首页 > 最新文献

Biomolecular NMR Assignments最新文献

英文 中文
Chemical shift assignments of calmodulin bound to a cytosolic domain of GluN2A (residues 1004–1024) from the NMDA receptor NMDA受体结合GluN2A胞质结构域(残基1004-1024)的钙调蛋白的化学移位配位
IF 0.9 4区 生物学 Q4 BIOPHYSICS Pub Date : 2023-04-07 DOI: 10.1007/s12104-023-10125-7
Aritra Bej, James B. Ames

N-methyl-D-aspartate receptors (NMDARs) consist of glycine-binding GluN1 and glutamate-binding GluN2 subunits that form tetrameric ion channels. NMDARs in the neuronal post-synaptic membrane are important for controlling neuroplasticity and synaptic transmission in the brain. Calmodulin (CaM) binds to the cytosolic C0 domains of both GluN1 (residues 841–865) and GluN2 (residues 1004–1024) that may play a role in the Ca2+-dependent desensitization of NMDAR channels. Mutations that disrupt Ca2+-dependent desensitization of NMDARs are linked to Alzheimer’s disease, depression, stroke, epilepsy, and schizophrenia. NMR chemical shift assignments are reported here for Ca2+-saturated CaM bound to the GluN2A C0 domain of NMDAR (BMRB no. 51821).

n -甲基- d -天冬氨酸受体(NMDARs)由甘氨酸结合GluN1和谷氨酸结合GluN2亚基组成,形成四聚体离子通道。神经元突触后膜中的NMDARs对控制大脑神经可塑性和突触传递具有重要意义。钙调蛋白(CaM)结合GluN1(残基841-865)和GluN2(残基1004-1024)的细胞质C0结构域,可能在NMDAR通道的Ca2+依赖性脱敏中发挥作用。破坏NMDARs Ca2+依赖性脱敏的突变与阿尔茨海默病、抑郁症、中风、癫痫和精神分裂症有关。本文报道了Ca2+饱和CaM与NMDAR (BMRB no. 1)的GluN2A C0结构域结合的NMR化学位移分配。51821)。
{"title":"Chemical shift assignments of calmodulin bound to a cytosolic domain of GluN2A (residues 1004–1024) from the NMDA receptor","authors":"Aritra Bej,&nbsp;James B. Ames","doi":"10.1007/s12104-023-10125-7","DOIUrl":"10.1007/s12104-023-10125-7","url":null,"abstract":"<div><p>N-methyl-D-aspartate receptors (NMDARs) consist of glycine-binding GluN1 and glutamate-binding GluN2 subunits that form tetrameric ion channels. NMDARs in the neuronal post-synaptic membrane are important for controlling neuroplasticity and synaptic transmission in the brain. Calmodulin (CaM) binds to the cytosolic C0 domains of both GluN1 (residues 841–865) and GluN2 (residues 1004–1024) that may play a role in the Ca<sup>2+</sup>-dependent desensitization of NMDAR channels. Mutations that disrupt Ca<sup>2+</sup>-dependent desensitization of NMDARs are linked to Alzheimer’s disease, depression, stroke, epilepsy, and schizophrenia. NMR chemical shift assignments are reported here for Ca<sup>2+</sup>-saturated CaM bound to the GluN2A C0 domain of NMDAR (BMRB no. 51821).</p></div>","PeriodicalId":492,"journal":{"name":"Biomolecular NMR Assignments","volume":"17 1","pages":"89 - 93"},"PeriodicalIF":0.9,"publicationDate":"2023-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12104-023-10125-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4606241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
1H, 15N, 13C backbone and Cβ resonance assignments for UBQLN1 UBA and UBAA domains UBQLN1 UBA和UBAA结构域的1H, 15N, 13C骨架和Cβ共振分配
IF 0.9 4区 生物学 Q4 BIOPHYSICS Pub Date : 2023-04-06 DOI: 10.1007/s12104-023-10127-5
Gwen R. Buel, Xiang Chen, Olumide Kayode, Anthony Cruz, Kylie J. Walters

UBQLN1 functions in autophagy and proteasome-mediated protein degradation. It contains an N-terminal ubiquitin-like domain (UBL), a C-terminal ubiquitin-associated domain (UBA), and a flexible central region which functions as a chaperone to prevent protein aggregation. Here, we report the 1H, 15N, and 13C resonance assignments for the backbone (NH, N, C’, Cα, and Hα) and sidechain Cβ atoms of the UBQLN1 UBA and an N-terminally adjacent segment called the UBA-adjacent domain (UBAA). We find a subset of the resonances corresponding to the UBAA to have concentration-dependent chemical shifts, likely due to self-association. We also find the backbone amide nitrogen of T572 to be shifted upfield relative to the average value for a threonine amide nitrogen, a phenomenon likely caused by T572 Hγ1 engagement in a hydrogen bond with adjacent backbone carbonyl atoms. The assignments described in this manuscript can be used to study the protein dynamics of the UBQLN1 UBA and UBAA as well as the interaction of these domains with other proteins.

