Pub Date : 2024-02-01DOI: 10.22074/cellj.2024.711359
Tahereh Foroutan, Aisan Farhadi, Saeed Abroun, Bahram Mohammad Soltani
In this article published in Cell J, Vol 19, No 4, Jan-Mar (Winter) 2018, on pages 654-659, the authors found that Figures 2 and 3 had some errors that accidentally happened during organizing figures. Because of mislabeling of some images and saving them in an incorrect folder, the following figures' legends are corrected. The authors would like to apologies for any inconvenience.
{"title":"Adipose Derived Stem Cells Affect <i>miR-145</i> and <i>p53</i> Expressions of Co-Cultured Hematopoietic Stem Cells.","authors":"Tahereh Foroutan, Aisan Farhadi, Saeed Abroun, Bahram Mohammad Soltani","doi":"10.22074/cellj.2024.711359","DOIUrl":"10.22074/cellj.2024.711359","url":null,"abstract":"<p><p>In this article published in Cell J, Vol 19, No 4, Jan-Mar (Winter) 2018, on pages 654-659, the authors found that Figures 2 and 3 had some errors that accidentally happened during organizing figures. Because of mislabeling of some images and saving them in an incorrect folder, the following figures' legends are corrected. The authors would like to apologies for any inconvenience.</p>","PeriodicalId":49224,"journal":{"name":"Cell Journal","volume":"26 2","pages":"167-168"},"PeriodicalIF":2.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10924834/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140066085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-01DOI: 10.22074/cellj.2024.2013673.1428
Atefeh Bahmei, Sepideh Namdari, Mohammad Yaghoubzad-Maleki, Ali Emami, Reza Ranjbaran, Gholamhossein Tamaddon
Objective: Acute lymphoblastic leukemia (ALL) is a highly heterogeneous leukemia. Despite the current improvement in conventional chemotherapy and high survival rates, the outcomes remain challenging. Sesquiterpen extracted from the Tanacetum parthenium, parthenolide, is a potential anticancer agent that can modulate the expression of miRNAs and induce apoptosis. The objective of this study was to investigate the effect of parthenolide in combination with vincristine and alone on the apoptosis rate and expression of miR-125b-5p, miR-181b-5p, and miR-17-5p in the NALM6 cell line.
Materials and methods: In this experimental study, cell viability and metabolic activity were determined through MTT assay and PI staining. Flow cytometry was applied to evaluate the rate of apoptosis. The expression of miRNAs was assessed using real-time polymerase chain reaction. Bioinformatic analyses, including Cytoscape, RNAhybrid, and signaling pathway analysis were employed to investigate the association of miR-17-5p, miR-181b-5p and miR-125b- 5p with apoptosis. Further, molecular docking served to validate the modulation of these miRNAs by parthenolide and vincristine treatment.
Results: The MTT assay indicated that 7.7 μM of parthenolide decreased the metabolic activity to 50% after 48 hours. PI staining analysis indicated that at concentrations below the half maximal inhibitory concentration, parthenolide caused 50% cell death. Flow cytometric analysis indicated that parthenolide (1.925 μM) in combination with vincristine (1.2 nM) induced apoptosis in 83.2% of the cells. Real-time quantitative reverse transcription polymerase chain reaction (qRTPCR) analysis showed significant changes in the expression levels of miR-17-5p, miR-125b-5p, and miR-181b-5p. Moreover, the combination therapy downregulated the expression of miRNAs significantly. This was consistent with our bioinformatic analysis demonstrating that the studied miRNAs are regulators of apoptosis. Finally, molecular docking validated the modulation of the miRNAs by parthenolide and vincristine.
Conclusion: Parthenolide in combination with vincristine triggers apoptosis at a high rate in the NALM6 cell line. Moreover, this combination therapy can decrease the expression of miR-17-5p, miR-181b-5p, and miR-125b-5p.
