首页 > 最新文献

Biomolecular NMR Assignments最新文献

英文 中文
Solution NMR backbone assignment of the N-terminal tandem Zα1-Zα2 domains of Z-DNA binding protein 1 Z-DNA 结合蛋白 1 N 端串联 Zα1-Zα2 结构域的溶液核磁共振骨架分配。
IF 0.8 4区 生物学 Q4 BIOPHYSICS Pub Date : 2024-08-31 DOI: 10.1007/s12104-024-10195-1
Lily G. Beck, Jeffrey B. Krall, Parker J. Nichols, Quentin Vicens, Morkos A. Henen, Beat Vögeli

The detection of nucleic acids that are present in atypical conformations is a crucial trigger of the innate immune response. Human Z-DNA binding protein 1 (ZBP1) is a pattern recognition receptor that harbors two Zα domains that recognize Z-DNA and Z-RNA. ZBP1 detects this alternate nucleic acid conformation as foreign, and upon stabilization of these substrates, it triggers activation of an immune response. Here, we present the backbone chemical shift assignment of a construct encompassing the Zα1 and Zα2 domains as well as the interconnecting linker of ZBP1. These assignments can be directly transferred to the isolated Zα1 and Zα2 domains, thereby demonstrating that these domains maintain virtually identical structures in the tandem context.

检测以非典型构象存在的核酸是触发先天性免疫反应的一个关键因素。人类 Z-DNA 结合蛋白 1(ZBP1)是一种模式识别受体,含有两个 Zα 结构域,可识别 Z-DNA 和 Z-RNA。ZBP1 将这种交替的核酸构象检测为外来物,当这些底物稳定时,ZBP1 就会触发免疫反应。在这里,我们介绍了一种包含 Zα1 和 Zα2 结构域以及 ZBP1 的互连连接体的构建物的骨架化学位移分配。这些分配可以直接转移到孤立的 Zα1 和 Zα2 结构域,从而证明这些结构域在串联情况下保持着几乎完全相同的结构。
{"title":"Solution NMR backbone assignment of the N-terminal tandem Zα1-Zα2 domains of Z-DNA binding protein 1","authors":"Lily G. Beck,&nbsp;Jeffrey B. Krall,&nbsp;Parker J. Nichols,&nbsp;Quentin Vicens,&nbsp;Morkos A. Henen,&nbsp;Beat Vögeli","doi":"10.1007/s12104-024-10195-1","DOIUrl":"10.1007/s12104-024-10195-1","url":null,"abstract":"<div><p>The detection of nucleic acids that are present in atypical conformations is a crucial trigger of the innate immune response. Human Z-DNA binding protein 1 (ZBP1) is a pattern recognition receptor that harbors two Zα domains that recognize Z-DNA and Z-RNA. ZBP1 detects this alternate nucleic acid conformation as foreign, and upon stabilization of these substrates, it triggers activation of an immune response. Here, we present the backbone chemical shift assignment of a construct encompassing the Zα1 and Zα2 domains as well as the interconnecting linker of ZBP1. These assignments can be directly transferred to the isolated Zα1 and Zα2 domains, thereby demonstrating that these domains maintain virtually identical structures in the tandem context.</p></div>","PeriodicalId":492,"journal":{"name":"Biomolecular NMR Assignments","volume":"18 2","pages":"245 - 252"},"PeriodicalIF":0.8,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142103134","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
NMR-based solution structure of the Caulobacter crescentus ProXp-ala trans-editing enzyme 基于核磁共振的新月杆菌 ProXp-ala 反式编辑酶溶液结构。
IF 0.8 4区 生物学 Q4 BIOPHYSICS Pub Date : 2024-08-31 DOI: 10.1007/s12104-024-10193-3
Antonia D. Duran, Eric M. Danhart, Xiao Ma, Alexandra B. Kuzmishin Nagy, Karin Musier-Forsyth, Mark P. Foster

ProXp-ala is a key component of the translational machinery in all three Domains of life. This enzyme helps to maintain the fidelity of proline codon translation through aminoacyl-tRNAPro proofreading. In the first step of tRNA aminoacylation, the cognate aminoacyl-tRNA synthetase (aaRS) binds and activates an amino acid in the enzyme’s synthetic active site. If a non-cognate amino acid passes this first selection step and is charged onto the tRNA, a distinct aaRS editing active site may recognize the mischarged tRNA and deacylate it. Alternatively, this editing reaction may be carried out by a separate enzyme that deacylates the mischarged tRNA in trans. ProXp-ala is responsible for editing Ala mischarged onto tRNAPro. Since trans-editing domains such as ProXp-ala bind their substrates after release from the synthetase, they must recognize not only the mischarged amino acid, but also the specific tRNA. Previous studies showed that Caulobacter crescentus (Cc) ProXp-ala distinguishes tRNAPro from tRNAAla, in part, based on the unique tRNAPro acceptor stem base pair C1:G72. Previous crystallographic and NMR data also revealed a role for conformational selection by the ProXp-ala α2 helix in Ala- versus Pro-tRNAPro substrate discrimination. The α2 helix makes lattice contacts in the crystal, which left some uncertainty as to its position in solution. We report resonance assignments for the substrate-free Cc ProXp-ala and the NMR-derived three-dimensional structure of the protein. These data reveal the position of the α2 helix in solution, with implications for substrate binding and recognition.