UBQLN1在自噬和蛋白酶体介导的蛋白质降解中起作用。它包含一个n端泛素样结构域(UBL),一个c端泛素相关结构域(UBA)和一个灵活的中心区域,作为伴侣防止蛋白质聚集。在这里,我们报道了UBQLN1 UBA的主链(NH, N, C ', Cα和Hα)和侧链Cβ原子以及称为UBA相邻结构域(UBAA)的N端相邻片段的1H, 15N和13C共振分配。我们发现与UBAA对应的共振子集具有浓度依赖的化学位移,可能是由于自关联。我们还发现T572的主酰胺氮相对于苏氨酸酰胺氮的平均值向上移动,这一现象可能是由于T572的h - γ1与相邻的主羰基原子的氢键作用引起的。本文所描述的结构域可用于研究UBQLN1 UBA和UBAA的蛋白质动力学以及这些结构域与其他蛋白质的相互作用。
{"title":"1H, 15N, 13C backbone and Cβ resonance assignments for UBQLN1 UBA and UBAA domains","authors":"Gwen R. Buel,&nbsp;Xiang Chen,&nbsp;Olumide Kayode,&nbsp;Anthony Cruz,&nbsp;Kylie J. Walters","doi":"10.1007/s12104-023-10127-5","DOIUrl":"10.1007/s12104-023-10127-5","url":null,"abstract":"<div><p>UBQLN1 functions in autophagy and proteasome-mediated protein degradation. It contains an N-terminal ubiquitin-like domain (UBL), a C-terminal ubiquitin-associated domain (UBA), and a flexible central region which functions as a chaperone to prevent protein aggregation. Here, we report the <sup>1</sup>H, <sup>15</sup>N, and <sup>13</sup>C resonance assignments for the backbone (<sup>N</sup>H, N, C’, Cα, and Hα) and sidechain Cβ atoms of the UBQLN1 UBA and an N-terminally adjacent segment called the UBA-adjacent domain (UBAA). We find a subset of the resonances corresponding to the UBAA to have concentration-dependent chemical shifts, likely due to self-association. We also find the backbone amide nitrogen of T572 to be shifted upfield relative to the average value for a threonine amide nitrogen, a phenomenon likely caused by T572 Hγ1 engagement in a hydrogen bond with adjacent backbone carbonyl atoms. The assignments described in this manuscript can be used to study the protein dynamics of the UBQLN1 UBA and UBAA as well as the interaction of these domains with other proteins.</p></div>","PeriodicalId":492,"journal":{"name":"Biomolecular NMR Assignments","volume":"17 1","pages":"101 - 106"},"PeriodicalIF":0.9,"publicationDate":"2023-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12104-023-10127-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4238043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
1H, 15N, and 13C chemical shift backbone resonance NMR assignment of the accumulation-associated protein (Aap) lectin domain from Staphylococcus epidermidis 表皮葡萄球菌积累相关蛋白(Aap)凝集素结构域的1H, 15N和13C化学位移骨干核磁共振分配
IF 0.9 4区 生物学 Q4 BIOPHYSICS Pub Date : 2023-04-06 DOI: 10.1007/s12104-023-10126-6
Rahul Yadav, Tanveer Shaikh, Suhas Tikole, Andrew B. Herr, Nicholas C. Fitzkee

Staphylococcus epidermidis is the leading causative agent for hospital-acquired infections, especially device-related infections, due to its ability to form biofilms. The accumulation-associated protein (Aap) of S. epidermidis is primarily responsible for biofilm formation and consists of two domains, A and B. It was found that the A domain is responsible for the attachment to the abiotic/biotic surface, whereas the B domain is responsible for the accumulation of bacteria during biofilm formation. One of the parts of the A domain is the Aap lectin, which is a carbohydrate-binding domain having 222 amino acids in its structure. Here we report the near complete backbone chemical shift assignments for the lectin domain, as well as its predicted secondary structure. This data will provide a platform for future NMR studies to explore the role of lectin in biofilm formation.