{"title":"Bioinformatics-Guided Discovery of miRNAs Involved in Apoptosis Modulated by Parthenolide Combined with Vincristine in The NALM6 Cell Line.","authors":"Atefeh Bahmei, Sepideh Namdari, Mohammad Yaghoubzad-Maleki, Ali Emami, Reza Ranjbaran, Gholamhossein Tamaddon","doi":"10.22074/cellj.2024.2013673.1428","DOIUrl":"10.22074/cellj.2024.2013673.1428","url":null,"abstract":"<p><strong>Objective: </strong>Acute lymphoblastic leukemia (ALL) is a highly heterogeneous leukemia. Despite the current improvement in conventional chemotherapy and high survival rates, the outcomes remain challenging. Sesquiterpen extracted from the <i>Tanacetum parthenium</i>, parthenolide, is a potential anticancer agent that can modulate the expression of miRNAs and induce apoptosis. The objective of this study was to investigate the effect of parthenolide in combination with vincristine and alone on the apoptosis rate and expression of miR-125b-5p, miR-181b-5p, and miR-17-5p in the NALM6 cell line.</p><p><strong>Materials and methods: </strong>In this experimental study, cell viability and metabolic activity were determined through MTT assay and PI staining. Flow cytometry was applied to evaluate the rate of apoptosis. The expression of miRNAs was assessed using real-time polymerase chain reaction. Bioinformatic analyses, including Cytoscape, RNAhybrid, and signaling pathway analysis were employed to investigate the association of miR-17-5p, miR-181b-5p and miR-125b- 5p with apoptosis. Further, molecular docking served to validate the modulation of these miRNAs by parthenolide and vincristine treatment.</p><p><strong>Results: </strong>The MTT assay indicated that 7.7 μM of parthenolide decreased the metabolic activity to 50% after 48 hours. PI staining analysis indicated that at concentrations below the half maximal inhibitory concentration, parthenolide caused 50% cell death. Flow cytometric analysis indicated that parthenolide (1.925 μM) in combination with vincristine (1.2 nM) induced apoptosis in 83.2% of the cells. Real-time quantitative reverse transcription polymerase chain reaction (qRTPCR) analysis showed significant changes in the expression levels of miR-17-5p, miR-125b-5p, and miR-181b-5p. Moreover, the combination therapy downregulated the expression of miRNAs significantly. This was consistent with our bioinformatic analysis demonstrating that the studied miRNAs are regulators of apoptosis. Finally, molecular docking validated the modulation of the miRNAs by parthenolide and vincristine.</p><p><strong>Conclusion: </strong>Parthenolide in combination with vincristine triggers apoptosis at a high rate in the NALM6 cell line. Moreover, this combination therapy can decrease the expression of miR-17-5p, miR-181b-5p, and miR-125b-5p.</p>","PeriodicalId":49224,"journal":{"name":"Cell Journal","volume":"26 2","pages":"139-149"},"PeriodicalIF":2.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10924840/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140066087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Objective: Diabetic men suffer an increased risk of infertility associated with signs of oxidative damage and decreased methylation in sperm pointing to a deficit of the one-carbon cycle (1CC). We aimed to investigate this deficit using mice models (type 1 and 2) of streptozotocin-induced diabetes.
Materials and methods: In this experimental study, 50 male mice, aged eight weeks, were divided randomly into four groups: sham, control, type 1 diabetes mellitus (DM1), and DM2. The DM1 group was fed a normal diet (ND) for eight weeks, followed by five consecutive days of intraperitoneal administration of Streptozotocin (STZ, 50 mg/kg body weight). The DM2 group was fed a high-fat diet (HFD) for eight weeks, followed by a single intraperitoneal injection of STZ (100 mg/kg). After twelve weeks, all the mice were euthanized, and study parameters assessed. In the sham group, citrate buffer as an STZ solvent was injected.
Results: Both types of diabetic animals had serious impairment of spermatogenesis backed by increased DNA damage (P=0.000) and decreased chromatin methylation (percent: P=0.019; intensity: P=0.001) and maturation (P=0.000). The 1CC was deeply disturbed with increased homocysteine (P=0.000) and decreased availability of carbon units [methionine (P=0.000), serine (P=0.088), folate (P=0.016), B12 (P=0.025)] to feed methylations.
Conclusion: We have observed a distinct impairment of 1CC within the testes of individuals with diabetes. We speculate that this impairment may be linked to inadequate intracellular glucose and diminished carbon unit supply associated with diabetes. As a result, interventions focusing on enhancing glucose uptake into sperm cells and providing supplementary methyl donors have the potential to improve fertility issues in diabetic patients. However, additional clinical testing is required to validate these hypotheses.
{"title":"Effects of Streptozotocin Induced Diabetes on One-Carbon Cycle and Sperm Function.","authors":"Farnaz Pouriayevali, Marziyeh Tavalaee, Fatemeh Kazeminasab, Maurizio Dattilo, Mohammad Hossein Nasr-Esfahani","doi":"10.22074/cellj.2023.2010652.1399","DOIUrl":"10.22074/cellj.2023.2010652.1399","url":null,"abstract":"<p><strong>Objective: </strong>Diabetic men suffer an increased risk of infertility associated with signs of oxidative damage and decreased methylation in sperm pointing to a deficit of the one-carbon cycle (1CC). We aimed to investigate this deficit using mice models (type 1 and 2) of streptozotocin-induced diabetes.</p><p><strong>Materials and methods: </strong>In this experimental study, 50 male mice, aged eight weeks, were divided randomly into four groups: sham, control, type 1 diabetes mellitus (DM1), and DM2. The DM1 group was fed a normal diet (ND) for eight weeks, followed by five consecutive days of intraperitoneal administration of Streptozotocin (STZ, 50 mg/kg body weight). The DM2 group was fed a high-fat diet (HFD) for eight weeks, followed by a single intraperitoneal injection of STZ (100 mg/kg). After twelve weeks, all the mice were euthanized, and study parameters assessed. In the sham group, citrate buffer as an STZ solvent was injected.</p><p><strong>Results: </strong>Both types of diabetic animals had serious impairment of spermatogenesis backed by increased DNA damage (P=0.000) and decreased chromatin methylation (percent: P=0.019; intensity: P=0.001) and maturation (P=0.000). The 1CC was deeply disturbed with increased homocysteine (P=0.000) and decreased availability of carbon units [methionine (P=0.000), serine (P=0.088), folate (P=0.016), B12 (P=0.025)] to feed methylations.</p><p><strong>Conclusion: </strong>We have observed a distinct impairment of 1CC within the testes of individuals with diabetes. We speculate that this impairment may be linked to inadequate intracellular glucose and diminished carbon unit supply associated with diabetes. As a result, interventions focusing on enhancing glucose uptake into sperm cells and providing supplementary methyl donors have the potential to improve fertility issues in diabetic patients. However, additional clinical testing is required to validate these hypotheses.</p>","PeriodicalId":49224,"journal":{"name":"Cell Journal","volume":"26 1","pages":"81-90"},"PeriodicalIF":2.0,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10864770/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139730814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Objective: Reduction of cerebral ischemia-reperfusion injury (IRI)/re-oxygenation injury, is defined as the paradoxical exacerbation of the cellular dysfunction and death, following restoration of the blood flow to previously ischemic tissues. The re-establishment of blood flow is essential to salvage the ischemic tissues. As a result, the treatment of IRI with novel therapies, which have fewer side effects, are of great importance. Therefore, this study aimed to investigate the effects of curcumin nanoparticle (CN) pre-treatment on the cerebral I/R rat model.
