, functional, and mechanistic aspects of the Ser2Ala/His64Ala double mutant of hCAII, we present here almost complete sequence-specific resonance assignments for <sup>1</sup>H, <sup>15</sup>N, and <sup>13</sup>C. These assignments serve as the basis for comprehensive studies on the dynamics of the protein-water network within the Zn<sup>2+</sup>-binding pocket and its role in catalysis.</p></div>","PeriodicalId":492,"journal":{"name":"Biomolecular NMR Assignments","volume":"18 2","pages":"299 - 304"},"PeriodicalIF":0.8,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142278433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Biomolecular NMR Assignments
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1