首页 > 最新文献

Biomolecular NMR Assignments最新文献

英文 中文
Backbone NMR resonance assignments for the VP1u N-terminal receptor-binding domain of the human parvovirus pathogen B19 人类副病毒病原体 B19 的 VP1u N 端受体结合域的骨架核磁共振共振分配。
IF 0.8 4区 生物学 Q4 BIOPHYSICS Pub Date : 2024-06-21 DOI: 10.1007/s12104-024-10181-7
Maria Luiza Caldas Nogueira, Renuk Lakshmanan, Gwladys Rivière, Mario Mietzsch, Antonette Bennett, Robert McKenna, Joanna R. Long

Parvovirus B19 (B19V) is a human pathogen that is the causative agent of several diseases in infants and adults. Due to a lack of antivirals against this virus, treatment options are limited. The minor capsid protein of B19V has a unique N terminus, named VP1u, which is essential for infection. The VP1u encodes a receptor binding domain (RBD), necessary for host cell entry, and a phospholipase A2 (PLA2) domain, crucial for endosomal escape during cellular trafficking. Both domains are indispensable for infection, making the RBD a plausible drug target for inhibitors against B19V, as it is located on the exterior surface of the virus. To date, no experimental structural information has been available for the VP1u component for any Parvovirus. Here we report the backbone NMR resonance assignments for the RBD of B19V and demonstrate it forms a stable structure. The backbone chemical shifts are in good agreement with a structure predicted by AlphaFold, validating that the RBD contains three helices connected by tight turns. This RBD construct can now be used for further NMR studies, including assignment of full-length VP1u, determination of protein-protein interaction interfaces, and development of B19 antivirals specific to the RBD domain.

Parvovirus B19(B19V)是一种人类病原体,是婴儿和成人多种疾病的病原体。由于缺乏针对这种病毒的抗病毒药物,治疗方案十分有限。B19V 的小囊膜蛋白有一个独特的 N 末端,名为 VP1u,它对感染至关重要。VP1u 编码一个受体结合结构域(RBD)和一个磷脂酶 A2(PLA2)结构域,前者是宿主细胞进入病毒所必需的,后者则是细胞转运过程中内质体逃逸的关键。这两个结构域都是感染所不可或缺的,因此,RBD 位于病毒的外表面,是抑制 B19V 的药物靶点。迄今为止,还没有任何 Parvovirus VP1u 成分的实验结构信息。在此,我们报告了 B19V RBD 的骨架核磁共振共振分配,并证明它形成了稳定的结构。骨架化学位移与 AlphaFold 预测的结构非常吻合,验证了 RBD 包含三个由紧密转折连接的螺旋。这种 RBD 结构现在可用于进一步的核磁共振研究,包括全长 VP1u 的分配、蛋白质-蛋白质相互作用界面的确定以及针对 RBD 结构域的 B19 抗病毒药物的开发。
{"title":"Backbone NMR resonance assignments for the VP1u N-terminal receptor-binding domain of the human parvovirus pathogen B19","authors":"Maria Luiza Caldas Nogueira,&nbsp;Renuk Lakshmanan,&nbsp;Gwladys Rivière,&nbsp;Mario Mietzsch,&nbsp;Antonette Bennett,&nbsp;Robert McKenna,&nbsp;Joanna R. Long","doi":"10.1007/s12104-024-10181-7","DOIUrl":"10.1007/s12104-024-10181-7","url":null,"abstract":"<div><p>Parvovirus B19 (B19V) is a human pathogen that is the causative agent of several diseases in infants and adults. Due to a lack of antivirals against this virus, treatment options are limited. The minor capsid protein of B19V has a unique N terminus, named VP1u, which is essential for infection. The VP1u encodes a receptor binding domain (RBD), necessary for host cell entry, and a phospholipase A2 (PLA<sub>2</sub>) domain, crucial for endosomal escape during cellular trafficking. Both domains are indispensable for infection, making the RBD a plausible drug target for inhibitors against B19V, as it is located on the exterior surface of the virus. To date, no experimental structural information has been available for the VP1u component for any Parvovirus. Here we report the backbone NMR resonance assignments for the RBD of B19V and demonstrate it forms a stable structure. The backbone chemical shifts are in good agreement with a structure predicted by AlphaFold, validating that the RBD contains three helices connected by tight turns. This RBD construct can now be used for further NMR studies, including assignment of full-length VP1u, determination of protein-protein interaction interfaces, and development of B19 antivirals specific to the RBD domain.</p></div>","PeriodicalId":492,"journal":{"name":"Biomolecular NMR Assignments","volume":"18 2","pages":"147 - 152"},"PeriodicalIF":0.8,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141431063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
1H, 13C and 15N backbone resonance assignment of Cel45A from Phanerochaete chrysosporium 来自 Phanerochaete chrysosporium 的 Cel45A 的 1H、13C 和 15N 主干共振分配。
IF 0.8 4区 生物学 Q4 BIOPHYSICS Pub Date : 2024-06-18 DOI: 10.1007/s12104-024-10182-6
Laura Okmane, Mats Sandgren, Jerry Ståhlberg, Gustav Nestor

A glycoside hydrolase family 45 (GH45) enzyme from the white-rot basidiomycete fungus Phanerochaete chrysosporium (PcCel45A) was expressed in Pichia pastoris with 13C and 15N labelling. A nearly complete assignment of 1H, 13C and 15N backbone resonances was obtained, as well as the secondary structure prediction based on the assigned chemical shifts using the TALOS-N software. The predicted secondary structure was almost identical to previously published crystal structures of the same enzyme, except for differences in the termini of the sequence. This is the first NMR study using an isotopically labelled GH45 enzyme.