Materials and methods: In this experimental study, CN was administered to rats orally five days before the bilateral common carotid artery occlusion (BCCAO) and continued for three days. The intensity of oxidative stress, the activities of antioxidant enzymes, glutathione (GSH) content, the activity of mitochondrial enzymes, including succinate dehydrogenase (SDH), malate dehydrogenase (MDH) and lactate dehydrogenase (LDH), curcumin bioavailability, pERK/ERK expression ratio and TFEB protein were studied. Data analysis was performed using Graphpad Prism V.8 software, one-way analysis of variance (ANOVA) with the statistical package for the social sciences (SPSS V.26 software).
Results: Cerebral IRI-damage significantly increased the oxidative stress (P=0.0008) and decreased the activity of the antioxidant enzymes including catalase (CAT) (P<0.001), super oxide dismutase (SOD) (P<0.001), reduced GSH (P<0.001), mitochondrial enzymes, pERK/ERK expression ratio (P=0.002) and TEFB protein (P=0.005) in rats' brains. In addition, the pre-treatment of the rats with CN resulted in a decrease in the reactive oxygen species (ROS), and an increase in the activities of antioxidants and mitochondrial enzymes. This in turn up-regulated the pERK/ERK expression ratio and TEFB expression.
Conclusion: CN has neuroprotective effects on the cerebral IRI condition due to its antioxidant properties and is able to overexpress the pERK and TFEB proteins; thus, it can be considered as a suitable treatment option during and after the incidence of stroke.
{"title":"The Neuroprotective Effects of Curcumin Nanoparticles on The Cerebral Ischemia-Reperfusion Injury in The Rats-The Roles of The Protein Kinase RNA-Like ER Kinase/Extracellular Signal-Regulated Kinase and Transcription Factor EB proteins.","authors":"Yalda Saghari, Monireh Movahedi, Majid Tebianian, Maliheh Entezari","doi":"10.22074/cellj.2023.1995696.1257","DOIUrl":"10.22074/cellj.2023.1995696.1257","url":null,"abstract":"<p><strong>Objective: </strong>Reduction of cerebral ischemia-reperfusion injury (IRI)/re-oxygenation injury, is defined as the paradoxical exacerbation of the cellular dysfunction and death, following restoration of the blood flow to previously ischemic tissues. The re-establishment of blood flow is essential to salvage the ischemic tissues. As a result, the treatment of IRI with novel therapies, which have fewer side effects, are of great importance. Therefore, this study aimed to investigate the effects of curcumin nanoparticle (CN) pre-treatment on the cerebral I/R rat model.</p><p><strong>Materials and methods: </strong>In this experimental study, CN was administered to rats orally five days before the bilateral common carotid artery occlusion (BCCAO) and continued for three days. The intensity of oxidative stress, the activities of antioxidant enzymes, glutathione (GSH) content, the activity of mitochondrial enzymes, including succinate dehydrogenase (SDH), malate dehydrogenase (MDH) and lactate dehydrogenase (LDH), curcumin bioavailability, pERK/ERK expression ratio and TFEB protein were studied. Data analysis was performed using Graphpad Prism V.8 software, one-way analysis of variance (ANOVA) with the statistical package for the social sciences (SPSS V.26 software).</p><p><strong>Results: </strong>Cerebral IRI-damage significantly increased the oxidative stress (P=0.0008) and decreased the activity of the antioxidant enzymes including catalase (CAT) (P<0.001), super oxide dismutase (SOD) (P<0.001), reduced GSH (P<0.001), mitochondrial enzymes, pERK/ERK expression ratio (P=0.002) and TEFB protein (P=0.005) in rats' brains. In addition, the pre-treatment of the rats with CN resulted in a decrease in the reactive oxygen species (ROS), and an increase in the activities of antioxidants and mitochondrial enzymes. This in turn up-regulated the pERK/ERK expression ratio and TEFB expression.</p><p><strong>Conclusion: </strong>CN has neuroprotective effects on the cerebral IRI condition due to its antioxidant properties and is able to overexpress the pERK and TFEB proteins; thus, it can be considered as a suitable treatment option during and after the incidence of stroke.</p>","PeriodicalId":49224,"journal":{"name":"Cell Journal","volume":"26 1","pages":"62-69"},"PeriodicalIF":2.0,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10864777/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139730817","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Objective: In recent years, in vitro maturation (IVM) has become the focus of fertility maintenance, and infertility treatment. The aim of this study is development of oocytes during folliculogenesis and oogenesis is greatly influenced by the presence of BMP-7, BMP-15, and GDF-9 genes, which are present in exosomes generated from bone marrow stem cells.