表皮葡萄球菌是医院获得性感染的主要病原体,特别是与器械相关的感染,因为它能够形成生物膜。表皮葡萄球菌的积累相关蛋白(Aap)主要负责生物膜的形成,由A和B两个结构域组成。研究发现,A结构域负责附着于非生物/生物表面,而B结构域负责生物膜形成过程中细菌的积累。A结构域的一个部分是Aap凝集素,这是一个碳水化合物结合结构域,其结构中有222个氨基酸。在这里,我们报告了凝集素结构域近乎完整的主链化学位移分配,以及其预测的二级结构。这些数据将为未来的核磁共振研究探索凝集素在生物膜形成中的作用提供一个平台。
{"title":"1H, 15N, and 13C chemical shift backbone resonance NMR assignment of the accumulation-associated protein (Aap) lectin domain from Staphylococcus epidermidis","authors":"Rahul Yadav,&nbsp;Tanveer Shaikh,&nbsp;Suhas Tikole,&nbsp;Andrew B. Herr,&nbsp;Nicholas C. Fitzkee","doi":"10.1007/s12104-023-10126-6","DOIUrl":"10.1007/s12104-023-10126-6","url":null,"abstract":"<div><p><i>Staphylococcus epidermidis</i> is the leading causative agent for hospital-acquired infections, especially device-related infections, due to its ability to form biofilms. The accumulation-associated protein (Aap) of <i>S. epidermidis</i> is primarily responsible for biofilm formation and consists of two domains, A and B. It was found that the A domain is responsible for the attachment to the abiotic/biotic surface, whereas the B domain is responsible for the accumulation of bacteria during biofilm formation. One of the parts of the A domain is the Aap lectin, which is a carbohydrate-binding domain having 222 amino acids in its structure. Here we report the near complete backbone chemical shift assignments for the lectin domain, as well as its predicted secondary structure. This data will provide a platform for future NMR studies to explore the role of lectin in biofilm formation.</p></div>","PeriodicalId":492,"journal":{"name":"Biomolecular NMR Assignments","volume":"17 1","pages":"95 - 99"},"PeriodicalIF":0.9,"publicationDate":"2023-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12104-023-10126-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4238070","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Backbone NMR assignment of the yeast expressed Fab fragment of the NISTmAb reference antibody 对表达NISTmAb参比抗体Fab片段的酵母进行骨架核磁共振鉴定
IF 0.9 4区 生物学 Q4 BIOPHYSICS Pub Date : 2023-03-01 DOI: 10.1007/s12104-023-10123-9
Tsega L. Solomon, Kinlin Chao, Genevieve Gingras, Yves Aubin, William B. O’Dell, John P. Marino, Robert G. Brinson

The monoclonal antibody (mAb) protein class has become a primary therapeutic platform for the production of new life saving drug products. MAbs are comprised of two domains: the antigen-binding fragment (Fab) and crystallizable fragment (Fc). Despite the success in the clinic, NMR assignments of the complete Fab domain have been elusive, in part due to problems in production of properly folded, triply-labeled 2H,13C,15N Fab domain. Here, we report the successful recombinant expression of a triply-labeled Fab domain, derived from the standard IgG1κ known as NISTmAb, in yeast. Using the 2H,13C,15N Fab domain, we assigned 94% of the 1H, 13C, and 15N backbone atoms.

单克隆抗体(mAb)蛋白类已成为生产新的救命药物产品的主要治疗平台。单克隆抗体由抗原结合片段(Fab)和可结晶片段(Fc)两个结构域组成。尽管在临床上取得了成功,但完整的Fab结构域的NMR分配一直难以实现,部分原因是由于正确折叠,三重标记的2H,13C,15N Fab结构域的生产存在问题。在这里,我们报道了在酵母中成功地重组表达了一个三重标记的Fab结构域,该结构域来自标准IgG1κ,称为NISTmAb。利用2H,13C,15N Fab结构域,我们分配了94%的1H, 13C和15N主链原子。
{"title":"Backbone NMR assignment of the yeast expressed Fab fragment of the NISTmAb reference antibody","authors":"Tsega L. Solomon,&nbsp;Kinlin Chao,&nbsp;Genevieve Gingras,&nbsp;Yves Aubin,&nbsp;William B. O’Dell,&nbsp;John P. Marino,&nbsp;Robert G. Brinson","doi":"10.1007/s12104-023-10123-9","DOIUrl":"10.1007/s12104-023-10123-9","url":null,"abstract":"<div><p>The monoclonal antibody (mAb) protein class has become a primary therapeutic platform for the production of new life saving drug products. MAbs are comprised of two domains: the antigen-binding fragment (Fab) and crystallizable fragment (Fc). Despite the success in the clinic, NMR assignments of the complete Fab domain have been elusive, in part due to problems in production of properly folded, triply-labeled <sup>2</sup>H,<sup>13</sup>C,<sup>15</sup>N Fab domain. Here, we report the successful recombinant expression of a triply-labeled Fab domain, derived from the standard IgG1κ known as NISTmAb, in yeast. Using the <sup>2</sup>H,<sup>13</sup>C,<sup>15</sup>N Fab domain, we assigned 94% of the <sup>1</sup>H, <sup>13</sup>C, and <sup>15</sup>N backbone atoms.</p></div>","PeriodicalId":492,"journal":{"name":"Biomolecular NMR Assignments","volume":"17 1","pages":"75 - 81"},"PeriodicalIF":0.9,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12104-023-10123-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4042515","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Backbone and side chain chemical shift assignment of diisopropyl fluorophosphatase (DFPase) from Loligo vulgaris, an organophosphorus-degrading enzyme 有机磷降解酶Loligo vulgaris二异丙基氟磷酸酶(DFPase)的主链和侧链化学移位配位
IF 0.9 4区 生物学 Q4 BIOPHYSICS Pub Date : 2023-02-10 DOI: 10.1007/s12104-023-10120-y
Julian C.-H. Chen, Marco Tonelli, Penelope Anderson, Ryszard Michalczyk, Marc-Michael Blum, Robert F. Williams