用 13C 和 15N 标记在 Pichia pastoris 中表达了来自白腐基枝菌 Phanerochaete chrysosporium 的糖苷水解酶家族 45(GH45)(PcCel45A)。利用 TALOS-N 软件对 1H、13C 和 15N 主干共振进行了近乎完整的分配,并根据分配的化学位移对二级结构进行了预测。除了序列末端的差异外,预测的二级结构与之前公布的同一种酶的晶体结构几乎完全相同。这是首次使用同位素标记的 GH45 酶进行核磁共振研究。
{"title":"1H, 13C and 15N backbone resonance assignment of Cel45A from Phanerochaete chrysosporium","authors":"Laura Okmane,&nbsp;Mats Sandgren,&nbsp;Jerry Ståhlberg,&nbsp;Gustav Nestor","doi":"10.1007/s12104-024-10182-6","DOIUrl":"10.1007/s12104-024-10182-6","url":null,"abstract":"<div><p>A glycoside hydrolase family 45 (GH45) enzyme from the white-rot basidiomycete fungus <i>Phanerochaete chrysosporium</i> (<i>Pc</i>Cel45A) was expressed in <i>Pichia pastoris</i> with <sup>13</sup>C and <sup>15</sup>N labelling. A nearly complete assignment of <sup>1</sup>H, <sup>13</sup>C and <sup>15</sup>N backbone resonances was obtained, as well as the secondary structure prediction based on the assigned chemical shifts using the TALOS-N software. The predicted secondary structure was almost identical to previously published crystal structures of the same enzyme, except for differences in the termini of the sequence. This is the first NMR study using an isotopically labelled GH45 enzyme.</p></div>","PeriodicalId":492,"journal":{"name":"Biomolecular NMR Assignments","volume":"18 2","pages":"153 - 157"},"PeriodicalIF":0.8,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11511684/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141417127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Backbone triple resonance assignments of the dimerization domain of NF-kappaB p52 subunit NF-kappaB p52 亚基二聚化结构域的骨架三重共振分配。
IF 0.8 4区 生物学 Q4 BIOPHYSICS Pub Date : 2024-06-10 DOI: 10.1007/s12104-024-10179-1
Sunirmala Sahoo, Nitin Dhaka, Sulakshana P. Mukherjee

NF-kappaB is a family of inducible transcription factors playing an important role in immune response in vertebrates. All the five members of the family function as dimers in various combinations. Though all the family members recognize and bind to similar DNA elements to regulate the transcription of its target genes, the dimer composition can lead to differential transcriptional outcomes. Here we report the backbone resonance assignment of the 24.2 kDa homodimer of p52 subunit of the NF-kB family. The p52 subunit of NF-kB is a crucial player in the non-canonical NF-kB pathway and its dysregulation has shown detrimental effects in immune response leading to various inflammatory diseases and cancers. While the β-strands predicted using the backbone chemical shifts in this study largely conform with the available crystal structure, the helical turns present in the crystal structure are not observed in our results.