Materials and methods: In the experimental study, we investigated how exosomes obtained from bone marrow stem cells affected development and expansion of ovarian granulosa cells (GCs) in NMRI mice. In this in vitro experiment, bone marrow stem cells were isolated from mice's bone marrow, and after identification, exosomes were recovered. Exosome doses of 100, 50, and 25 μg/ml were applied to GCs before using MTT assay to measure survival rates and quantitative reverse-transcription polymerase chain reaction (PCR) to measure expression of the BMP-7, BMP-15, and GDF-9 genes.
Results: The results showed that the GCs treated with exosomes concentrations of 25, 50, and 100 μg/ml significantly increased bioavailability, growth and proliferation and it also increased expression level of BMP-7, BMP-15, and GDF-9 genes compared to the controls.
Conclusion: Findings of this study indicated that exosomes derived from bone marrow stem cells improved growth of GCs in NMRI mice and they were a good candidate for further clinical studies to improve quality of the assisted reproductive techniques.
{"title":"Effect of Exosomes Derived from Bone Marrow Mesenchymal Stem Cells on Ovarian Granulosa Cells of Immature NMRI Mice.","authors":"Sajad Farrokhyar, Javad Baharara, Akram Eidi, Nasim Hayati Roodbari","doi":"10.22074/cellj.2023.2002520.1307","DOIUrl":"10.22074/cellj.2023.2002520.1307","url":null,"abstract":"<p><strong>Objective: </strong>In recent years, <i>in vitro</i> maturation (IVM) has become the focus of fertility maintenance, and infertility treatment. The aim of this study is development of oocytes during folliculogenesis and oogenesis is greatly influenced by the presence of <i>BMP-7, BMP-15,</i> and <i>GDF-9</i> genes, which are present in exosomes generated from bone marrow stem cells.</p><p><strong>Materials and methods: </strong>In the experimental study, we investigated how exosomes obtained from bone marrow stem cells affected development and expansion of ovarian granulosa cells (GCs) in NMRI mice. In this in vitro experiment, bone marrow stem cells were isolated from mice's bone marrow, and after identification, exosomes were recovered. Exosome doses of 100, 50, and 25 μg/ml were applied to GCs before using MTT assay to measure survival rates and quantitative reverse-transcription polymerase chain reaction (PCR) to measure expression of the <i>BMP-7, BMP-15,</i> and <i>GDF-9</i> genes.</p><p><strong>Results: </strong>The results showed that the GCs treated with exosomes concentrations of 25, 50, and 100 μg/ml significantly increased bioavailability, growth and proliferation and it also increased expression level of <i>BMP-7, BMP-15,</i> and <i>GDF-9</i> genes compared to the controls.</p><p><strong>Conclusion: </strong>Findings of this study indicated that exosomes derived from bone marrow stem cells improved growth of GCs in NMRI mice and they were a good candidate for further clinical studies to improve quality of the assisted reproductive techniques.</p>","PeriodicalId":49224,"journal":{"name":"Cell Journal","volume":"26 1","pages":"28-38"},"PeriodicalIF":2.0,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10864772/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139730813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Objective: This paper aimed to investigate the PI3K/Akt/mTOR signal-pathway regulator factor-related lncRNA signatures (PAM-SRFLncSigs), associated with regulators of the indicated signaling pathway in patients with lung adenocarcinoma (LUAD) undergoing immunotherapy.
Materials and methods: In this retrospective study, we employed univariate Cox, multivariate Cox, and least absolute shrinkage and selection operator (LASSO) regression analyses to identify prognostically relevant long non-coding RNAs (lncRNAs), construct prognostic models, and perform Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. Subsequently, immunoassay and chemotherapy drug screening were conducted. Finally, the prognostic model was validated using the Imvigor210 cohort, and tumor stem cells were analyzed.
Results: We identified seven prognosis-related lncRNAs (AC084757.3, AC010999.2, LINC02802, AC026979.2, AC024896.1, LINC00941 and LINC01312). We also developed prognostic models to predict survival in patients with LUAD. KEGG enrichment analysis confirmed association of LUAD with the PI3K/Akt/mTOR signaling pathway. In the analysis of immune function pathways, we discovered three good prognostic pathways (Cytolytic_activity, Inflammation-promoting, T_cell_co-inhibition) in LUAD. Additionally, we screened 73 oncology chemotherapy drugs using the "pRRophetic" algorithm.
