Pub Date : 2023-07-05DOI: 10.1007/s12104-023-10140-8
Dihong Fu, Bo Duan, Xianzhi Dong, Bin Xia
SarA is a global transcription regulator in S. aureus which regulates the expression of over 120 genes related to quorum sensing, biofilm synthesis, drug resistance and many other important physiological processes during host infection. SarA can bind to the promoter region of agr and other target genes to activate or repress the transcription. The crystal structure of SarA uncovered a MarR protein-like conformation with two symmetrical winged helix domains, while its DNA binding mechanism is still unknown. We have constructed a monomeric DNA binding domain of SarA (SarAΔN19) for the study of the interaction between SarA and DNA with NMR spectroscopy. Here, we report the 1H, 13C and 15N NMR assignment of SarAΔN19/DNA complex which is the first step towards further structure and function analysis.
{"title":"1H, 13C, and 15N resonance assignments of SarA monomer from Staphylococcus aureus in complex with DNA","authors":"Dihong Fu, Bo Duan, Xianzhi Dong, Bin Xia","doi":"10.1007/s12104-023-10140-8","DOIUrl":"10.1007/s12104-023-10140-8","url":null,"abstract":"<div><p>SarA is a global transcription regulator in <i>S. aureus</i> which regulates the expression of over 120 genes related to quorum sensing, biofilm synthesis, drug resistance and many other important physiological processes during host infection. SarA can bind to the promoter region of <i>agr</i> and other target genes to activate or repress the transcription. The crystal structure of SarA uncovered a MarR protein-like conformation with two symmetrical winged helix domains, while its DNA binding mechanism is still unknown. We have constructed a monomeric DNA binding domain of SarA (SarA<sup>ΔN19</sup>) for the study of the interaction between SarA and DNA with NMR spectroscopy. Here, we report the <sup>1</sup>H, <sup>13</sup>C and <sup>15</sup>N NMR assignment of SarA<sup>ΔN19</sup>/DNA complex which is the first step towards further structure and function analysis.</p></div>","PeriodicalId":492,"journal":{"name":"Biomolecular NMR Assignments","volume":"17 2","pages":"193 - 197"},"PeriodicalIF":0.9,"publicationDate":"2023-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71908986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
E3 ubiquitin protein ligase RNF31 is present in human proteins and is involved in linear ubiquitin chain assembly complex (LUBAC) activity and cell growth. RNF31 is involved in ubiquitination, which is the post-translational modification of proteins. Ubiquitin molecules connect with amino acid residues of target proteins under the action of ubiquitin-activating enzyme E1, ubiquitin binding enzyme E2 and ubiquitin ligase E3, so as to achieve certain physiological functions. The abnormal expression of ubiquitination promotes the formation of cancer. In studies of breast cancer, RNF31 mRNA levels were found to be higher in cancer cells than in other tissues. The PUB domain of RNF31 is the binding site of the ubiquitin thioesterase otulin. Here, we report the backbone and side-chain resonance assignments of the PUB domain of RNF31 and study the backbone relaxation of the domain. These studies will contribute to further understanding of the structural and functional relationship of RNF31 protein, which may also be a target for drug research.