NF-kappaB 是一个可诱导的转录因子家族,在脊椎动物的免疫反应中发挥着重要作用。该家族的五个成员以不同的组合形式发挥二聚体的功能。尽管所有家族成员都能识别并结合到相似的 DNA 元件上以调节其目标基因的转录,但二聚体的组成会导致不同的转录结果。在这里,我们报告了 NF-kB 家族 p52 亚基 24.2 kDa 同源二聚体的骨架共振分配。NF-kB 的 p52 亚基是非经典 NF-kB 通路中的一个重要角色,它的失调在导致各种炎症性疾病和癌症的免疫反应中显示出有害影响。虽然本研究中利用骨架化学位移预测的 β 链与现有晶体结构基本吻合,但在我们的研究结果中却没有观察到晶体结构中存在的螺旋转折。
{"title":"Backbone triple resonance assignments of the dimerization domain of NF-kappaB p52 subunit","authors":"Sunirmala Sahoo,&nbsp;Nitin Dhaka,&nbsp;Sulakshana P. Mukherjee","doi":"10.1007/s12104-024-10179-1","DOIUrl":"10.1007/s12104-024-10179-1","url":null,"abstract":"<div><p>NF-kappaB is a family of inducible transcription factors playing an important role in immune response in vertebrates. All the five members of the family function as dimers in various combinations. Though all the family members recognize and bind to similar DNA elements to regulate the transcription of its target genes, the dimer composition can lead to differential transcriptional outcomes. Here we report the backbone resonance assignment of the 24.2 kDa homodimer of p52 subunit of the NF-kB family. The p52 subunit of NF-kB is a crucial player in the non-canonical NF-kB pathway and its dysregulation has shown detrimental effects in immune response leading to various inflammatory diseases and cancers. While the β-strands predicted using the backbone chemical shifts in this study largely conform with the available crystal structure, the helical turns present in the crystal structure are not observed in our results.</p></div>","PeriodicalId":492,"journal":{"name":"Biomolecular NMR Assignments","volume":"18 2","pages":"135 - 138"},"PeriodicalIF":0.8,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141295328","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Resonance assignments of cytochrome MtoD from the extracellular electron uptake pathway of sideroxydans lithotrophicus ES-1 细胞色素 MtoD 的共振赋值来自于纤毛虫 ES-1 的细胞外电子摄取途径。
IF 0.8 4区 生物学 Q4 BIOPHYSICS Pub Date : 2024-06-07 DOI: 10.1007/s12104-024-10180-8
Anaísa Coelho, José M. Silva, Francesca Cantini, Mario Piccioli, Ricardo O. Louro, Catarina M. Paquete

The contribution of Fe(II)-oxidizing bacteria to iron cycling in freshwater, groundwater, and marine environments has been widely recognized in recent years. These organisms perform extracellular electron transfer (EET), which constitutes the foundations of bioelectrochemical systems for the production of biofuels and bioenergy. It was proposed that the Gram-negative bacterium Sideroxydans lithotrophicus ES-1 oxidizes soluble ferrous Fe(II) at the surface of the cell and performs EET through the Mto redox pathway. This pathway is composed by the periplasmic monoheme cytochrome MtoD that is proposed to bridge electron transfer between the cell exterior and the cytoplasm. This makes its functional and structural characterization, as well as evaluating the interaction process with its physiological partners, essential for understanding the mechanisms underlying EET. Here, we report the complete assignment of the heme proton and carbon signals together with a near-complete assignment of 1H, 13C and 15N backbone and side chain resonances for the reduced, diamagnetic form of the protein. These data pave the way to identify and structurally map the molecular interaction regions between the cytochrome MtoD and its physiological redox partners, to explore the EET processes of S. lithotrophicus ES-1.

近年来,人们广泛认识到铁(II)氧化细菌对淡水、地下水和海洋环境中铁循环的贡献。这些生物可进行胞外电子转移(EET),是生产生物燃料和生物能源的生物电化学系统的基础。有人提出,革兰氏阴性细菌 Sideroxydans lithotrophicus ES-1 在细胞表面氧化可溶性亚铁 Fe(II),并通过 Mto 氧化还原途径进行 EET。该途径由细胞质周围的单血红素细胞色素 MtoD 构成,被认为是细胞外部和细胞质之间电子传递的桥梁。因此,对其进行功能和结构鉴定,以及评估其与生理伙伴的相互作用过程,对于了解 EET 的基本机制至关重要。在此,我们报告了血红素质子和碳信号的完整分配,以及该蛋白还原二磁形式的 1H、13C 和 15N 主干和侧链共振的近乎完整的分配。这些数据为确定细胞色素 MtoD 与其生理氧化还原伙伴之间的分子相互作用区域并绘制其结构图、探索 S. lithotrophicus ES-1 的 EET 过程铺平了道路。
{"title":"Resonance assignments of cytochrome MtoD from the extracellular electron uptake pathway of sideroxydans lithotrophicus ES-1","authors":"Anaísa Coelho,&nbsp;José M. Silva,&nbsp;Francesca Cantini,&nbsp;Mario Piccioli,&nbsp;Ricardo O. Louro,&nbsp;Catarina M. Paquete","doi":"10.1007/s12104-024-10180-8","DOIUrl":"10.1007/s12104-024-10180-8","url":null,"abstract":"<div><p>The contribution of Fe(II)-oxidizing bacteria to iron cycling in freshwater, groundwater, and marine environments has been widely recognized in recent years. These organisms perform extracellular electron transfer (EET), which constitutes the foundations of bioelectrochemical systems for the production of biofuels and bioenergy. It was proposed that the Gram-negative bacterium <i>Sideroxydans lithotrophicus</i> ES-1 oxidizes soluble ferrous Fe(II) at the surface of the cell and performs EET through the Mto redox pathway. This pathway is composed by the periplasmic monoheme cytochrome MtoD that is proposed to bridge electron transfer between the cell exterior and the cytoplasm. This makes its functional and structural characterization, as well as evaluating the interaction process with its physiological partners, essential for understanding the mechanisms underlying EET. Here, we report the complete assignment of the heme proton and carbon signals together with a near-complete assignment of <sup>1</sup>H, <sup>13</sup>C and <sup>15</sup>N backbone and side chain resonances for the reduced, diamagnetic form of the protein. These data pave the way to identify and structurally map the molecular interaction regions between the cytochrome MtoD and its physiological redox partners, to explore the EET processes of <i>S. lithotrophicus</i> ES-1.</p></div>","PeriodicalId":492,"journal":{"name":"Biomolecular NMR Assignments","volume":"18 2","pages":"139 - 146"},"PeriodicalIF":0.8,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11511738/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141282649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
NMR chemical shift assignment of Drosophila odorant binding protein 44a in complex with 8(Z)-eicosenoic acid 果蝇气味结合蛋白 44a 与 8(Z)-eicosenoic acid 复合物的核磁共振化学位移分配。
IF 0.8 4区 生物学 Q4 BIOPHYSICS Pub Date : 2024-06-01 DOI: 10.1007/s12104-024-10178-2
Myriam L. Cotten, Mary R. Starich, Yi He, Jun Yin, Quan Yuan, Nico Tjandra