Conclusion: Identification of seven lncRNAs linked to regulators of the PI3K/Akt/mTOR signaling pathway provided valuable insights into predicting the prognosis of LUAD, understanding the immune microenvironment and optimizing immunotherapy strategies.
{"title":"Identification and Functional Characterization of PI3K/Akt/mTOR Pathway-Related lncRNAs in Lung Adenocarcinoma: A Retrospective Study.","authors":"Jiaqi Zhong, Ying Kong, Ruming Li, Minghan Feng, Liming Li, Xiao Zhu, Lianzhou Chen","doi":"10.22074/cellj.2023.2007918.1378","DOIUrl":"10.22074/cellj.2023.2007918.1378","url":null,"abstract":"<p><strong>Objective: </strong>This paper aimed to investigate the PI3K/Akt/mTOR signal-pathway regulator factor-related lncRNA signatures (PAM-SRFLncSigs), associated with regulators of the indicated signaling pathway in patients with lung adenocarcinoma (LUAD) undergoing immunotherapy.</p><p><strong>Materials and methods: </strong>In this retrospective study, we employed univariate Cox, multivariate Cox, and least absolute shrinkage and selection operator (LASSO) regression analyses to identify prognostically relevant long non-coding RNAs (lncRNAs), construct prognostic models, and perform Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. Subsequently, immunoassay and chemotherapy drug screening were conducted. Finally, the prognostic model was validated using the Imvigor210 cohort, and tumor stem cells were analyzed.</p><p><strong>Results: </strong>We identified seven prognosis-related lncRNAs (<i>AC084757.3, AC010999.2, LINC02802, AC026979.2, AC024896.1, LINC00941</i> and <i>LINC01312</i>). We also developed prognostic models to predict survival in patients with LUAD. KEGG enrichment analysis confirmed association of LUAD with the PI3K/Akt/mTOR signaling pathway. In the analysis of immune function pathways, we discovered three good prognostic pathways (Cytolytic_activity, Inflammation-promoting, T_cell_co-inhibition) in LUAD. Additionally, we screened 73 oncology chemotherapy drugs using the \"pRRophetic\" algorithm.</p><p><strong>Conclusion: </strong>Identification of seven lncRNAs linked to regulators of the PI3K/Akt/mTOR signaling pathway provided valuable insights into predicting the prognosis of LUAD, understanding the immune microenvironment and optimizing immunotherapy strategies.</p>","PeriodicalId":49224,"journal":{"name":"Cell Journal","volume":"26 1","pages":"13-27"},"PeriodicalIF":2.0,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10864771/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139730816","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Objective: Type 1 diabetes (T1Ds) is an autoimmune disease in which the immune system invades and destroys insulin-producing cells. Nevertheless, at the time of diagnosis, about 30-40% of pancreatic beta cells are healthy and capable of producing insulin. Bi-specific antibodies, chimeric antigen receptor regulatory T cells (CAR-Treg cells), and labeled antibodies could be a new emerging option for the treatment or diagnosis of type I diabetic patients. The aim of the study is to choose appropriate cell surface antigens in the pancreas tissue for generating an antibody for type I diabetic patients.
Materials and methods: In this bioinformatics study, we extracted pancreas-specific proteins from two large databases; the Human Protein Atlas (HPA) and Genotype-Tissue Expression (GTEx) Portal. Pancreatic-enriched genes were chosen and narrowed down by Protter software for the investigation of accessible extracellular domains. The immunohistochemistry (IHC) data of the protein atlas database were used to evaluate the protein expression of selected antigens. We explored the function of candidate antigens by using the GeneCards database to evaluate the potential dysfunction or activation/hyperactivation of antigens after antibody binding.
Results: The results showed 429 genes are highly expressed in the pancreas tissue. Also, eighteen genes encoded plasma membrane proteins that have high expression in the microarray (GEO) dataset. Our results introduced four structural proteins, including NPHS1, KIRREL2, GP2, and CUZD1, among all seventeen candidate proteins.
Conclusion: The presented antigens can potentially be used to produce specific pancreatic antibodies that guide CARTreg, bi-specific, or labeling molecules to the pancreas for treatment, detection, or other molecular targeted therapy scopes for type I diabetes.