NMR chemical shift assignments are reported for backbone (15N, 1H) and partial side chain (13Cα and β, side chain 1H) atoms of diisopropyl fluorophosphatase (DFPase), a calcium-dependent phosphotriesterase capable of hydrolyzing phosphorus – fluorine bonds in a variety of toxic organophosphorus compounds. Analysis of residues lining the active site of DFPase highlight a number of residues whose chemical shifts can be used as a diagnostic of binding and detection of organophosphorus compounds.

二异丙基氟磷酸酶(DFPase)是一种钙依赖性磷酸三酯酶,能够水解多种有毒有机磷化合物中的磷-氟键,报道了DFPase的主链(15N, 1H)和部分侧链(13Cα和β,侧链1H)原子的核磁共振化学位移分配。对DFPase活性位点的残基进行分析,发现一些残基的化学位移可以作为有机磷化合物结合的诊断和检测。
{"title":"Backbone and side chain chemical shift assignment of diisopropyl fluorophosphatase (DFPase) from Loligo vulgaris, an organophosphorus-degrading enzyme","authors":"Julian C.-H. Chen,&nbsp;Marco Tonelli,&nbsp;Penelope Anderson,&nbsp;Ryszard Michalczyk,&nbsp;Marc-Michael Blum,&nbsp;Robert F. Williams","doi":"10.1007/s12104-023-10120-y","DOIUrl":"10.1007/s12104-023-10120-y","url":null,"abstract":"<div><p>NMR chemical shift assignments are reported for backbone (<sup>15</sup>N, <sup>1</sup>H) and partial side chain (<sup>13</sup>Cα and β, side chain <sup>1</sup>H) atoms of diisopropyl fluorophosphatase (DFPase), a calcium-dependent phosphotriesterase capable of hydrolyzing phosphorus – fluorine bonds in a variety of toxic organophosphorus compounds. Analysis of residues lining the active site of DFPase highlight a number of residues whose chemical shifts can be used as a diagnostic of binding and detection of organophosphorus compounds.</p></div>","PeriodicalId":492,"journal":{"name":"Biomolecular NMR Assignments","volume":"17 1","pages":"55 - 60"},"PeriodicalIF":0.9,"publicationDate":"2023-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12104-023-10120-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4417636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
1H, 13C, 15N Backbone and sidechain chemical shift assignments of the C-terminal domain of human UDP-glucuronosyltransferase 2B17 (UGT2B17-C) 人udp -葡萄糖醛酸基转移酶2B17 (UGT2B17-C) c端结构域的1H, 13C, 15N主链和侧链化学位移定位
IF 0.9 4区 生物学 Q4 BIOPHYSICS Pub Date : 2023-02-09 DOI: 10.1007/s12104-023-10122-w
Anamika Sulekha, Michael J. Osborne, Jadwiga Gasiorek, Katherine L. B. Borden

UDP-glucuronosyltransferases are the principal enzymes involved in the glucuronidation of metabolites and xenobiotics for physiological clearance in humans. Though glucuronidation is an indispensable process in the phase II metabolic pathway, UGT-mediated glucuronidation of most prescribed drugs (> 55%) and clinical evidence of UGT-associated drug resistance are major concerns for therapeutic development. While UGTs are highly conserved enzymes, they manifest unique substrate and inhibitor specificity which is poorly understood given the dearth of experimentally determined full-length structures. Such information is important not only to conceptualize their specificity but is central to the design of inhibitors specific to a given UGT in order to avoid toxicity associated with pan-UGT inhibitors. Here, we provide the 1H, 13C and 15N backbone (~ 90%) and sidechain (~ 62%) assignments for the C-terminal domain of UGT2B17, which can be used to determine the molecular binding sites of inhibitor and substrate, and to understand the atomic basis for inhibitor selectivity between UGT2B17 and other members of the UGT2B subfamily. Given the physiological relevance of UGT2B17 in the elimination of hormone-based cancer drugs, these assignments will contribute towards dissecting the structural basis for substrate specificity, selective inhibitor recognition and other aspects of enzyme activity with the goal of selectively overcoming glucuronidation-based drug resistance.