{"title":"Resonance assignments of the PUB domain of the RNF31 protein","authors":"Lanlan Song, Fumei Zhong, Xiaoming Tu, Jiahai Zhang","doi":"10.1007/s12104-023-10139-1","DOIUrl":"10.1007/s12104-023-10139-1","url":null,"abstract":"<div><p>E3 ubiquitin protein ligase RNF31 is present in human proteins and is involved in linear ubiquitin chain assembly complex (LUBAC) activity and cell growth. RNF31 is involved in ubiquitination, which is the post-translational modification of proteins. Ubiquitin molecules connect with amino acid residues of target proteins under the action of ubiquitin-activating enzyme E1, ubiquitin binding enzyme E2 and ubiquitin ligase E3, so as to achieve certain physiological functions. The abnormal expression of ubiquitination promotes the formation of cancer. In studies of breast cancer, RNF31 mRNA levels were found to be higher in cancer cells than in other tissues. The PUB domain of RNF31 is the binding site of the ubiquitin thioesterase otulin. Here, we report the backbone and side-chain resonance assignments of the PUB domain of RNF31 and study the backbone relaxation of the domain. These studies will contribute to further understanding of the structural and functional relationship of RNF31 protein, which may also be a target for drug research.</p></div>","PeriodicalId":492,"journal":{"name":"Biomolecular NMR Assignments","volume":"17 2","pages":"189 - 192"},"PeriodicalIF":0.9,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9731209","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-27DOI: 10.1007/s12104-023-10141-7
Somnath Mondal, Sabrina Rousseau, Vincent Talenton, Cheikh Ahmadou Bamba Thiam, Mikayel Aznauryan, Cameron D. Mackereth
Translation initiation in eukaryotes is an early step in protein synthesis, requiring multiple factors to recruit the ribosomal small subunit to the mRNA 5’ untranslated region. One such protein factor is the eukaryotic translation initiation factor 4B (eIF4B), which increases the activity of the eIF4A RNA helicase, and is linked to cell survival and proliferation. We report here the protein backbone chemical shift assignments corresponding to the C-terminal 279 residues of human eIF4B. Analysis of the chemical shift values identifies one main helical region in the area previously linked to RNA binding, and confirms that the overall C-terminal region is intrinsically disordered.
{"title":"Backbone resonance assignments of the C-terminal region of human translation initiation factor eIF4B","authors":"Somnath Mondal, Sabrina Rousseau, Vincent Talenton, Cheikh Ahmadou Bamba Thiam, Mikayel Aznauryan, Cameron D. Mackereth","doi":"10.1007/s12104-023-10141-7","DOIUrl":"10.1007/s12104-023-10141-7","url":null,"abstract":"<div><p>Translation initiation in eukaryotes is an early step in protein synthesis, requiring multiple factors to recruit the ribosomal small subunit to the mRNA 5’ untranslated region. One such protein factor is the eukaryotic translation initiation factor 4B (eIF4B), which increases the activity of the eIF4A RNA helicase, and is linked to cell survival and proliferation. We report here the protein backbone chemical shift assignments corresponding to the C-terminal 279 residues of human eIF4B. Analysis of the chemical shift values identifies one main helical region in the area previously linked to RNA binding, and confirms that the overall C-terminal region is intrinsically disordered.</p></div>","PeriodicalId":492,"journal":{"name":"Biomolecular NMR Assignments","volume":"17 2","pages":"199 - 203"},"PeriodicalIF":0.9,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10045915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-31DOI: 10.1007/s12104-023-10137-3
Sneha Paturi, Mandar V. Deshmukh
In higher eukaryotes, the dsRNA binding proteins (dsRBPs) assist the corresponding Dicer in the cleavage of dsRNA precursors to effect post-transcriptional gene regulation through RNA interference. In contrast, the DRB7.2:DRB4 complex in Arabidopsis thaliana acts as a potent inhibitor of Dicer-like 3 (DCL3) processing by sequestering endogenous inverted-repeat dsRNA precursors. DRB7.2 possesses a single dsRNA Binding Domain (dsRBD) flanked by unstructured N- and C-terminal regions. Whereas, DRB4 has two concatenated N-terminal dsRBDs and a long unstructured C-terminus harboring a small domain of unidentified function, D3. Here, we present near-complete backbone and partial side chain assignments of the interaction domains, DRB7.2M (i.e., DRB7.2 (71–162)) and DRB4D3 (i.e., DRB4 (294–355)) as a complex. Our findings establish the groundwork for future structural, dynamic, and functional research on DRB7.2 and DRB4, and provide clues for the endo-IR pathway in plants.