The odorant binding protein, OBP44a is one of the most abundant proteins expressed in the brain of the developing fruit fly Drosophila melanogaster. Its cellular function has not yet been determined. The OBP family of proteins is well established to recognize hydrophobic molecules. In this study, NMR is employed to structurally characterize OBP44a. NMR chemical shift perturbation measurements confirm that OBP44a binds to fatty acids. Complete assignments of the backbone chemical shifts and secondary chemical shift analysis demonstrate that the apo state of OBP44a is comprised of six α-helices. Upon binding 8(Z)-eicosenoic acid (8(Z)-C20:1), the OBP44a C-terminal region undergoes a conformational change, from unstructured to α-helical. In addition to C-terminal restructuring upon ligand binding, some hydrophobic residues show dramatic chemical shift changes. Surprisingly, several charged residues are also strongly affected by lipid binding. Some of these residues could represent key structural features that OBP44a relies on to perform its cellular function. The NMR chemical shift assignment is the first step towards characterizing the structure of OBP44a and how specific residues might play a role in lipid binding and release. This information will be important in deciphering the biological function of OBP44a during fly brain development.

气味结合蛋白 OBP44a 是发育中果蝇大脑中表达量最丰富的蛋白质之一。它的细胞功能尚未确定。OBP 蛋白家族具有识别疏水分子的能力。本研究采用核磁共振技术对 OBP44a 进行结构鉴定。核磁共振化学位移扰动测量证实 OBP44a 与脂肪酸结合。骨架化学位移的完整分配和次级化学位移分析表明,OBP44a 的apo 状态由六个 α-螺旋组成。与 8(Z)-eicosenoic acid(8(Z)-C20:1)结合后,OBP44a 的 C 端区域发生构象变化,从无结构变为 α-螺旋结构。与配体结合后,除了 C 端结构发生变化外,一些疏水残基也发生了剧烈的化学位移变化。令人惊讶的是,一些带电残基也受到脂质结合的强烈影响。其中一些残基可能代表了 OBP44a 履行其细胞功能所依赖的关键结构特征。核磁共振化学位移分配是确定 OBP44a 结构特征以及特定残基如何在脂质结合和释放中发挥作用的第一步。这些信息对于破译 OBP44a 在蝇类大脑发育过程中的生物学功能非常重要。
{"title":"NMR chemical shift assignment of Drosophila odorant binding protein 44a in complex with 8(Z)-eicosenoic acid","authors":"Myriam L. Cotten,&nbsp;Mary R. Starich,&nbsp;Yi He,&nbsp;Jun Yin,&nbsp;Quan Yuan,&nbsp;Nico Tjandra","doi":"10.1007/s12104-024-10178-2","DOIUrl":"10.1007/s12104-024-10178-2","url":null,"abstract":"<div><p>The odorant binding protein, OBP44a is one of the most abundant proteins expressed in the brain of the developing fruit fly <i>Drosophila melanogaster</i>. Its cellular function has not yet been determined. The OBP family of proteins is well established to recognize hydrophobic molecules. In this study, NMR is employed to structurally characterize OBP44a. NMR chemical shift perturbation measurements confirm that OBP44a binds to fatty acids. Complete assignments of the backbone chemical shifts and secondary chemical shift analysis demonstrate that the apo state of OBP44a is comprised of six α-helices. Upon binding 8(Z)-eicosenoic acid (8(Z)-C20:1), the OBP44a C-terminal region undergoes a conformational change, from unstructured to α-helical. In addition to C-terminal restructuring upon ligand binding, some hydrophobic residues show dramatic chemical shift changes. Surprisingly, several charged residues are also strongly affected by lipid binding. Some of these residues could represent key structural features that OBP44a relies on to perform its cellular function. The NMR chemical shift assignment is the first step towards characterizing the structure of OBP44a and how specific residues might play a role in lipid binding and release. This information will be important in deciphering the biological function of OBP44a during fly brain development.</p></div>","PeriodicalId":492,"journal":{"name":"Biomolecular NMR Assignments","volume":"18 2","pages":"129 - 134"},"PeriodicalIF":0.8,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11511771/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141185868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Backbone and methyl side-chain resonance assignments of the single chain Fab fragment of trastuzumab 曲妥珠单抗单链 Fab 片段的骨架和甲基侧链共振分配。
IF 0.8 4区 生物学 Q4 BIOPHYSICS Pub Date : 2024-05-08 DOI: 10.1007/s12104-024-10177-3
Donald Gagné, James M. Aramini, Yves Aubin