目的:1 型糖尿病(T1Ds)是一种自身免疫性疾病,免疫系统会入侵并破坏胰岛素生成细胞。然而,在诊断时,约有 30-40% 的胰腺 beta 细胞是健康的,能够产生胰岛素。双特异性抗体、嵌合抗原受体调节性 T 细胞(CAR-Treg 细胞)和标记抗体可能是治疗或诊断 I 型糖尿病患者的新兴选择。本研究的目的是在胰腺组织中选择合适的细胞表面抗原,为 I 型糖尿病患者生成抗体:在这项生物信息学研究中,我们从人类蛋白质图谱(HPA)和基因型-组织表达(GTEx)门户网站这两个大型数据库中提取了胰腺特异性蛋白质。选择胰腺富集基因,并通过 Protter 软件缩小其范围,以研究可访问的胞外结构域。蛋白质图谱数据库的免疫组化(IHC)数据用于评估所选抗原的蛋白质表达。我们利用 GeneCards 数据库探索了候选抗原的功能,以评估抗体结合后抗原可能出现的功能障碍或活化/超活化:结果:结果显示,429个基因在胰腺组织中高表达。此外,18 个编码质膜蛋白的基因在微阵列(GEO)数据集中有高表达。在所有 17 个候选蛋白中,我们发现了 4 个结构蛋白,包括 NPHS1、KIRREL2、GP2 和 CUZD1:本文提出的抗原可用于生产特异性胰腺抗体,引导 CARTreg、双特异性或标记分子进入胰腺,用于治疗、检测或其他 I 型糖尿病的分子靶向治疗。
{"title":"Candidate Biomarkers for Targeting in Type 1 Diabetes; A Bioinformatic Analysis of Pancreatic Cell Surface Antigens.","authors":"Hamed Dabiri, Mahdi Habibi-Anbouhi, Vahab Ziaei, Zahra Moghadasi, Majid Sadeghizadeh, Ensiyeh Hajizadeh-Saffar","doi":"10.22074/cellj.2023.1996297.1262","DOIUrl":"10.22074/cellj.2023.1996297.1262","url":null,"abstract":"<p><strong>Objective: </strong>Type 1 diabetes (T1Ds) is an autoimmune disease in which the immune system invades and destroys insulin-producing cells. Nevertheless, at the time of diagnosis, about 30-40% of pancreatic beta cells are healthy and capable of producing insulin. Bi-specific antibodies, chimeric antigen receptor regulatory T cells (CAR-Treg cells), and labeled antibodies could be a new emerging option for the treatment or diagnosis of type I diabetic patients. The aim of the study is to choose appropriate cell surface antigens in the pancreas tissue for generating an antibody for type I diabetic patients.</p><p><strong>Materials and methods: </strong>In this bioinformatics study, we extracted pancreas-specific proteins from two large databases; the Human Protein Atlas (HPA) and Genotype-Tissue Expression (GTEx) Portal. Pancreatic-enriched genes were chosen and narrowed down by Protter software for the investigation of accessible extracellular domains. The immunohistochemistry (IHC) data of the protein atlas database were used to evaluate the protein expression of selected antigens. We explored the function of candidate antigens by using the GeneCards database to evaluate the potential dysfunction or activation/hyperactivation of antigens after antibody binding.</p><p><strong>Results: </strong>The results showed 429 genes are highly expressed in the pancreas tissue. Also, eighteen genes encoded plasma membrane proteins that have high expression in the microarray (GEO) dataset. Our results introduced four structural proteins, including NPHS1, KIRREL2, GP2, and CUZD1, among all seventeen candidate proteins.</p><p><strong>Conclusion: </strong>The presented antigens can potentially be used to produce specific pancreatic antibodies that guide CARTreg, bi-specific, or labeling molecules to the pancreas for treatment, detection, or other molecular targeted therapy scopes for type I diabetes.</p>","PeriodicalId":49224,"journal":{"name":"Cell Journal","volume":"26 1","pages":"51-61"},"PeriodicalIF":2.0,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10864774/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139730811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Objective: Danon disease is defined by a clinical trio of cardiomyopathy, skeletal myopathy, and cognitive impairment. It results from the lysosomal-associated membrane protein-2 (LAMP2) gene variants. The aim of study is determination of genotype and phenotype of a newly diagnosed Iranian family with a unique phenotype due to a pathogenic variant of the LAMP2 gene along with a phenotypic comparison of all reported patients.
Materials and methods: In this descriptive study, we evaluated the demographic data, clinical features, management procedures, as well as genetic analysis of both patients in this newly diagnosed family. Whole genome sequencing (WGS) and in silico structural and functional predictions were applied. A comprehensive search of the c.877C>T variant in LAMP2 was conducted using the PubMed, Google Scholar, VarSome, ClinVar, Human Gene Mutation Database (HGMD), and Franklin databases to identify any genotype-phenotype correlations.
Results: Nine patients were carriers of the c.877C>T variant. All patients were male, and displayed variable degrees of left ventricular hypertrophy (LVH) that ranged from mild to severe. All patients exhibited typical cardiac conduction abnormalities consistent with Danon disease. Four underwent heart transplants and survived. Skeletal muscle involvement and cognitive impairment were observed in four patients each. The mean age of onset was 14 years. The proband in this study exhibited an earlier onset of cardiac symptoms.
Conclusion: Genetic analysis is the preferred diagnosis approach for Danon disease and can assist families in managing affected patients, identify carriers, and assist with future family planning. This study highlights the intrafamilial phenotypic variability of Danon disease. It is possible that variants of this gene may be frequent in Iran.