ProXp-ala 是生命三大领域中翻译机制的关键组成部分。这种酶通过氨基酰-tRNAAPro 校对,帮助保持脯氨酸密码子翻译的准确性。在 tRNA 氨基酰化的第一步,同源的氨基酰-tRNA 合成酶(aaRS)在酶的合成活性位点结合并激活一个氨基酸。如果一个非认知氨基酸通过了这第一个选择步骤,并带电到 tRNA 上,一个不同的 aaRS 编辑活性位点可能会识别出带电错误的 tRNA 并使其脱酰。或者,这种编辑反应也可以由另一种酶来完成,它可以反式地使带错电的 tRNA 脱乙酰基。ProXp-ala 负责将 Ala 误充到 tRNAPro 上。由于 ProXp-ala 等反式编辑结构域从合成酶中释放出来后会与底物结合,因此它们不仅必须识别带错电荷的氨基酸,还必须识别特定的 tRNA。以前的研究表明,新月杆菌(Cc)ProXp-ala 能将 tRNAPro 与 tRNAAla 区分开来,部分原因在于 tRNAPro 独特的受体茎碱基对 C1:G72。以前的晶体学和核磁共振数据还显示,ProXp-ala α2螺旋在Ala-与Pro-tRNAPro底物的鉴别中起着构象选择的作用。α2 螺旋在晶体中具有晶格接触,因此其在溶液中的位置存在一定的不确定性。我们报告了无底物 Cc ProXp-ala 的共振分配和该蛋白质的核磁共振衍生三维结构。这些数据揭示了 α2 螺旋在溶液中的位置,并对底物结合和识别产生了影响。
{"title":"NMR-based solution structure of the Caulobacter crescentus ProXp-ala trans-editing enzyme","authors":"Antonia D. Duran,&nbsp;Eric M. Danhart,&nbsp;Xiao Ma,&nbsp;Alexandra B. Kuzmishin Nagy,&nbsp;Karin Musier-Forsyth,&nbsp;Mark P. Foster","doi":"10.1007/s12104-024-10193-3","DOIUrl":"10.1007/s12104-024-10193-3","url":null,"abstract":"<div><p>ProXp-ala is a key component of the translational machinery in all three Domains of life. This enzyme helps to maintain the fidelity of proline codon translation through aminoacyl-tRNA<sup>Pro</sup> proofreading. In the first step of tRNA aminoacylation, the cognate aminoacyl-tRNA synthetase (aaRS) binds and activates an amino acid in the enzyme’s synthetic active site. If a non-cognate amino acid passes this first selection step and is charged onto the tRNA, a distinct aaRS editing active site may recognize the mischarged tRNA and deacylate it. Alternatively, this editing reaction may be carried out by a separate enzyme that deacylates the mischarged tRNA <i>in trans</i>. ProXp-ala is responsible for editing Ala mischarged onto tRNA<sup>Pro</sup>. Since <i>trans</i>-editing domains such as ProXp-ala bind their substrates after release from the synthetase, they must recognize not only the mischarged amino acid, but also the specific tRNA. Previous studies showed that <i>Caulobacter crescentus</i> (<i>Cc</i>) ProXp-ala distinguishes tRNA<sup>Pro</sup> from tRNA<sup>Ala</sup>, in part, based on the unique tRNA<sup>Pro</sup> acceptor stem base pair C1:G72. Previous crystallographic and NMR data also revealed a role for conformational selection by the ProXp-ala α2 helix in Ala- versus Pro-tRNA<sup>Pro</sup> substrate discrimination. The α2 helix makes lattice contacts in the crystal, which left some uncertainty as to its position in solution. We report resonance assignments for the substrate-free <i>Cc</i> ProXp-ala and the NMR-derived three-dimensional structure of the protein. These data reveal the position of the α2 helix in solution, with implications for substrate binding and recognition.</p></div>","PeriodicalId":492,"journal":{"name":"Biomolecular NMR Assignments","volume":"18 2","pages":"233 - 238"},"PeriodicalIF":0.8,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11511748/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142103133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Solution NMR backbone resonance assignment of the full-length resistance-related calcium-binding protein Sorcin 全长抗性相关钙结合蛋白 Sorcin 的溶液 NMR 主干共振分配。
IF 0.8 4区 生物学 Q4 BIOPHYSICS Pub Date : 2024-08-31 DOI: 10.1007/s12104-024-10196-0
Kathleen Joyce Carillo, Yanan He, Qiushi Ye, Nicolas Delaeter, Yihong Chen, John Orban, Yanxin Liu

Sorcin is a penta-EF hand calcium-binding protein that confers multidrug resistance in cancer cells. It regulates cellular Ca2+ homeostasis by interacting with calcium channels such as Ryanodine receptor 2 and Sarcoplasmic/endoplasmic reticulum Ca2+-ATPase in a calcium-dependent manner. The crystal structure of the Sorcin has been determined in both calcium-free and calcium-bound states to understand calcium-binding induced conformational change. However, due to its flexibility, most of the N-terminal domain is invisible in these crystal structures. Here we report the 1H, 13C, and 15N backbone resonance assignments of full-length Sorcin in the calcium-free state using solution NMR. The protein secondary structure was predicted based on the assigned backbone chemical shifts using TALOS+ and CSI 3.0. Our backbone resonance assignment of the full-length Sorcin provides a foundation for future NMR spectroscopic studies to uncover the mechanism of Ca2+ sensing by Sorcin.