{"title":"NMR resonance assignments of 18.5 kDa complex of Arabidopsis thaliana DRB7.2:DRB4 interaction domains","authors":"Sneha Paturi, Mandar V. Deshmukh","doi":"10.1007/s12104-023-10137-3","DOIUrl":"10.1007/s12104-023-10137-3","url":null,"abstract":"<div><p>In higher eukaryotes, the dsRNA binding proteins (dsRBPs) assist the corresponding Dicer in the cleavage of dsRNA precursors to effect post-transcriptional gene regulation through RNA interference. In contrast, the DRB7.2:DRB4 complex in <i>Arabidopsis thaliana</i> acts as a potent inhibitor of Dicer-like 3 (DCL3) processing by sequestering endogenous inverted-repeat dsRNA precursors. DRB7.2 possesses a single dsRNA Binding Domain (dsRBD) flanked by unstructured N- and C-terminal regions. Whereas, DRB4 has two concatenated N-terminal dsRBDs and a long unstructured C-terminus harboring a small domain of unidentified function, D3. Here, we present near-complete backbone and partial side chain assignments of the interaction domains, DRB7.2M (i.e., DRB7.2 (71–162)) and DRB4D3 (i.e., DRB4 (294–355)) as a complex. Our findings establish the groundwork for future structural, dynamic, and functional research on DRB7.2 and DRB4, and provide clues for the endo-IR pathway in plants.</p></div>","PeriodicalId":492,"journal":{"name":"Biomolecular NMR Assignments","volume":"17 2","pages":"173 - 178"},"PeriodicalIF":0.9,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10236393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-26DOI: 10.1007/s12104-023-10136-4
Srdan Matosin, Patrick D. Fischer, Maxim A. Droemer, Eric Baggs, Abu Sayeed Chowdhury, Isidoro Tavares, Scott B. Ficarro, Lisa Rose Warner, Haribabu Arthanari, Rajesh Nagarajan
Acyl carrier proteins (ACPs) are universally conserved proteins amongst different species and are involved in fatty acid synthesis. Bacteria utilize ACPs as acyl carriers and donors for the synthesis of products such as endotoxins or acyl homoserine lactones (AHLs), which are used in quorum sensing mechanisms. In this study, wehave expressed isotopically labeled holo-ACP from Burkholderia mallei in Escherichia coli to assign 100% of non-proline backbone amide (HN) resonances, 95.5% of aliphatic carbon resonances and 98.6% of aliphatic hydrogen sidechain resonances.
{"title":"1H, 13C and 15N backbone and sidechain assignment of the Burkholderia mallei acyl carrier protein","authors":"Srdan Matosin, Patrick D. Fischer, Maxim A. Droemer, Eric Baggs, Abu Sayeed Chowdhury, Isidoro Tavares, Scott B. Ficarro, Lisa Rose Warner, Haribabu Arthanari, Rajesh Nagarajan","doi":"10.1007/s12104-023-10136-4","DOIUrl":"10.1007/s12104-023-10136-4","url":null,"abstract":"<div><p>Acyl carrier proteins (ACPs) are universally conserved proteins amongst different species and are involved in fatty acid synthesis. Bacteria utilize ACPs as acyl carriers and donors for the synthesis of products such as endotoxins or acyl homoserine lactones (AHLs), which are used in quorum sensing mechanisms. In this study, wehave expressed isotopically labeled holo-ACP from <i>Burkholderia mallei</i> in <i>Escherichia coli</i> to assign 100% of non-proline backbone amide (HN) resonances, 95.5% of aliphatic carbon resonances and 98.6% of aliphatic hydrogen sidechain resonances.</p></div>","PeriodicalId":492,"journal":{"name":"Biomolecular NMR Assignments","volume":"17 2","pages":"167 - 171"},"PeriodicalIF":0.9,"publicationDate":"2023-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71909879","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-10DOI: 10.1007/s12104-023-10131-9
Nitin Mishra, Indrani Pal, Alvaro I. Herrera, Abhinav Dubey, Haribabu Arthanari, Brian V. Geisbrecht, Om Prakash
The S. aureus extracellular adherence protein (Eap) and its homologs, EapH1 and EapH2, serve roles in evasion of the human innate immune system. EapH1 binds with high-affinity and inhibits the neutrophil azurophilic granule proteases neutrophil elastase, cathepsin-G and proteinase-3. Previous structural studies using X-ray crystallography have shown that EapH1 binds to neutrophil elastase and cathepsin-G using a globally similar binding mode. However, whether the same holds true in solution is unknown and whether the inhibitor experiences dynamic changes following binding remains uncertain. To facilitate solution-phase structural and biochemical studies of EapH1 and its complexes with neutrophil granule proteases, we have characterized EapH1 by multidimensional NMR spectroscopy. Here we report a total of 100% of the non-proline backbone resonance assignments of EapH1 with BMRB accession number 50,304.