{"title":"A Mutational Hotspot in The <i>LAMP2</i> Gene: Unravelling Intrafamilial Phenotypic Variation and Global Distribution of The c.877C>T Variant: A Descriptive Study.","authors":"Saeideh Kavousi, Mohammad Dalili, Bahareh Rabbani, Mehrdad Behmanesh, Mehrdad Noruzinia, Nejat Mahdieh","doi":"10.22074/cellj.2023.2007469.1372","DOIUrl":"10.22074/cellj.2023.2007469.1372","url":null,"abstract":"<p><strong>Objective: </strong>Danon disease is defined by a clinical trio of cardiomyopathy, skeletal myopathy, and cognitive impairment. It results from the lysosomal-associated membrane protein-2 (<i>LAMP2</i>) gene variants. The aim of study is determination of genotype and phenotype of a newly diagnosed Iranian family with a unique phenotype due to a pathogenic variant of the <i>LAMP2</i> gene along with a phenotypic comparison of all reported patients.</p><p><strong>Materials and methods: </strong>In this descriptive study, we evaluated the demographic data, clinical features, management procedures, as well as genetic analysis of both patients in this newly diagnosed family. Whole genome sequencing (WGS) and in silico structural and functional predictions were applied. A comprehensive search of the c.877C>T variant in <i>LAMP2</i> was conducted using the PubMed, Google Scholar, VarSome, ClinVar, Human Gene Mutation Database (HGMD), and Franklin databases to identify any genotype-phenotype correlations.</p><p><strong>Results: </strong>Nine patients were carriers of the c.877C>T variant. All patients were male, and displayed variable degrees of left ventricular hypertrophy (LVH) that ranged from mild to severe. All patients exhibited typical cardiac conduction abnormalities consistent with Danon disease. Four underwent heart transplants and survived. Skeletal muscle involvement and cognitive impairment were observed in four patients each. The mean age of onset was 14 years. The proband in this study exhibited an earlier onset of cardiac symptoms.</p><p><strong>Conclusion: </strong>Genetic analysis is the preferred diagnosis approach for Danon disease and can assist families in managing affected patients, identify carriers, and assist with future family planning. This study highlights the intrafamilial phenotypic variability of Danon disease. It is possible that variants of this gene may be frequent in Iran.</p>","PeriodicalId":49224,"journal":{"name":"Cell Journal","volume":"26 1","pages":"39-50"},"PeriodicalIF":2.0,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10864773/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139730810","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Leucine-rich G protein-coupled receptor 5 (LGR5) is a marker of cancer stem cells (CSCs) in various cancers. Based on different studies, conflicting reports exist on correlation between LGR5 expression and poor prognosis/ clinicopathological parameters in cancer patients. Therefore, our purpose in conducting this study was to investigate correlation between LGR5 expression and outcomes of cancer patients under study through a systematic review and meta-analysis. Relevant articles were searched and collected using EMBASE, PubMed, Science Direct, and Scopus databases until December 21, 2022. This study was conducted to examine correlation between LGR5 expression and different clinical outcomes, such as recurrence-free survival (RFS), disease-free survival (DFS), overall survival (OS), and clinicopathological characteristics of the included cancer patients. To achieve this, hazard ratios (HRs) with 95% confidence intervals (CIs) and odds ratios (ORs) with 95% CIs were used as statistical measures. A meta-analysis was conducted using STATA 12.0 software. Finally, 53 studies including 9523 patients met the inclusion criteria. Significantly, high-level expression of LGR5 was related to poor prognosis in terms of OS, higher tumor stage, presence of distant metastasis, and presence of lymph node metastasis. It was discovered through subgroup analysis that several factors, including the study area, evaluation method, and type of cancer, can influence the correlation between LGR5 expression and negative prognosis in cancer patients. According to the results of our study, LGR5 overexpression was related to poor OS in cancer patients. In addition, clinicopathological data indicated an unfavorable prognosis in cancer patients with high LGR5 expression. In conclusion, LGR5 may serve as a potential prognostic marker for predicting survival in certain cancer types.