Trastuzumab is a therapeutic monoclonal antibody developed to target human epidermal growth factor receptor 2 (HER2) present at higher levels in early cancers. Here we report the near complete resonance assignment of trastuzumab-scFab fragment backbone and the methyl groups of isoleucine, leucine and valine residues, as well as their stereo-assignments. The antibody fragment was produced using a single chain approach in Escherichia coli.

曲妥珠单抗是一种治疗性单克隆抗体,主要针对早期癌症中含量较高的人类表皮生长因子受体 2(HER2)。在此,我们报告了曲妥珠单抗-scFab 片段骨架和异亮氨酸、亮氨酸和缬氨酸残基甲基的近乎完整的共振分配及其立体分配。该抗体片段是在大肠杆菌中采用单链方法制备的。
{"title":"Backbone and methyl side-chain resonance assignments of the single chain Fab fragment of trastuzumab","authors":"Donald Gagné,&nbsp;James M. Aramini,&nbsp;Yves Aubin","doi":"10.1007/s12104-024-10177-3","DOIUrl":"10.1007/s12104-024-10177-3","url":null,"abstract":"<div><p>Trastuzumab is a therapeutic monoclonal antibody developed to target human epidermal growth factor receptor 2 (HER2) present at higher levels in early cancers. Here we report the near complete resonance assignment of trastuzumab-scFab fragment backbone and the methyl groups of isoleucine, leucine and valine residues, as well as their stereo-assignments. The antibody fragment was produced using a single chain approach in <i>Escherichia coli</i>.</p></div>","PeriodicalId":492,"journal":{"name":"Biomolecular NMR Assignments","volume":"18 2","pages":"119 - 128"},"PeriodicalIF":0.8,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11511688/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140875466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
1H, 13C, and 15N resonance assignments of the La Motif of the human La-related protein 1 人类 La 相关蛋白 1 的 La Motif 的 1H、13C 和 15N 共振赋值
IF 0.8 4区 生物学 Q4 BIOPHYSICS Pub Date : 2024-05-01 DOI: 10.1007/s12104-024-10176-4
Benjamin C. Smith, Robert Silvers

Human La-related protein 1 (HsLARP1) is involved in post-transcriptional regulation of certain 5ʹ terminal oligopyrimidine (5ʹTOP) mRNAs as well as other mRNAs and binds to both the 5’TOP motif and the 3’-poly(A) tail of certain mRNAs. HsLARP1 is heavily involved in cell proliferation, cell cycle defects, and cancer, where HsLARP1 is significantly upregulated in malignant cells and tissues. Like all LARPs, HsLARP1 contains a folded RNA binding domain, the La motif (LaM). Our current understanding of post-transcriptional regulation that emanates from the intricate molecular framework of HsLARP1 is currently limited to small snapshots, obfuscating our understanding of the full picture on HsLARP1 functionality in post-transcriptional events. Here, we present the nearly complete resonance assignment of the LaM of HsLARP1, providing a significant platform for future NMR spectroscopic studies.

人La相关蛋白1(HsLARP1)参与某些5ʹ末端寡嘧啶(5ʹTOP)mRNA及其他mRNA的转录后调控,并与某些mRNA的5'TOP图案和3'-poly(A)尾结合。HsLARP1 与细胞增殖、细胞周期缺陷和癌症密切相关,在恶性细胞和组织中,HsLARP1 会显著上调。与所有 LARPs 一样,HsLARP1 也含有一个折叠的 RNA 结合结构域 La motif(LaM)。目前,我们对 HsLARP1 错综复杂的分子框架所产生的转录后调控的了解仅限于小范围的快照,这模糊了我们对 HsLARP1 在转录后事件中功能的全貌的了解。在这里,我们展示了 HsLARP1 的 LaM 近乎完整的共振分配,为未来的核磁共振光谱研究提供了一个重要平台。
{"title":"1H, 13C, and 15N resonance assignments of the La Motif of the human La-related protein 1","authors":"Benjamin C. Smith,&nbsp;Robert Silvers","doi":"10.1007/s12104-024-10176-4","DOIUrl":"10.1007/s12104-024-10176-4","url":null,"abstract":"<div><p>Human La-related protein 1 (HsLARP1) is involved in post-transcriptional regulation of certain 5ʹ terminal oligopyrimidine (5ʹTOP) mRNAs as well as other mRNAs and binds to both the 5’TOP motif and the 3’-poly(A) tail of certain mRNAs. HsLARP1 is heavily involved in cell proliferation, cell cycle defects, and cancer, where HsLARP1 is significantly upregulated in malignant cells and tissues. Like all LARPs, HsLARP1 contains a folded RNA binding domain, the La motif (LaM). Our current understanding of post-transcriptional regulation that emanates from the intricate molecular framework of HsLARP1 is currently limited to small snapshots, obfuscating our understanding of the full picture on HsLARP1 functionality in post-transcriptional events. Here, we present the nearly complete resonance assignment of the LaM of HsLARP1, providing a significant platform for future NMR spectroscopic studies. </p></div>","PeriodicalId":492,"journal":{"name":"Biomolecular NMR Assignments","volume":"18 1","pages":"111 - 118"},"PeriodicalIF":0.8,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140840866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
1H, 15N and 13C resonance backbone and side-chain assignments and secondary structure determination of the BRCT domain of Mtb LigA Mtb LigA 的 BRCT 结构域的 1H、15N 和 13C 共振骨架和侧链分配及二级结构确定
IF 0.8 4区 生物学 Q4 BIOPHYSICS Pub Date : 2024-04-30 DOI: 10.1007/s12104-024-10175-5
Jayanti Vaishnav, Ravi Sankar Ampapathi