{"title":"Complete non-proline backbone resonance assignments of the S. aureus neutrophil serine protease inhibitor, EapH1","authors":"Nitin Mishra, Indrani Pal, Alvaro I. Herrera, Abhinav Dubey, Haribabu Arthanari, Brian V. Geisbrecht, Om Prakash","doi":"10.1007/s12104-023-10131-9","DOIUrl":"10.1007/s12104-023-10131-9","url":null,"abstract":"<div><p>The <i>S. aureus</i> extracellular adherence protein (Eap) and its homologs, EapH1 and EapH2, serve roles in evasion of the human innate immune system. EapH1 binds with high-affinity and inhibits the neutrophil azurophilic granule proteases neutrophil elastase, cathepsin-G and proteinase-3. Previous structural studies using X-ray crystallography have shown that EapH1 binds to neutrophil elastase and cathepsin-G using a globally similar binding mode. However, whether the same holds true in solution is unknown and whether the inhibitor experiences dynamic changes following binding remains uncertain. To facilitate solution-phase structural and biochemical studies of EapH1 and its complexes with neutrophil granule proteases, we have characterized EapH1 by multidimensional NMR spectroscopy. Here we report a total of 100% of the non-proline backbone resonance assignments of EapH1 with BMRB accession number 50,304.</p></div>","PeriodicalId":492,"journal":{"name":"Biomolecular NMR Assignments","volume":"17 1","pages":"129 - 134"},"PeriodicalIF":0.9,"publicationDate":"2023-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12104-023-10131-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4433032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-10DOI: 10.1007/s12104-023-10135-5
Chang-Hyeock Byeon, Pang C. Wang, In-Ja L. Byeon, Ümit Akbey
Functional bacterial amyloids provide structural scaffolding to bacterial biofilms. In contrast to the pathological amyloids, they have a role in vivo and are tightly regulated. Their presence is essential to the integrity of the bacterial communities surviving in biofilms and may cause serious health complications. Targeting amyloids in biofilms could be a novel approach to prevent chronic infections. However, structural information is very scarce on them in both soluble monomeric and insoluble fibrillar forms, hindering our molecular understanding and strategies to fight biofilm related diseases. Here, we present solution-state NMR assignment of 250 amino acid long biofilm-forming functional-amyloid FapC from Pseudomonas aeruginosa. We studied full-length (FL) and shorter minimalistic-truncated (L2R3C) FapC constructs without the signal-sequence that is required for secretion. 91% and 100% backbone NH resonance assignments for FL and L2R3C constructs, respectively, indicate that soluble monomeric FapC is predominantly disordered, with sizeable secondary structural propensities mostly as PP2 helices, but also as α-helices and β-sheets highlighting hotspots for fibrillation initiation interface. A shorter construct showing almost identical NMR chemical shifts highlights the promise of utilizing it for more demanding solid-state NMR studies that require methods to alleviate signal redundancy due to almost identical repeat units. This study provides key NMR resonance assignments for future structural studies of soluble, pre-fibrillar and fibrillar forms of FapC.