Sorcin是一种五EF手钙结合蛋白,可赋予癌细胞多重耐药性。它通过与钙通道(如 Ryanodine 受体 2 和肉质网/内质网 Ca2+-ATP 酶)相互作用,以钙依赖的方式调节细胞的 Ca2+ 稳态。为了了解钙结合诱导的构象变化,已经测定了索氏蛋白在无钙和钙结合两种状态下的晶体结构。然而,由于其灵活性,在这些晶体结构中看不到大部分的 N 端结构域。在此,我们利用溶液核磁共振技术报告了全长 Sorcin 在无钙状态下的 1H、13C 和 15N 骨架共振分布。根据分配的骨干化学位移,我们使用 TALOS+ 和 CSI 3.0 预测了蛋白质的二级结构。我们对全长 Sorcin 的骨干共振分配为今后的核磁共振光谱研究奠定了基础,从而揭示了 Sorcin 对 Ca2+ 的感应机制。
{"title":"Solution NMR backbone resonance assignment of the full-length resistance-related calcium-binding protein Sorcin","authors":"Kathleen Joyce Carillo,&nbsp;Yanan He,&nbsp;Qiushi Ye,&nbsp;Nicolas Delaeter,&nbsp;Yihong Chen,&nbsp;John Orban,&nbsp;Yanxin Liu","doi":"10.1007/s12104-024-10196-0","DOIUrl":"10.1007/s12104-024-10196-0","url":null,"abstract":"<div><p>Sorcin is a penta-EF hand calcium-binding protein that confers multidrug resistance in cancer cells. It regulates cellular Ca<sup>2+</sup> homeostasis by interacting with calcium channels such as Ryanodine receptor 2 and Sarcoplasmic/endoplasmic reticulum Ca<sup>2+</sup>-ATPase in a calcium-dependent manner. The crystal structure of the Sorcin has been determined in both calcium-free and calcium-bound states to understand calcium-binding induced conformational change. However, due to its flexibility, most of the N-terminal domain is invisible in these crystal structures. Here we report the <sup>1</sup>H, <sup>13</sup>C, and <sup>15</sup>N backbone resonance assignments of full-length Sorcin in the calcium-free state using solution NMR. The protein secondary structure was predicted based on the assigned backbone chemical shifts using TALOS+ and CSI 3.0. Our backbone resonance assignment of the full-length Sorcin provides a foundation for future NMR spectroscopic studies to uncover the mechanism of Ca<sup>2+</sup> sensing by Sorcin.</p></div>","PeriodicalId":492,"journal":{"name":"Biomolecular NMR Assignments","volume":"18 2","pages":"253 - 256"},"PeriodicalIF":0.8,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142103135","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chemical shift assignments of the α-actinin C-terminal EF-hand domain bound to a cytosolic C0 domain of GluN1 (residues 841–865) from the NMDA receptor α-肌动蛋白 C 端 EF-手结构域与 NMDA 受体 GluN1 的细胞膜 C0 结构域(残基 841-865)结合的化学位移分配。
IF 0.8 4区 生物学 Q4 BIOPHYSICS Pub Date : 2024-08-29 DOI: 10.1007/s12104-024-10194-2
Aritra Bej, Johannes W. Hell, James B. Ames

N-methyl-D-aspartate receptors (NMDARs) consist of glycine-binding GluN1 and glutamate-binding GluN2 subunits that form tetrameric ion channels. NMDARs in the brain are important for controlling neuronal excitability to promote synaptic plasticity. The cytoskeletal protein, α-actinin-1 (100 kDa, called ACTN1) binds to the cytosolic C0 domain of GluN1 (residues 841–865) that may play a role in the Ca2+-dependent desensitization of NMDAR channels. Mutations that disrupt NMDAR channel function are linked to Alzheimer’s disease, depression, stroke, epilepsy, and schizophrenia. NMR chemical shift assignments are reported here for the C-terminal EF-hand domain of ACTN1 (residues 824–892, called ACTN_EF34) and ACTN_EF34 bound to the GluN1 C0 domain (BMRB numbers 52385 and 52386, respectively).