The BRCA1 carboxyl-terminal (BRCT) domain, an evolutionarily conserved structural motif, is ubiquitous in a multitude of proteins spanning prokaryotic and eukaryotic organisms. In Mycobacterium tuberculosis (Mtb), BRCT domain plays a pivotal role in the catalytic activity of the NAD+-dependent DNA ligase (LigA). LigA is pivotal in DNA replication, catalyzing the formation of phosphodiester bonds in Okazaki fragments and repairing single-strand breaks in damaged DNA, essential for the survival of Mtb. Structural and functional aspects of LigA unveil its character as a highly modular protein, undergoing substantial conformational changes during its catalytic cycle. Although the BRCT domain of Mtb LigA plays an essential role in DNA binding and protein–protein interactions, the precise mechanism of action remains poorly understood. Unravelling the structure of the BRCT domain holds the promise of advancing our understanding of this pivotal domain. Additionally, it will facilitate further exploration of the protein–protein interactions and enhance our understanding of inter domain interactions within LigA, specifically between BRCT and the Adenylation domain. In this study, we demonstrate the overexpression of the BRCT domain of Mtb LigA and conduct its analysis using solution NMR spectroscopy, revealing a well-folded structure and we present the nearly complete chemical shift assignments of both backbone and sidechains. In addition, a secondary structure prediction by TALOS N predicts BRCT consisting of 3 α-helices and 4 β-sheets, closely resembling the typical structural topology of most BRCT domains.

BRCA1 羧基末端(BRCT)结构域是一种进化保守的结构基团,在原核生物和真核生物的多种蛋白质中无处不在。在结核分枝杆菌(Mtb)中,BRCT 结构域在依赖 NAD+ 的 DNA 连接酶(LigA)的催化活性中起着关键作用。LigA 在 DNA 复制中起着关键作用,它催化冈崎片段中磷酸二酯键的形成,并修复受损 DNA 的单链断裂,这对 Mtb 的生存至关重要。LigA 的结构和功能揭示了它是一种高度模块化的蛋白质,在催化周期中会发生大量构象变化。尽管 Mtb LigA 的 BRCT 结构域在 DNA 结合和蛋白质-蛋白质相互作用中发挥着重要作用,但其确切的作用机制仍然鲜为人知。揭示 BRCT 结构域有望加深我们对这一关键结构域的了解。此外,它还有助于进一步探索蛋白质与蛋白质之间的相互作用,并加深我们对 LigA 内部结构域相互作用的理解,特别是 BRCT 与腺苷酸化结构域之间的相互作用。在本研究中,我们展示了 Mtb LigA 的 BRCT 结构域的过表达,并利用溶液核磁共振光谱对其进行了分析,发现了一个折叠良好的结构,我们还展示了主链和侧链几乎完整的化学位移分配。此外,根据 TALOS N 的二级结构预测,BRCT 由 3 个 α 螺旋和 4 个 β 片组成,与大多数 BRCT 结构域的典型结构拓扑非常相似。
{"title":"1H, 15N and 13C resonance backbone and side-chain assignments and secondary structure determination of the BRCT domain of Mtb LigA","authors":"Jayanti Vaishnav,&nbsp;Ravi Sankar Ampapathi","doi":"10.1007/s12104-024-10175-5","DOIUrl":"10.1007/s12104-024-10175-5","url":null,"abstract":"<div><p>The BRCA1 carboxyl-terminal (BRCT) domain, an evolutionarily conserved structural motif, is ubiquitous in a multitude of proteins spanning prokaryotic and eukaryotic organisms. In <i>Mycobacterium tuberculosis</i> (<i>Mtb</i>), BRCT domain plays a pivotal role in the catalytic activity of the NAD+-dependent DNA ligase (LigA). LigA is pivotal in DNA replication, catalyzing the formation of phosphodiester bonds in Okazaki fragments and repairing single-strand breaks in damaged DNA, essential for the survival of <i>Mtb</i>. Structural and functional aspects of LigA unveil its character as a highly modular protein, undergoing substantial conformational changes during its catalytic cycle. Although the BRCT domain of <i>Mtb</i> LigA plays an essential role in DNA binding and protein–protein interactions, the precise mechanism of action remains poorly understood. Unravelling the structure of the BRCT domain holds the promise of advancing our understanding of this pivotal domain. Additionally, it will facilitate further exploration of the protein–protein interactions and enhance our understanding of inter domain interactions within LigA, specifically between BRCT and the Adenylation domain. In this study, we demonstrate the overexpression of the BRCT domain of <i>Mtb</i> LigA and conduct its analysis using solution NMR spectroscopy, revealing a well-folded structure and we present the nearly complete chemical shift assignments of both backbone and sidechains. In addition, a secondary structure prediction by TALOS N predicts BRCT consisting of 3 <i>α</i>-helices and 4 <i>β</i>-sheets, closely resembling the typical structural topology of most BRCT domains.</p></div>","PeriodicalId":492,"journal":{"name":"Biomolecular NMR Assignments","volume":"18 1","pages":"105 - 109"},"PeriodicalIF":0.8,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140840748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chemical shift assignment of dsRBD1 and dsRBD2 of Arabidopsis thaliana DRB3, an essential protein involved in RNAi-mediated antiviral defense 拟南芥 DRB3 的 dsRBD1 和 dsRBD2 的化学位移分配,DRB3 是参与 RNAi 介导的抗病毒防御的重要蛋白质。
IF 0.8 4区 生物学 Q4 BIOPHYSICS Pub Date : 2024-04-26 DOI: 10.1007/s12104-024-10174-6
Jaydeep Paul, Mandar V. Deshmukh