{"title":"Solution-state NMR assignment and secondary structure propensity of the full length and minimalistic-truncated prefibrillar monomeric form of biofilm forming functional amyloid FapC from Pseudomonas aeruginosa","authors":"Chang-Hyeock Byeon, Pang C. Wang, In-Ja L. Byeon, Ümit Akbey","doi":"10.1007/s12104-023-10135-5","DOIUrl":"10.1007/s12104-023-10135-5","url":null,"abstract":"<div><p>Functional bacterial amyloids provide structural scaffolding to bacterial biofilms. In contrast to the pathological amyloids, they have a role in vivo and are tightly regulated. Their presence is essential to the integrity of the bacterial communities surviving in biofilms and may cause serious health complications. Targeting amyloids in biofilms could be a novel approach to prevent chronic infections. However, structural information is very scarce on them in both soluble monomeric and insoluble fibrillar forms, hindering our molecular understanding and strategies to fight biofilm related diseases. Here, we present solution-state NMR assignment of 250 amino acid long biofilm-forming functional-amyloid FapC from <i>Pseudomonas aeruginosa</i>. We studied full-length (FL) and shorter minimalistic-truncated (L2R3C) FapC constructs without the signal-sequence that is required for secretion. 91% and 100% backbone NH resonance assignments for FL and L2R3C constructs, respectively, indicate that soluble monomeric FapC is predominantly disordered, with sizeable secondary structural propensities mostly as PP2 helices, but also as α-helices and β-sheets highlighting hotspots for fibrillation initiation interface. A shorter construct showing almost identical NMR chemical shifts highlights the promise of utilizing it for more demanding solid-state NMR studies that require methods to alleviate signal redundancy due to almost identical repeat units. This study provides key NMR resonance assignments for future structural studies of soluble, pre-fibrillar and fibrillar forms of FapC.</p></div>","PeriodicalId":492,"journal":{"name":"Biomolecular NMR Assignments","volume":"17 2","pages":"159 - 165"},"PeriodicalIF":0.9,"publicationDate":"2023-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9440635","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-08DOI: 10.1007/s12104-023-10134-6
Christopher M. Clements, Beat Vögeli, Yiqun G. Shellman, Morkos A. Henen
SASH1 is a scaffold protein with context-dependent biological functions in cell adhesion, tumor metastasis, lung development, and pigmentation. As a member of the SLy protein family, it contains the conserved SLY, SH3, and SAM domains. The 19 kDa SLY domain harbors over 70% of the SASH1 variants associated with pigmentation disorders. However, its solution structure or dynamics have not been investigated yet, and its exact position in the sequence is not clearly defined. Based on the bioinformatic and experimental evidence, we propose renaming this region to the SLy Proteins Associated Disordered Region (SPIDER) and defining the exact position to be amino acids 400–554 of SASH1. We have previously identified a variant in this region linked to a pigmentation disorder, S519N. Here, we used a novel deuteration technique, a suite of TROSY-based 3D NMR experiments, and a high-quality HNN to obtain near complete solution backbone assignment of SASH1’s SPIDER. A comparison with the chemical shifts of non-variant (S519) SPIDER shows that the S519N substitution does not alter the free form solution structural propensities of SPIDER. This assignment is the first step to characterize the role of SPIDER in SASH1-mediated cellular functions and provides a model for the future study of sister SPIDER domains in the SLy protein family.