udp -葡萄糖醛酸糖基转移酶是参与人体代谢物和外源物糖醛酸化生理清除的主要酶。虽然糖醛酸化是II期代谢途径中不可缺少的过程,但大多数处方药(55%)的ugt介导的糖醛酸化和ugt相关耐药的临床证据是治疗发展的主要关注点。虽然ugt是高度保守的酶,但由于缺乏实验确定的全长结构,它们表现出独特的底物和抑制剂特异性。这些信息不仅对概念化它们的特异性很重要,而且对于设计特定UGT的抑制剂以避免泛UGT抑制剂相关的毒性也很重要。在这里,我们提供了UGT2B17 c端结构域的1H、13C和15N主链(~ 90%)和侧链(~ 62%)赋值,可用于确定抑制剂和底物的分子结合位点,并了解UGT2B17与UGT2B亚家族其他成员之间抑制剂选择性的原子基础。鉴于UGT2B17在消除基于激素的癌症药物中的生理相关性,这些任务将有助于剖析底物特异性的结构基础,选择性抑制剂识别和酶活性的其他方面,以选择性地克服基于葡萄糖醛酸苷的耐药。
{"title":"1H, 13C, 15N Backbone and sidechain chemical shift assignments of the C-terminal domain of human UDP-glucuronosyltransferase 2B17 (UGT2B17-C)","authors":"Anamika Sulekha,&nbsp;Michael J. Osborne,&nbsp;Jadwiga Gasiorek,&nbsp;Katherine L. B. Borden","doi":"10.1007/s12104-023-10122-w","DOIUrl":"10.1007/s12104-023-10122-w","url":null,"abstract":"<div><p>UDP-glucuronosyltransferases are the principal enzymes involved in the glucuronidation of metabolites and xenobiotics for physiological clearance in humans. Though glucuronidation is an indispensable process in the phase II metabolic pathway, UGT-mediated glucuronidation of most prescribed drugs (&gt; 55%) and clinical evidence of UGT-associated drug resistance are major concerns for therapeutic development. While UGTs are highly conserved enzymes, they manifest unique substrate and inhibitor specificity which is poorly understood given the dearth of experimentally determined full-length structures. Such information is important not only to conceptualize their specificity but is central to the design of inhibitors specific to a given UGT in order to avoid toxicity associated with pan-UGT inhibitors. Here, we provide the <sup>1</sup>H, <sup>13</sup>C and <sup>15</sup>N backbone (~ 90%) and sidechain (~ 62%) assignments for the C-terminal domain of UGT2B17, which can be used to determine the molecular binding sites of inhibitor and substrate, and to understand the atomic basis for inhibitor selectivity between UGT2B17 and other members of the UGT2B subfamily. Given the physiological relevance of UGT2B17 in the elimination of hormone-based cancer drugs, these assignments will contribute towards dissecting the structural basis for substrate specificity, selective inhibitor recognition and other aspects of enzyme activity with the goal of selectively overcoming glucuronidation-based drug resistance.</p></div>","PeriodicalId":492,"journal":{"name":"Biomolecular NMR Assignments","volume":"17 1","pages":"67 - 73"},"PeriodicalIF":0.9,"publicationDate":"2023-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4382835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Backbone NMR resonance assignment of the apo human Tsg101-UEV domain 载子人Tsg101-UEV结构域的主核磁共振分配
IF 0.9 4区 生物学 Q4 BIOPHYSICS Pub Date : 2023-02-06 DOI: 10.1007/s12104-023-10119-5
Danai Moschidi, François-Xavier Cantrelle, Emmanuelle Boll, Xavier Hanoulle