As sessile organisms, plants need to counteract different biotic and abiotic stresses to survive. RNA interference provides natural immunity against various plant pathogens, especially against viral infections via inhibition of viral genome replication or translation. In plants, DRB3, a multi-domain protein containing two N-terminal dsRNA binding domains (dsRBD), plays a vital role in RNA-directed DNA methylation of the geminiviral genome. Additionally, DRB3 arrests the replication of the viral genome in the viral replication complex of RNA viruses through a mechanism that has yet to be fully deciphered. Therefore, as a first step towards exploring the structural details of DRB3, we present a nearly complete backbone and side chain assignment of the two N-terminal dsRBD domains.

作为无柄生物,植物需要抵御不同的生物和非生物压力才能生存。RNA 干扰通过抑制病毒基因组的复制或翻译,提供了抵御各种植物病原体,特别是病毒感染的天然免疫能力。在植物中,DRB3 是一种含有两个 N 端 dsRNA 结合结构域(dsRBD)的多结构域蛋白,在 RNA 引导的 geminiviral 基因组 DNA 甲基化过程中发挥着重要作用。此外,DRB3 还能通过一种尚未完全破解的机制阻止 RNA 病毒的病毒复制复合体中病毒基因组的复制。因此,作为探索 DRB3 结构细节的第一步,我们展示了两个 N 端 dsRBD 结构域近乎完整的骨架和侧链分配。
{"title":"Chemical shift assignment of dsRBD1 and dsRBD2 of Arabidopsis thaliana DRB3, an essential protein involved in RNAi-mediated antiviral defense","authors":"Jaydeep Paul,&nbsp;Mandar V. Deshmukh","doi":"10.1007/s12104-024-10174-6","DOIUrl":"10.1007/s12104-024-10174-6","url":null,"abstract":"<div><p>As sessile organisms, plants need to counteract different biotic and abiotic stresses to survive. RNA interference provides natural immunity against various plant pathogens, especially against viral infections via inhibition of viral genome replication or translation. In plants, DRB3, a multi-domain protein containing two N-terminal dsRNA binding domains (dsRBD), plays a vital role in RNA-directed DNA methylation of the geminiviral genome. Additionally, DRB3 arrests the replication of the viral genome in the viral replication complex of RNA viruses through a mechanism that has yet to be fully deciphered. Therefore, as a first step towards exploring the structural details of DRB3, we present a nearly complete backbone and side chain assignment of the two N-terminal dsRBD domains.</p></div>","PeriodicalId":492,"journal":{"name":"Biomolecular NMR Assignments","volume":"18 1","pages":"99 - 104"},"PeriodicalIF":0.8,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140652795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
1H, 13C, and 15N backbone and methyl group resonance assignments of ricin toxin A subunit 蓖麻毒素 A 亚基的 1H、13C 和 15N 骨架和甲基共振赋值
IF 0.8 4区 生物学 Q4 BIOPHYSICS Pub Date : 2024-04-20 DOI: 10.1007/s12104-024-10172-8
Shibani Bhattacharya, Tassadite Dahmane, Michael J. Goger, Michael J. Rudolph, Nilgun E. Tumer