N-甲基-D-天冬氨酸受体(NMDARs)由结合甘氨酸的 GluN1 和结合谷氨酸的 GluN2 亚基组成,形成四聚体离子通道。大脑中的 NMDAR 对于控制神经元兴奋性以促进突触可塑性非常重要。细胞骨架蛋白 α-肌动蛋白-1(100 kDa,称为 ACTN1)与 GluN1 的细胞膜 C0 结构域(残基 841-865)结合,可能在 NMDAR 通道的 Ca2+ 依赖性脱敏中发挥作用。破坏 NMDAR 通道功能的突变与阿尔茨海默病、抑郁症、中风、癫痫和精神分裂症有关。本文报告了 ACTN1 C 端 EF 手结构域(残基 824-892,称为 ACTN_EF34)和与 GluN1 C0 结构域结合的 ACTN_EF34(BMRB 编号分别为 52385 和 52386)的核磁共振化学位移分配。
{"title":"Chemical shift assignments of the α-actinin C-terminal EF-hand domain bound to a cytosolic C0 domain of GluN1 (residues 841–865) from the NMDA receptor","authors":"Aritra Bej,&nbsp;Johannes W. Hell,&nbsp;James B. Ames","doi":"10.1007/s12104-024-10194-2","DOIUrl":"10.1007/s12104-024-10194-2","url":null,"abstract":"<div><p>N-methyl-D-aspartate receptors (NMDARs) consist of glycine-binding GluN1 and glutamate-binding GluN2 subunits that form tetrameric ion channels. NMDARs in the brain are important for controlling neuronal excitability to promote synaptic plasticity. The cytoskeletal protein, α-actinin-1 (100 kDa, called ACTN1) binds to the cytosolic C0 domain of GluN1 (residues 841–865) that may play a role in the Ca<sup>2+</sup>-dependent desensitization of NMDAR channels. Mutations that disrupt NMDAR channel function are linked to Alzheimer’s disease, depression, stroke, epilepsy, and schizophrenia. NMR chemical shift assignments are reported here for the C-terminal EF-hand domain of ACTN1 (residues 824–892, called ACTN_EF34) and ACTN_EF34 bound to the GluN1 C0 domain (BMRB numbers 52385 and 52386, respectively).</p></div>","PeriodicalId":492,"journal":{"name":"Biomolecular NMR Assignments","volume":"18 2","pages":"239 - 244"},"PeriodicalIF":0.8,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11511685/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142103132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
1H, 15N and 13C resonance assignments of eggcase silk protein 3 蛋壳蚕丝蛋白 3 的 1H、15N 和 13C 共振分配。
IF 0.8 4区 生物学 Q4 BIOPHYSICS Pub Date : 2024-08-24 DOI: 10.1007/s12104-024-10192-4
Shuixin Yu, Ruiqi Qin, Wensu Yuan, Zhi Lin

Spider silk is a high-performance biomaterial known for its outstanding combination of strength and flexibility. Among the six distinct types of spider silk, eggcase silk stands out as it is exclusively produced from the tubuliform gland, playing a specialized role in offspring protection. In the spider species Latrodectus hesperus, eggcase silk is spun from a large spidroin complex, including the major silk component tubuliform spidroin 1 (TuSp1) and at least six different minor silk components. One of these minor components is eggcase protein 3 (ECP3), a small silk protein of 11.8 kDa that lacks the typical spidroin architecture. ECP3 shows very limited homology to all known spidroins. In this study, we report nearly complete backbone and side-chain resonance assignments of ECP3 as a basis for studying the structural mechanisms involved in eggcase silk formation.

蜘蛛丝是一种高性能生物材料,以其出色的强度和柔韧性而闻名。在六种不同类型的蛛丝中,卵壳蛛丝脱颖而出,因为它完全由管状腺产生,在保护后代方面发挥着特殊作用。在蜘蛛物种 Latrodectus hesperus 中,卵壳蛛丝是由大型蛛丝复合体纺成的,其中包括主要的蛛丝成分管状蛛丝蛋白 1(TuSp1)和至少六种不同的次要蛛丝成分。其中一个次要成分是蛋壳蛋白 3(ECP3),它是一种 11.8 kDa 的小型蚕丝蛋白,缺乏典型的蛛丝结构。ECP3 与所有已知蛛丝蛋白的同源性非常有限。在这项研究中,我们报告了 ECP3 几乎完整的骨架和侧链共振分配,为研究蛋壳蚕丝形成的结构机制奠定了基础。
{"title":"1H, 15N and 13C resonance assignments of eggcase silk protein 3","authors":"Shuixin Yu,&nbsp;Ruiqi Qin,&nbsp;Wensu Yuan,&nbsp;Zhi Lin","doi":"10.1007/s12104-024-10192-4","DOIUrl":"10.1007/s12104-024-10192-4","url":null,"abstract":"<div><p>Spider silk is a high-performance biomaterial known for its outstanding combination of strength and flexibility. Among the six distinct types of spider silk, eggcase silk stands out as it is exclusively produced from the tubuliform gland, playing a specialized role in offspring protection. In the spider species <i>Latrodectus hesperus</i>, eggcase silk is spun from a large spidroin complex, including the major silk component tubuliform spidroin 1 (TuSp1) and at least six different minor silk components. One of these minor components is eggcase protein 3 (ECP3), a small silk protein of 11.8 kDa that lacks the typical spidroin architecture. ECP3 shows very limited homology to all known spidroins. In this study, we report nearly complete backbone and side-chain resonance assignments of ECP3 as a basis for studying the structural mechanisms involved in eggcase silk formation.</p></div>","PeriodicalId":492,"journal":{"name":"Biomolecular NMR Assignments","volume":"18 2","pages":"227 - 232"},"PeriodicalIF":0.8,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142046138","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
1H, 15N, and 13C resonance assignments of the N-terminal domain and ser-arg-rich intrinsically disordered region of the nucleocapsid protein of the SARS-CoV-2 SARS-CoV-2 核苷酸蛋白 N 端结构域和富含 ser-arg 的内在无序区的 1H、15N 和 13C 共振赋值。
IF 0.8 4区 生物学 Q4 BIOPHYSICS Pub Date : 2024-08-22 DOI: 10.1007/s12104-024-10191-5
Peter R. Bezerra, Ariana A. Vasconcelos, Vitor S. Almeida, Thais C. Neves-Martins, Nathane C. Mebus-Antunes, Fabio C. L. Almeida