The Endosomal Sorting Complex Required for Transport (ESCRT) pathway, through inverse topology membrane remodeling, is involved in many biological functions, such as ubiquitinated membrane receptor trafficking and degradation, multivesicular bodies (MVB) formation and cytokinesis. Dysfunctions in ESCRT pathway have been associated to several human pathologies, such as cancers and neurodegenerative diseases. The ESCRT machinery is also hijacked by many enveloped viruses to bud away from the plasma membrane of infected cells. Human tumor susceptibility gene 101 (Tsg101) protein is an important ESCRT-I complex component. The structure of the N-terminal ubiquitin E2 variant (UEV) domain of Tsg101 (Tsg101-UEV) comprises an ubiquitin binding pocket next to a late domain [P(S/T)AP] binding groove. These two binding sites have been shown to be involved both in the physiological roles of ESCRT-I and in the release of the viral particles, and thus are attractive targets for antivirals. The structure of the Tsg101-UEV domain has been characterized, using X-ray crystallography or NMR spectroscopy, either in its apo-state or bound to ubiquitin or late domains. In this study, we report the backbone NMR resonance assignments, including the proline signals, of the apo human Tsg101-UEV domain, that so far was not publicly available. These data, that are in good agreement with the crystallographic structure of Tsg101-UEV domain, can therefore be used for further NMR studies, including protein-protein interaction studies and drug discovery.

ESCRT (Endosomal Sorting Complex Required for Transport)通路通过逆拓扑膜重构参与多种生物学功能,如泛素化膜受体的转运和降解、多泡体(multivesular bodies, MVB)的形成和细胞分裂。ESCRT通路功能障碍与多种人类病理相关,如癌症和神经退行性疾病。ESCRT机制也被许多包膜病毒劫持,从被感染细胞的质膜上萌芽。人肿瘤易感基因101 (Tsg101)蛋白是ESCRT-I复合体的重要组成部分。Tsg101的n端泛素E2变体(UEV)结构域(Tsg101-UEV)的结构包括一个泛素结合口袋,旁边是一个晚期结构域[P(S/T)AP]结合槽。这两个结合位点已被证明参与ESCRT-I的生理作用和病毒颗粒的释放,因此是抗病毒药物的有吸引力的靶点。利用x射线晶体学或核磁共振光谱对Tsg101-UEV结构域的载脂蛋白态或与泛素或晚期结构域结合的结构进行了表征。在这项研究中,我们报道了迄今为止尚未公开的载子人类Tsg101-UEV结构域的主干核磁共振分配,包括脯氨酸信号。这些数据与Tsg101-UEV结构域的晶体结构非常吻合,因此可以用于进一步的核磁共振研究,包括蛋白质-蛋白质相互作用研究和药物发现。
{"title":"Backbone NMR resonance assignment of the apo human Tsg101-UEV domain","authors":"Danai Moschidi,&nbsp;François-Xavier Cantrelle,&nbsp;Emmanuelle Boll,&nbsp;Xavier Hanoulle","doi":"10.1007/s12104-023-10119-5","DOIUrl":"10.1007/s12104-023-10119-5","url":null,"abstract":"<div><p>The Endosomal Sorting Complex Required for Transport (ESCRT) pathway, through inverse topology membrane remodeling, is involved in many biological functions, such as ubiquitinated membrane receptor trafficking and degradation, multivesicular bodies (MVB) formation and cytokinesis. Dysfunctions in ESCRT pathway have been associated to several human pathologies, such as cancers and neurodegenerative diseases. The ESCRT machinery is also hijacked by many enveloped viruses to bud away from the plasma membrane of infected cells. Human tumor susceptibility gene 101 (Tsg101) protein is an important ESCRT-I complex component. The structure of the N-terminal ubiquitin E2 variant (UEV) domain of Tsg101 (Tsg101-UEV) comprises an ubiquitin binding pocket next to a late domain [P(S/T)AP] binding groove. These two binding sites have been shown to be involved both in the physiological roles of ESCRT-I and in the release of the viral particles, and thus are attractive targets for antivirals. The structure of the Tsg101-UEV domain has been characterized, using X-ray crystallography or NMR spectroscopy, either in its apo-state or bound to ubiquitin or late domains. In this study, we report the backbone NMR resonance assignments, including the proline signals, of the apo human Tsg101-UEV domain, that so far was not publicly available. These data, that are in good agreement with the crystallographic structure of Tsg101-UEV domain, can therefore be used for further NMR studies, including protein-protein interaction studies and drug discovery.</p></div>","PeriodicalId":492,"journal":{"name":"Biomolecular NMR Assignments","volume":"17 1","pages":"49 - 54"},"PeriodicalIF":0.9,"publicationDate":"2023-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4246206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chemical shift assignments of calmodulin bound to the GluN1 C0 domain (residues 841–865) of the NMDA receptor NMDA受体glun1c0结构域(残基841-865)上钙调蛋白的化学移位配位
IF 0.9 4区 生物学 Q4 BIOPHYSICS Pub Date : 2023-02-05 DOI: 10.1007/s12104-023-10121-x
Aritra Bej, James B. Ames