Ricin is a potent plant toxin that targets the eukaryotic ribosome by depurinating an adenine from the sarcin-ricin loop (SRL), a highly conserved stem-loop of the rRNA. As a category-B agent for bioterrorism it is a prime target for therapeutic intervention with antibodies and enzyme blocking inhibitors since no effective therapy exists for ricin. Ricin toxin A subunit (RTA) depurinates the SRL by binding to the P-stalk proteins at a remote site. Stimulation of the N-glycosidase activity of RTA by the P-stalk proteins has been studied extensively by biochemical methods and by X-ray crystallography. The current understanding of RTA’s depurination mechanism relies exclusively on X-ray structures of the enzyme in the free state and complexed with transition state analogues. To date we have sparse evidence of conformational dynamics and allosteric regulation of RTA activity that can be exploited in the rational design of inhibitors. Thus, our primary goal here is to apply solution NMR techniques to probe the residue specific structural and dynamic coupling active in RTA as a prerequisite to understand the functional implications of an allosteric network. In this report we present de novo sequence specific amide and sidechain methyl chemical shift assignments of the 267 residue RTA in the free state and in complex with an 11-residue peptide (P11) representing the identical C-terminal sequence of the ribosomal P-stalk proteins. These assignments will facilitate future studies detailing the propagation of binding induced conformational changes in RTA complexed with inhibitors, antibodies, and biologically relevant targets.

蓖麻毒素是一种强效植物毒素,它通过对 rRNA 的高度保守茎环 sarcin-ricin loop (SRL) 中的一个腺嘌呤进行去嘌呤化,从而靶向真核核糖体。蓖麻毒素是一种 B 类生物恐怖剂,由于目前还没有有效的治疗方法,因此是使用抗体和酶阻断抑制剂进行治疗干预的主要目标。蓖麻毒素 A 亚基(RTA)通过在远端与 P-茎蛋白结合,使 SRL 去嘌呤。人们通过生化方法和 X 射线晶体学对 P-茎蛋白刺激 RTA 的 N-糖苷酶活性进行了广泛的研究。目前对 RTA 去质化机理的了解完全依赖于自由状态和与过渡态类似物复合的酶的 X 射线结构。迄今为止,我们在构象动力学和 RTA 活性的异构调节方面所掌握的证据还很稀少,而这些都可以在抑制剂的合理设计中加以利用。因此,我们在此的主要目标是应用溶液核磁共振技术探究 RTA 中活跃的特定残基结构和动态耦合,这是了解异构网络功能影响的先决条件。在本报告中,我们展示了 267 个残基的 RTA 在自由状态下以及与代表核糖体 P 茎蛋白相同 C 端序列的 11 个残基肽(P11)复合时的序列特异性酰胺和侧链甲基化学位移分配。这些赋值将有助于今后详细研究 RTA 与抑制剂、抗体和生物相关靶标复合物结合诱导构象变化的传播。
{"title":"1H, 13C, and 15N backbone and methyl group resonance assignments of ricin toxin A subunit","authors":"Shibani Bhattacharya,&nbsp;Tassadite Dahmane,&nbsp;Michael J. Goger,&nbsp;Michael J. Rudolph,&nbsp;Nilgun E. Tumer","doi":"10.1007/s12104-024-10172-8","DOIUrl":"10.1007/s12104-024-10172-8","url":null,"abstract":"<div><p>Ricin is a potent plant toxin that targets the eukaryotic ribosome by depurinating an adenine from the sarcin-ricin loop (SRL), a highly conserved stem-loop of the rRNA. As a category-B agent for bioterrorism it is a prime target for therapeutic intervention with antibodies and enzyme blocking inhibitors since no effective therapy exists for ricin. Ricin toxin A subunit (RTA) depurinates the SRL by binding to the P-stalk proteins at a remote site. Stimulation of the <i>N</i>-glycosidase activity of RTA by the P-stalk proteins has been studied extensively by biochemical methods and by X-ray crystallography. The current understanding of RTA’s depurination mechanism relies exclusively on X-ray structures of the enzyme in the free state and complexed with transition state analogues. To date we have sparse evidence of conformational dynamics and allosteric regulation of RTA activity that can be exploited in the rational design of inhibitors. Thus, our primary goal here is to apply solution NMR techniques to probe the residue specific structural and dynamic coupling active in RTA as a prerequisite to understand the functional implications of an allosteric network. In this report we present <i>de novo</i> sequence specific amide and sidechain methyl chemical shift assignments of the 267 residue RTA in the free state and in complex with an 11-residue peptide (P11) representing the identical C-terminal sequence of the ribosomal P-stalk proteins. These assignments will facilitate future studies detailing the propagation of binding induced conformational changes in RTA complexed with inhibitors, antibodies, and biologically relevant targets.</p></div>","PeriodicalId":492,"journal":{"name":"Biomolecular NMR Assignments","volume":"18 1","pages":"85 - 91"},"PeriodicalIF":0.8,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12104-024-10172-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140624141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Biomolecular NMR Assignments
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1