The nucleocapsid (N) protein of SARS-CoV-2 is a multifunctional protein involved in nucleocapsid assembly and various regulatory functions. It is the most abundant protein during viral infection. Its functionality is closely related to its structure, which comprises two globular domains, the N-terminal domain (NTD) and the C-terminal domain (CTD), flanked by intrinsically disordered regions. The linker between the NTD and CTD includes a Serine-Arginine rich (SR) region, which is crucial for the regulation of the N protein’s function. Here, we report the near-complete assignment of the construct containing the NTD followed by the SR region (NTD-SR). Additionally, we describe the dynamic nature of the SR region and compare it with all other available chemical shift assignments reported for the SR region.

SARS-CoV-2 的核苷酸蛋白(N)是一种多功能蛋白,参与核苷酸组装和各种调控功能。它是病毒感染过程中含量最高的蛋白质。它的功能与其结构密切相关,包括两个球状结构域,即 N-末端结构域(NTD)和 C-末端结构域(CTD),两侧是内在无序区。NTD和CTD之间的连接区包括一个富含丝氨酸-精氨酸(SR)的区域,该区域对调控N蛋白的功能至关重要。在这里,我们报告了包含 NTD 和 SR 区(NTD-SR)的构建体的近乎完整的分配。此外,我们还描述了 SR 区域的动态性质,并将其与所有其他已报道的 SR 区域的化学位移赋值进行了比较。
{"title":"1H, 15N, and 13C resonance assignments of the N-terminal domain and ser-arg-rich intrinsically disordered region of the nucleocapsid protein of the SARS-CoV-2","authors":"Peter R. Bezerra,&nbsp;Ariana A. Vasconcelos,&nbsp;Vitor S. Almeida,&nbsp;Thais C. Neves-Martins,&nbsp;Nathane C. Mebus-Antunes,&nbsp;Fabio C. L. Almeida","doi":"10.1007/s12104-024-10191-5","DOIUrl":"10.1007/s12104-024-10191-5","url":null,"abstract":"<div><p>The nucleocapsid (N) protein of SARS-CoV-2 is a multifunctional protein involved in nucleocapsid assembly and various regulatory functions. It is the most abundant protein during viral infection. Its functionality is closely related to its structure, which comprises two globular domains, the N-terminal domain (NTD) and the C-terminal domain (CTD), flanked by intrinsically disordered regions. The linker between the NTD and CTD includes a Serine-Arginine rich (SR) region, which is crucial for the regulation of the N protein’s function. Here, we report the near-complete assignment of the construct containing the NTD followed by the SR region (NTD-SR). Additionally, we describe the dynamic nature of the SR region and compare it with all other available chemical shift assignments reported for the SR region.</p></div>","PeriodicalId":492,"journal":{"name":"Biomolecular NMR Assignments","volume":"18 2","pages":"219 - 225"},"PeriodicalIF":0.8,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142034831","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
1H, 13C and 15N resonance assignments of a shark variable new antigen receptor against hyaluronan synthase 针对透明质酸合成酶的鲨鱼可变新抗原受体的 1H、13C 和 15N 共振分配。
IF 0.8 4区 生物学 Q4 BIOPHYSICS Pub Date : 2024-08-14 DOI: 10.1007/s12104-024-10190-6
Yuxin Liu, Hao Wang, Cookson K. C. Chiu, Yujie Wu, Yunchen Bi

Single domain antibody (sdAb) is only composed of a variable domain of the heavy-chain-only antibody, which is devoid of light chain and naturally occurring in camelids and cartilaginous fishes. Variable New Antigen Receptor (VNAR), a type of single domain antibody present in cartilaginous fishes such as sharks, is the smallest functional antigen-binding fragment found in nature. The unique features, including flexible paratope, high solubility and outstanding stability make VNAR a promising prospect in antibody drug development and structural biology research. However, VNAR’s research has lagged behind camelid-derived sdAb, especially in the field of structural research. Here we report the 1H,15N,13C resonance assignments of a VNAR derived from the immune library of Chiloscyllium plagiosum, termed B2-3, which recognizes the hyaluronan synthase. Analysis of the backbone chemical shifts demonstrates that the secondary structure of VNAR is predominately composed of β-sheets corresponding to around 40% of the B2-3 backbone. The Cβ chemical shift values of cysteine residues, combined with mass spectrometry data, clearly shows that B2-3 contains two pairs of disulfide bonds, which is import for protein stability. The assignments will be essential for determining the high resolution solution structure of B2-3 by NMR spectroscopy.