{"title":"Solution NMR backbone assignment of the SASH1 SLy proteins associated disordered region (SPIDER)","authors":"Christopher M. Clements, Beat Vögeli, Yiqun G. Shellman, Morkos A. Henen","doi":"10.1007/s12104-023-10134-6","DOIUrl":"10.1007/s12104-023-10134-6","url":null,"abstract":"<div><p>SASH1 is a scaffold protein with context-dependent biological functions in cell adhesion, tumor metastasis, lung development, and pigmentation. As a member of the SLy protein family, it contains the conserved SLY, SH3, and SAM domains. The 19 kDa SLY domain harbors over 70% of the SASH1 variants associated with pigmentation disorders. However, its solution structure or dynamics have not been investigated yet, and its exact position in the sequence is not clearly defined. Based on the bioinformatic and experimental evidence, we propose renaming this region to the <u>S</u>Ly <u>P</u>roteins Assoc<u>i</u>ated <u>D</u>isorder<u>e</u>d <u>R</u>egion (SPIDER) and defining the exact position to be amino acids 400–554 of SASH1. We have previously identified a variant in this region linked to a pigmentation disorder, S519N. Here, we used a novel deuteration technique, a suite of TROSY-based 3D NMR experiments, and a high-quality HNN to obtain near complete solution backbone assignment of SASH1’s SPIDER. A comparison with the chemical shifts of non-variant (S519) SPIDER shows that the S519N substitution does not alter the free form solution structural propensities of SPIDER. This assignment is the first step to characterize the role of SPIDER in SASH1-mediated cellular functions and provides a model for the future study of sister SPIDER domains in the SLy protein family.</p></div>","PeriodicalId":492,"journal":{"name":"Biomolecular NMR Assignments","volume":"17 1","pages":"151 - 157"},"PeriodicalIF":0.9,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12104-023-10134-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4356446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-05DOI: 10.1007/s12104-023-10133-7
Karina C. Pougy, Gilberto Sachetto-Martins, Fabio C. L. Almeida, Anderson S. Pinheiro
AtGRP2 (Arabidopsis thaliana glycine-rich protein 2) is a 19-kDa RNA-binding glycine-rich protein that regulates key processes in A. thaliana. AtGRP2 is a nucleo-cytoplasmic protein with preferential expression in developing tissues, such as meristems, carpels, anthers, and embryos. AtGRP2 knockdown leads to an early flowering phenotype. In addition, AtGRP2-silenced plants exhibit a reduced number of stamens and abnormal development of embryos and seeds, suggesting its involvement in plant development. AtGRP2 expression is highly induced by cold and abiotic stresses, such as high salinity. Moreover, AtGRP2 promotes double-stranded DNA/RNA denaturation, indicating its role as an RNA chaperone during cold acclimation. AtGRP2 is composed of an N-terminal cold shock domain (CSD) followed by a C-terminal flexible region containing two CCHC-type zinc fingers interspersed with glycine-rich sequences. Despite its functional relevance in flowering time regulation and cold adaptation, the molecular mechanisms employed by AtGRP2 are largely unknown. To date, there is no structural information regarding AtGRP2 in the literature. Here, we report the 1H, 15N, and 13C backbone and side chain resonance assignments, as well as the chemical shift-derived secondary structure propensities, of the N-terminal cold shock domain of AtGRP2, encompassing residues 1–90. These data provide a framework for AtGRP2-CSD three-dimensional structure, dynamics, and RNA binding specificity investigation, which will shed light on its mechanism of action.