Neuroplasticity and synaptic transmission in the brain are regulated by N-methyl-D-aspartate receptors (NMDARs) that consist of hetero-tetrameric combinations of the glycine-binding GluN1 and glutamate-binding GluN2 subunits. Calmodulin (CaM) binds to the cytosolic C0 domain of GluN1 (residues 841–865) that may play a role in the Ca2+-dependent inactivation (CDI) of NMDAR channel activity. Dysregulation of NMDARs are linked to various neurological disorders, including Alzheimer’s disease, depression, stroke, epilepsy, and schizophrenia. Here, we report complete NMR chemical shift assignments of Ca2+-saturated CaM bound to the GluN1 C0 domain of the human NMDAR (BMRB no. 51715).

大脑中的神经可塑性和突触传递由n -甲基- d -天冬氨酸受体(NMDARs)调节,NMDARs由甘氨酸结合GluN1和谷氨酸结合GluN2亚基的异四聚体组合组成。钙调蛋白(CaM)与GluN1的胞质C0结构域(残基841-865)结合,可能在NMDAR通道活性的Ca2+依赖性失活(CDI)中发挥作用。NMDARs的失调与各种神经系统疾病有关,包括阿尔茨海默病、抑郁症、中风、癫痫和精神分裂症。在这里,我们报告了Ca2+饱和CaM结合到人类NMDAR (BMRB no. 1)的GluN1 C0结构域的完整NMR化学位移分配。51715)。
{"title":"Chemical shift assignments of calmodulin bound to the GluN1 C0 domain (residues 841–865) of the NMDA receptor","authors":"Aritra Bej,&nbsp;James B. Ames","doi":"10.1007/s12104-023-10121-x","DOIUrl":"10.1007/s12104-023-10121-x","url":null,"abstract":"<div><p>Neuroplasticity and synaptic transmission in the brain are regulated by N-methyl-D-aspartate receptors (NMDARs) that consist of hetero-tetrameric combinations of the glycine-binding GluN1 and glutamate-binding GluN2 subunits. Calmodulin (CaM) binds to the cytosolic C0 domain of GluN1 (residues 841–865) that may play a role in the Ca<sup>2+</sup>-dependent inactivation (CDI) of NMDAR channel activity. Dysregulation of NMDARs are linked to various neurological disorders, including Alzheimer’s disease, depression, stroke, epilepsy, and schizophrenia. Here, we report complete NMR chemical shift assignments of Ca<sup>2+</sup>-saturated CaM bound to the GluN1 C0 domain of the human NMDAR (BMRB no. 51715).</p></div>","PeriodicalId":492,"journal":{"name":"Biomolecular NMR Assignments","volume":"17 1","pages":"61 - 65"},"PeriodicalIF":0.9,"publicationDate":"2023-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12104-023-10121-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4205901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
1H, 15N and 13C resonance assignments of a minimal CPSF73-CPSF100 C-terminal heterodimer 最小CPSF73-CPSF100 c端异二聚体的1H, 15N和13C共振分配
IF 0.9 4区 生物学 Q4 BIOPHYSICS Pub Date : 2023-02-01 DOI: 10.1007/s12104-023-10118-6
Stéphane Thore, Sébastien Fribourg, Cameron D. Mackereth

The initial pre-mRNA transcript in eukaryotes is processed by a large multi-protein complex in order to correctly cleave the 3’ end, and to subsequently add the polyadenosine tail. This cleavage and polyadenylation specificity factor (CPSF) is composed of separate subunits, with structural information available for both isolated subunits and also larger assembled complexes. Nevertheless, certain key components of CPSF still lack high-resolution atomic data. One such region is the heterodimer formed between the first and second C-terminal domains of the endonuclease CPSF73, with those from the catalytically inactive CPSF100. Here we report the backbone and sidechain resonance assignments of a minimal C-terminal heterodimer of CPSF73–CPSF100 derived from the parasite Encephalitozoon cuniculi. The assignment process used several amino-acid specific labeling strategies, and the chemical shift values allow for secondary structure prediction.