单结构域抗体(sdAb)仅由重链抗体的可变结构域组成,没有轻链,天然存在于驼科动物和软骨鱼类中。可变新抗原受体(Variable New Antigen Receptor,VNAR)是存在于鲨鱼等软骨鱼类中的一种单域抗体,是自然界中发现的最小的功能性抗原结合片段。VNAR 具有灵活的副位点、高溶解度和出色的稳定性等独特特征,在抗体药物开发和结构生物学研究方面前景广阔。然而,VNAR 的研究一直落后于驼源性 sdAb,尤其是在结构研究领域。在此,我们报告了一种从驼蛛免疫文库中提取的 VNAR(B2-3)的 1H、15N、13C 共振赋值,它能识别透明质酸合成酶。对骨架化学位移的分析表明,VNAR 的二级结构主要由 β 片层组成,约占 B2-3 骨架的 40%。半胱氨酸残基的 Cβ 化学位移值与质谱数据相结合,清楚地表明 B2-3 含有两对二硫键,这对蛋白质的稳定性至关重要。这些赋值对于通过核磁共振光谱确定 B2-3 的高分辨率溶液结构至关重要。
{"title":"1H, 13C and 15N resonance assignments of a shark variable new antigen receptor against hyaluronan synthase","authors":"Yuxin Liu,&nbsp;Hao Wang,&nbsp;Cookson K. C. Chiu,&nbsp;Yujie Wu,&nbsp;Yunchen Bi","doi":"10.1007/s12104-024-10190-6","DOIUrl":"10.1007/s12104-024-10190-6","url":null,"abstract":"<div><p>Single domain antibody (sdAb) is only composed of a variable domain of the heavy-chain-only antibody, which is devoid of light chain and naturally occurring in camelids and cartilaginous fishes. Variable New Antigen Receptor (VNAR), a type of single domain antibody present in cartilaginous fishes such as sharks, is the smallest functional antigen-binding fragment found in nature. The unique features, including flexible paratope, high solubility and outstanding stability make VNAR a promising prospect in antibody drug development and structural biology research. However, VNAR’s research has lagged behind camelid-derived sdAb, especially in the field of structural research. Here we report the <sup>1</sup>H,<sup>15</sup>N,<sup>13</sup>C resonance assignments of a VNAR derived from the immune library of <i>Chiloscyllium plagiosum</i>, termed B2-3, which recognizes the hyaluronan synthase. Analysis of the backbone chemical shifts demonstrates that the secondary structure of VNAR is predominately composed of β-sheets corresponding to around 40% of the B2-3 backbone. The Cβ chemical shift values of cysteine residues, combined with mass spectrometry data, clearly shows that B2-3 contains two pairs of disulfide bonds, which is import for protein stability. The assignments will be essential for determining the high resolution solution structure of B2-3 by NMR spectroscopy.</p></div>","PeriodicalId":492,"journal":{"name":"Biomolecular NMR Assignments","volume":"18 2","pages":"213 - 217"},"PeriodicalIF":0.8,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141974792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Manual and automatic assignment of two different Aβ40 amyloid fibril polymorphs using MAS solid-state NMR spectroscopy 利用 MAS 固态 NMR 光谱手动和自动分配两种不同的 Aβ40 淀粉样蛋白纤维多态性。
IF 0.8 4区 生物学 Q4 BIOPHYSICS Pub Date : 2024-08-09 DOI: 10.1007/s12104-024-10189-z
Natalia Rodina, Riddhiman Sarkar, Dimitrios Tsakalos, Saba Suladze, Zheng Niu, Bernd Reif

Amyloid fibrils from Alzheimer’s amyloid-beta peptides (Aβ) are found to be polymorphic. So far, 14 Aβ40 fibril structures have been determined. The mechanism of why one particular protein sequence adopts so many different three-dimensional structures is yet not understood. In this work, we describe the assignment of the NMR chemical shifts of two Alzheimer’s disease fibril polymorphs, P1 and P2, which are formed by the amyloid-beta peptide Aβ40. The assignment is based on 13C-detected 3D NCACX and NCOCX experiments MAS solid-state NMR experiments. The fibril samples are prepared using an extensive seeding protocol in the absence and presence of the small heat shock protein αB-crystallin. In addition to manual assignments, we obtain chemical shift assignments using the automation software ARTINA. We present an analysis of the secondary chemical shifts and a discussion on the differences between the manual and automated assignment strategies.