{"title":"1 H, 15 N, and 13 C backbone and side chain resonance assignments of the cold shock domain of the Arabidopsis thaliana glycine-rich protein AtGRP2","authors":"Karina C. Pougy, Gilberto Sachetto-Martins, Fabio C. L. Almeida, Anderson S. Pinheiro","doi":"10.1007/s12104-023-10133-7","DOIUrl":"10.1007/s12104-023-10133-7","url":null,"abstract":"<div><p>AtGRP2 (<i>Arabidopsis thaliana</i> glycine-rich protein 2) is a 19-kDa RNA-binding glycine-rich protein that regulates key processes in <i>A. thaliana</i>. AtGRP2 is a nucleo-cytoplasmic protein with preferential expression in developing tissues, such as meristems, carpels, anthers, and embryos. AtGRP2 knockdown leads to an early flowering phenotype. In addition, AtGRP2-silenced plants exhibit a reduced number of stamens and abnormal development of embryos and seeds, suggesting its involvement in plant development. AtGRP2 expression is highly induced by cold and abiotic stresses, such as high salinity. Moreover, AtGRP2 promotes double-stranded DNA/RNA denaturation, indicating its role as an RNA chaperone during cold acclimation. AtGRP2 is composed of an N-terminal cold shock domain (CSD) followed by a C-terminal flexible region containing two CCHC-type zinc fingers interspersed with glycine-rich sequences. Despite its functional relevance in flowering time regulation and cold adaptation, the molecular mechanisms employed by AtGRP2 are largely unknown. To date, there is no structural information regarding AtGRP2 in the literature. Here, we report the <sup>1</sup>H, <sup>15</sup>N, and <sup>13</sup>C backbone and side chain resonance assignments, as well as the chemical shift-derived secondary structure propensities, of the N-terminal cold shock domain of AtGRP2, encompassing residues 1–90. These data provide a framework for AtGRP2-CSD three-dimensional structure, dynamics, and RNA binding specificity investigation, which will shed light on its mechanism of action.</p></div>","PeriodicalId":492,"journal":{"name":"Biomolecular NMR Assignments","volume":"17 1","pages":"143 - 149"},"PeriodicalIF":0.9,"publicationDate":"2023-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4222548","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-02DOI: 10.1007/s12104-023-10128-4
Gianluca A. Arianna, Dane H. Geddes-Buehre, Dmitry M. Korzhnev
Rev7 is a versatile HORMA (Hop1, Rev7, Mad2) family adaptor protein with multiple roles in mitotic regulation and DNA damage response, and an essential accessory subunit of the translesion synthesis (TLS) DNA polymerase Polζ employed in replication of damaged DNA. Within Polζ, the two copies of Rev7 interact with the two Rev7-bonding motifs (RBM1 and RBM2) of the catalytic subunit Rev3 by a mechanism characteristic of HORMA proteins whereby the “safety-belt” loop of Rev7 closes on the top of the ligand. Here we report the nearly complete backbone and Ile, Val, Leu side-chain methyl NMR resonance assignments of the 27 kDa human Rev7/Rev3-RBM1 and Rev7/Rev3-RBM2 complexes (BMRB deposition numbers 51651 and 51652) that will facilitate future NMR studies of Rev7 dynamics and interactions.
{"title":"Backbone and ILV side-chain methyl NMR resonance assignments of human Rev7/Rev3-RBM1 and Rev7/Rev3-RBM2 complexes","authors":"Gianluca A. Arianna, Dane H. Geddes-Buehre, Dmitry M. Korzhnev","doi":"10.1007/s12104-023-10128-4","DOIUrl":"10.1007/s12104-023-10128-4","url":null,"abstract":"<div><p>Rev7 is a versatile HORMA (Hop1, Rev7, Mad2) family adaptor protein with multiple roles in mitotic regulation and DNA damage response, and an essential accessory subunit of the translesion synthesis (TLS) DNA polymerase Polζ employed in replication of damaged DNA. Within Polζ, the two copies of Rev7 interact with the two Rev7-bonding motifs (RBM1 and RBM2) of the catalytic subunit Rev3 by a mechanism characteristic of HORMA proteins whereby the “safety-belt” loop of Rev7 closes on the top of the ligand. Here we report the nearly complete backbone and Ile, Val, Leu side-chain methyl NMR resonance assignments of the 27 kDa human Rev7/Rev3-RBM1 and Rev7/Rev3-RBM2 complexes (BMRB deposition numbers 51651 and 51652) that will facilitate future NMR studies of Rev7 dynamics and interactions.</p></div>","PeriodicalId":492,"journal":{"name":"Biomolecular NMR Assignments","volume":"17 1","pages":"107 - 114"},"PeriodicalIF":0.9,"publicationDate":"2023-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12104-023-10128-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4097338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}