真核生物中最初的pre-mRNA转录物由一个大的多蛋白复合物加工,以正确地切割3 '端,并随后添加聚腺苷尾部。这种切割和聚腺苷酸化特异性因子(CPSF)由独立的亚基组成,其结构信息可用于分离的亚基和更大的组装复合物。然而,CPSF的某些关键组件仍然缺乏高分辨率的原子数据。其中一个区域是在内切酶CPSF73的第一和第二c端结构域之间形成的异二聚体,这些区域来自催化活性不强的CPSF100。在这里,我们报道了CPSF73-CPSF100的最小c端异二聚体的主链和侧链共振分配。分配过程使用了几种氨基酸特异性标记策略,化学位移值允许二级结构预测。
{"title":"1H, 15N and 13C resonance assignments of a minimal CPSF73-CPSF100 C-terminal heterodimer","authors":"Stéphane Thore,&nbsp;Sébastien Fribourg,&nbsp;Cameron D. Mackereth","doi":"10.1007/s12104-023-10118-6","DOIUrl":"10.1007/s12104-023-10118-6","url":null,"abstract":"<div><p>The initial pre-mRNA transcript in eukaryotes is processed by a large multi-protein complex in order to correctly cleave the 3’ end, and to subsequently add the polyadenosine tail. This cleavage and polyadenylation specificity factor (CPSF) is composed of separate subunits, with structural information available for both isolated subunits and also larger assembled complexes. Nevertheless, certain key components of CPSF still lack high-resolution atomic data. One such region is the heterodimer formed between the first and second C-terminal domains of the endonuclease CPSF73, with those from the catalytically inactive CPSF100. Here we report the backbone and sidechain resonance assignments of a minimal C-terminal heterodimer of CPSF73–CPSF100 derived from the parasite <i>Encephalitozoon cuniculi</i>. The assignment process used several amino-acid specific labeling strategies, and the chemical shift values allow for secondary structure prediction.</p></div>","PeriodicalId":492,"journal":{"name":"Biomolecular NMR Assignments","volume":"17 1","pages":"43 - 48"},"PeriodicalIF":0.9,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12104-023-10118-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4021582","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
The 1H, 15N and 13C resonance assignments of dengue virus capsid protein with the deletion of the intrinsically disordered N-terminal region 登革病毒衣壳蛋白内在无序n端缺失的1H、15N和13C共振配位
IF 0.9 4区 生物学 Q4 BIOPHYSICS Pub Date : 2023-02-01 DOI: 10.1007/s12104-022-10115-1
Glauce M. Barbosa, Maria A. Morando, Andrea T. Da Poian, Fabio C. L. Almeida

Dengue virus belongs to the Flaviviridae family, being responsible for an endemic arboviral disease in humans. It is an enveloped virus, whose genome is a positive-stranded RNA packaged by the capsid protein. Dengue virus capsid protein (DENVC) forms homodimers in solution organized in 4 α-helices and an intrinsically disordered N-terminal region. The N-terminal region is involved in the binding of membranous structures in host cells and in the recognition of nucleotides. Here we report the 1H, 15N and 13C resonance assignments of the DENVC with the deletion of the first 19 intrinsically disordered residues. The backbone chemical shift perturbations suggest changes in the α1 and α2 helices between full length and the truncated proteins.

登革热病毒属于黄病毒科,是造成人类地方病的一种虫媒病毒性疾病。它是一种包膜病毒,其基因组是由衣壳蛋白包装的正链RNA。登革病毒衣壳蛋白(DENVC)在4 α-螺旋和内在无序的n端区中形成同型二聚体。n端区域参与宿主细胞膜结构的结合和核苷酸的识别。在这里,我们报道了DENVC的1H, 15N和13C共振分配,删除了前19个本质无序残基。主链化学位移扰动表明全长和截断的蛋白之间α1和α2螺旋发生了变化。
{"title":"The 1H, 15N and 13C resonance assignments of dengue virus capsid protein with the deletion of the intrinsically disordered N-terminal region","authors":"Glauce M. Barbosa,&nbsp;Maria A. Morando,&nbsp;Andrea T. Da Poian,&nbsp;Fabio C. L. Almeida","doi":"10.1007/s12104-022-10115-1","DOIUrl":"10.1007/s12104-022-10115-1","url":null,"abstract":"<div><p>Dengue virus belongs to the <i>Flaviviridae</i> family, being responsible for an endemic arboviral disease in humans. It is an enveloped virus, whose genome is a positive-stranded RNA packaged by the capsid protein. Dengue virus capsid protein (DENVC) forms homodimers in solution organized in 4 α-helices and an intrinsically disordered N-terminal region. The N-terminal region is involved in the binding of membranous structures in host cells and in the recognition of nucleotides. Here we report the <sup>1</sup>H, <sup>15</sup>N and <sup>13</sup>C resonance assignments of the DENVC with the deletion of the first 19 intrinsically disordered residues. The backbone chemical shift perturbations suggest changes in the α1 and α2 helices between full length and the truncated proteins.</p></div>","PeriodicalId":492,"journal":{"name":"Biomolecular NMR Assignments","volume":"17 1","pages":"23 - 26"},"PeriodicalIF":0.9,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4022377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Biomolecular NMR Assignments
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1