研究发现,阿尔茨海默氏症淀粉样β肽(Aβ)的淀粉样纤维具有多态性。迄今为止,已确定了 14 种 Aβ40 纤维结构。对于一个特定的蛋白质序列为何会采用如此多不同的三维结构,人们尚未弄清其机理。在这项研究中,我们描述了由淀粉样β肽 Aβ40 形成的两种阿尔茨海默氏症纤维多态 P1 和 P2 的核磁共振化学位移的分配。这一分配基于 13C 检测到的三维 NCACX 和 NCOCX 实验 MAS 固态 NMR 实验。纤维样品是在没有和有小型热休克蛋白αB-结晶素的情况下通过广泛的播种方案制备的。除了人工赋值外,我们还使用自动化软件 ARTINA 获得了化学位移赋值。我们对二次化学位移进行了分析,并讨论了手动和自动分配策略之间的差异。
{"title":"Manual and automatic assignment of two different Aβ40 amyloid fibril polymorphs using MAS solid-state NMR spectroscopy","authors":"Natalia Rodina,&nbsp;Riddhiman Sarkar,&nbsp;Dimitrios Tsakalos,&nbsp;Saba Suladze,&nbsp;Zheng Niu,&nbsp;Bernd Reif","doi":"10.1007/s12104-024-10189-z","DOIUrl":"10.1007/s12104-024-10189-z","url":null,"abstract":"<div><p>Amyloid fibrils from Alzheimer’s amyloid-beta peptides (Aβ) are found to be polymorphic. So far, 14 Aβ40 fibril structures have been determined. The mechanism of why one particular protein sequence adopts so many different three-dimensional structures is yet not understood. In this work, we describe the assignment of the NMR chemical shifts of two Alzheimer’s disease fibril polymorphs, P1 and P2, which are formed by the amyloid-beta peptide Aβ40. The assignment is based on <sup>13</sup>C-detected 3D NCACX and NCOCX experiments MAS solid-state NMR experiments. The fibril samples are prepared using an extensive seeding protocol in the absence and presence of the small heat shock protein αB-crystallin. In addition to manual assignments, we obtain chemical shift assignments using the automation software ARTINA. We present an analysis of the secondary chemical shifts and a discussion on the differences between the manual and automated assignment strategies.</p></div>","PeriodicalId":492,"journal":{"name":"Biomolecular NMR Assignments","volume":"18 2","pages":"201 - 212"},"PeriodicalIF":0.8,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11511749/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141905490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
1H, 13C and 15N assignment of self-complemented MrkA protein antigen from Klebsiella pneumoniae 肺炎克雷伯氏菌自补体 MrkA 蛋白抗原的 1H、13C 和 15N 赋值。
IF 0.8 4区 生物学 Q4 BIOPHYSICS Pub Date : 2024-07-17 DOI: 10.1007/s12104-024-10185-3
Valentina Monaci, Gianmarco Gasperini, Lucia Banci, Francesca Micoli, Francesca Cantini

Klebsiella pneumoniae (Kp) poses an escalating threat to public health, particularly given its association with nosocomial infections and its emergence as a leading cause of neonatal sepsis, particularly in low- and middle-income countries (LMICs). Host cell adherence and biofilm formation of Kp is mediated by type 1 and type 3 fimbriae whose major fimbrial subunits are encoded by the fimA and mrkA genes, respectively. In this study, we focus on MrkA subunit, which is a 20 KDa protein whose 3D molecular structure remains elusive. We applied solution NMR to characterize a recombinant version of MrkA in which the donor strand segment situated at the protein’s N-terminus is relocated to the C-terminus, preceded by a hexaglycine linker. This construct yields a self-complemented variant of MrkA. Remarkably, the self-complemented MrkA monomer loses its capacity to interact with other monomers and to extend into fimbriae structures. Here, we report the nearly complete assignment of the 13C,15N labelled self-complemented MrkA monomer. Furthermore, an examination of its internal mobility unveiled that relaxation parameters are predominantly uniform across the polypeptide sequence, except for the glycine-rich region within loop 176–181. These data pave the way to a comprehensive structural elucidation of the MrkA monomer and to structurally map the molecular interaction regions between MrkA and antigen-induced antibodies.

肺炎克雷伯氏菌(Kp)对公共卫生的威胁日益严重,特别是考虑到它与医院内感染的关系,以及它已成为新生儿败血症的主要病因,尤其是在中低收入国家(LMICs)。Kp 的宿主细胞粘附和生物膜形成是由 1 型和 3 型缘膜介导的,其主要缘膜亚基分别由 fimA 和 mrkA 基因编码。在本研究中,我们重点研究了MrkA亚基,它是一种20 KDa的蛋白质,其三维分子结构仍然难以捉摸。我们利用溶液核磁共振分析了一种重组版本的 MrkA,其中位于蛋白质 N 端的供体链段被移至 C 端,之前是一个六甘氨酸连接体。这种构建物产生了一种自补体的 MrkA 变体。值得注意的是,自补的 MrkA 单体失去了与其他单体相互作用的能力,也无法延伸到流苏结构中。在这里,我们报告了 13C、15N 标记的自补体 MrkA 单体的近乎完整的分配。此外,对其内部迁移率的研究发现,除了环 176-181 中富含甘氨酸的区域外,整个多肽序列的弛豫参数基本一致。这些数据为全面阐明MrkA单体的结构以及绘制MrkA与抗原诱导抗体之间分子相互作用区域的结构图铺平了道路。
{"title":"1H, 13C and 15N assignment of self-complemented MrkA protein antigen from Klebsiella pneumoniae","authors":"Valentina Monaci,&nbsp;Gianmarco Gasperini,&nbsp;Lucia Banci,&nbsp;Francesca Micoli,&nbsp;Francesca Cantini","doi":"10.1007/s12104-024-10185-3","DOIUrl":"10.1007/s12104-024-10185-3","url":null,"abstract":"<div><p>Klebsiella pneumoniae (Kp) poses an escalating threat to public health, particularly given its association with nosocomial infections and its emergence as a leading cause of neonatal sepsis, particularly in low- and middle-income countries (LMICs). Host cell adherence and biofilm formation of Kp is mediated by type 1 and type 3 fimbriae whose major fimbrial subunits are encoded by the <i>fimA</i> and <i>mrkA</i> genes, respectively. In this study, we focus on MrkA subunit, which is a 20 KDa protein whose 3D molecular structure remains elusive. We applied solution NMR to characterize a recombinant version of MrkA in which the donor strand segment situated at the protein’s N-terminus is relocated to the C-terminus, preceded by a hexaglycine linker. This construct yields a self-complemented variant of MrkA. Remarkably, the self-complemented MrkA monomer loses its capacity to interact with other monomers and to extend into fimbriae structures. Here, we report the nearly complete assignment of the <sup>13</sup>C,<sup>15</sup>N labelled self-complemented MrkA monomer. Furthermore, an examination of its internal mobility unveiled that relaxation parameters are predominantly uniform across the polypeptide sequence, except for the glycine-rich region within loop 176–181. These data pave the way to a comprehensive structural elucidation of the MrkA monomer and to structurally map the molecular interaction regions between MrkA and antigen-induced antibodies.</p></div>","PeriodicalId":492,"journal":{"name":"Biomolecular NMR Assignments","volume":"18 2","pages":"171 - 179"},"PeriodicalIF":0.8,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11511707/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141625602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Solid-state NMR assignment of α-synuclein polymorph prepared from helical intermediate 由螺旋中间体制备的α-突触核蛋白多晶体的固态核磁共振分配。
IF 0.8 4区 生物学 Q4 BIOPHYSICS Pub Date : 2024-07-04 DOI: 10.1007/s12104-024-10188-0
Sahil Ahlawat, Surabhi Mehra, Chandrakala M. Gowda, Samir K Maji, Vipin Agarwal

Synucleinopathies are neurodegenerative diseases characterized by the accumulation of α-synuclein protein aggregates in the neurons and glial cells. Both ex vivo and in vitro α-synuclein fibrils tend to show polymorphism. Polymorphism results in structure variations among fibrils originating from a single polypeptide/protein. The polymorphs usually have different biophysical, biochemical and pathogenic properties. The various pathologies of a single disease might be associated with distinct polymorphs. Similarly, in the case of different synucleinopathies, each condition might be associated with a different polymorph. Fibril formation is a nucleation-dependent process involving the formation of transient and heterogeneous intermediates from monomers. Polymorphs are believed to arise from heterogeneous oligomer populations because of distinct selection mechanisms in different conditions. To test this hypothesis, we isolated and incubated different intermediates during in vitro fibrillization of α-synuclein to form different polymorphs. Here, we report 13C and 15N chemical shifts and the secondary structure of fibrils prepared from the helical intermediate using solid-state nuclear magnetic spectroscopy.

突触核蛋白病是一种神经退行性疾病,其特征是α-突触核蛋白蛋白聚集在神经元和神经胶质细胞中。体内和体外α-突触核蛋白纤维都倾向于表现出多态性。多态性导致源自单个多肽/蛋白质的纤维结构发生变化。多态性通常具有不同的生物物理、生物化学和致病特性。一种疾病的各种病理现象可能与不同的多态性有关。同样,在不同的突触核蛋白病中,每种病症都可能与不同的多态性有关。纤维的形成是一个成核依赖过程,涉及从单体形成瞬时和异质的中间体。由于不同条件下的选择机制不同,多态性被认为是由异质的低聚物群体产生的。为了验证这一假设,我们分离并培养了α-突触核蛋白体外纤维化过程中的不同中间产物,以形成不同的多态性。在此,我们利用固态核磁共振谱报告了由螺旋中间体制备的纤维的 13C 和 15N 化学位移和二级结构。
{"title":"Solid-state NMR assignment of α-synuclein polymorph prepared from helical intermediate","authors":"Sahil Ahlawat,&nbsp;Surabhi Mehra,&nbsp;Chandrakala M. Gowda,&nbsp;Samir K Maji,&nbsp;Vipin Agarwal","doi":"10.1007/s12104-024-10188-0","DOIUrl":"10.1007/s12104-024-10188-0","url":null,"abstract":"<div><p>Synucleinopathies are neurodegenerative diseases characterized by the accumulation of α-synuclein protein aggregates in the neurons and glial cells. Both ex vivo and in vitro α-synuclein fibrils tend to show polymorphism. Polymorphism results in structure variations among fibrils originating from a single polypeptide/protein. The polymorphs usually have different biophysical, biochemical and pathogenic properties. The various pathologies of a single disease might be associated with distinct polymorphs. Similarly, in the case of different synucleinopathies, each condition might be associated with a different polymorph. Fibril formation is a nucleation-dependent process involving the formation of transient and heterogeneous intermediates from monomers. Polymorphs are believed to arise from heterogeneous oligomer populations because of distinct selection mechanisms in different conditions. To test this hypothesis, we isolated and incubated different intermediates during in vitro fibrillization of α-synuclein to form different polymorphs. Here, we report <sup>13</sup>C and <sup>15</sup>N chemical shifts and the secondary structure of fibrils prepared from the helical intermediate using solid-state nuclear magnetic spectroscopy.</p></div>","PeriodicalId":492,"journal":{"name":"Biomolecular NMR Assignments","volume":"18 2","pages":"193 - 200"},"PeriodicalIF":0.8,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11511750/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141496713","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Biomolecular NMR Assignments
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1