{"title":"Clinical Implications and Prognostic Value of Leucine-Rich G Protein-Coupled Receptor 5 Expression as A Cancer Stem Cell Marker in Malignancies: A Systematic Review and Meta-Analysis.","authors":"Sepideh Ghobakhloo, Mehri Khoshhali, Nasimeh Vatandoost, Sima Jafarpour, Anoosha Niazmand, Reza Nedaeinia, Rasoul Salehi","doi":"10.22074/cellj.2023.2010157.1396","DOIUrl":"10.22074/cellj.2023.2010157.1396","url":null,"abstract":"<p><p>Leucine-rich G protein-coupled receptor 5 (<i>LGR5</i>) is a marker of cancer stem cells (CSCs) in various cancers. Based on different studies, conflicting reports exist on correlation between LGR5 expression and poor prognosis/ clinicopathological parameters in cancer patients. Therefore, our purpose in conducting this study was to investigate correlation between <i>LGR5</i> expression and outcomes of cancer patients under study through a systematic review and meta-analysis. Relevant articles were searched and collected using EMBASE, PubMed, Science Direct, and Scopus databases until December 21, 2022. This study was conducted to examine correlation between <i>LGR5</i> expression and different clinical outcomes, such as recurrence-free survival (RFS), disease-free survival (DFS), overall survival (OS), and clinicopathological characteristics of the included cancer patients. To achieve this, hazard ratios (HRs) with 95% confidence intervals (CIs) and odds ratios (ORs) with 95% CIs were used as statistical measures. A meta-analysis was conducted using STATA 12.0 software. Finally, 53 studies including 9523 patients met the inclusion criteria. Significantly, high-level expression of <i>LGR5</i> was related to poor prognosis in terms of OS, higher tumor stage, presence of distant metastasis, and presence of lymph node metastasis. It was discovered through subgroup analysis that several factors, including the study area, evaluation method, and type of cancer, can influence the correlation between <i>LGR5</i> expression and negative prognosis in cancer patients. According to the results of our study, <i>LGR5</i> overexpression was related to poor OS in cancer patients. In addition, clinicopathological data indicated an unfavorable prognosis in cancer patients with high <i>LGR5</i> expression. In conclusion, <i>LGR5</i> may serve as a potential prognostic marker for predicting survival in certain cancer types.</p>","PeriodicalId":49224,"journal":{"name":"Cell Journal","volume":"26 1","pages":"1-12"},"PeriodicalIF":2.0,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10864775/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139730812","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-31DOI: 10.22074/cellj.2023.2009047.1391
Maliheh Gharibshahian, Morteza Alizadeh, Mohammad Kamalabadi Farahani, Majid Salehi
Objective: Rosuvastatin (RSV) is a hydrophilic, effective statin with a long half-life that stimulates bone regeneration. The present study aims to develop a new scaffold and controlled release system for RSV with favourable properties for bone tissue engineering (BTE).
Materials and methods: In this experimental study, high porous polycaprolactone (PCL)-gelatin scaffolds that contained different concentrations of RSV (0 mg/10 ml, 0.1 mg/10 ml, 0.5 mg/10 ml, 2.5 mg/10 ml, 12.5 mg/10 ml, and 62.5 mg/10 ml) were fabricated by the thermally-induced phase separation (TIPS) method. Mechanical and biological properties of the scaffolds were evaluated by Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), compressive strength, porosity, MTT, alkaline phosphatase (ALP) activity, water contact angle, degradation rate, pH alteration, blood clotting index (BCI), and hemocompatibility.
Results: SEM analysis confirmed that the porous structure of the scaffolds contained interconnected pores. FTIR results showed that the RSV structure was maintained during the scaffold's fabrication. RSV (up to 62.5 mg/10 ml) increased compressive strength (16.342 ± 1.79 MPa), wettability (70.2), and degradation rate of the scaffolds. Scaffolds that contained 2.5 mg/10 ml RSV had the best effect on the human umbilical cord mesenchymal stem cell (HUC-MSCs) survival, hemocompatibility, and BCI. As a sustained release system, only 31.68 ± 0.1% of RSV was released from the PCL-Gelatin-2.5 mg/10 ml RSV scaffold over 30 days. In addition, the results of ALP activity showed that RSV increased the osteogenic differentiation potential of the scaffolds.
Conclusion: PCL-Gelatin-2.5 mg/10 ml RSV scaffolds have favorable mechanical, physical, and osteogenic properties for bone tissue and provide a favorable release system for RSV. They can mentioned as a a promising strategy for bone regeneration that should be further assessed in animals and clinical studies.
{"title":"Fabrication of Rosuvastatin-Incorporated Polycaprolactone -Gelatin Scaffold for Bone Repair: A Preliminary <i>In Vitro</i> Study.","authors":"Maliheh Gharibshahian, Morteza Alizadeh, Mohammad Kamalabadi Farahani, Majid Salehi","doi":"10.22074/cellj.2023.2009047.1391","DOIUrl":"10.22074/cellj.2023.2009047.1391","url":null,"abstract":"<p><strong>Objective: </strong>Rosuvastatin (RSV) is a hydrophilic, effective statin with a long half-life that stimulates bone regeneration. The present study aims to develop a new scaffold and controlled release system for RSV with favourable properties for bone tissue engineering (BTE).</p><p><strong>Materials and methods: </strong>In this experimental study, high porous polycaprolactone (PCL)-gelatin scaffolds that contained different concentrations of RSV (0 mg/10 ml, 0.1 mg/10 ml, 0.5 mg/10 ml, 2.5 mg/10 ml, 12.5 mg/10 ml, and 62.5 mg/10 ml) were fabricated by the thermally-induced phase separation (TIPS) method. Mechanical and biological properties of the scaffolds were evaluated by Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), compressive strength, porosity, MTT, alkaline phosphatase (ALP) activity, water contact angle, degradation rate, pH alteration, blood clotting index (BCI), and hemocompatibility.</p><p><strong>Results: </strong>SEM analysis confirmed that the porous structure of the scaffolds contained interconnected pores. FTIR results showed that the RSV structure was maintained during the scaffold's fabrication. RSV (up to 62.5 mg/10 ml) increased compressive strength (16.342 ± 1.79 MPa), wettability (70.2), and degradation rate of the scaffolds. Scaffolds that contained 2.5 mg/10 ml RSV had the best effect on the human umbilical cord mesenchymal stem cell (HUC-MSCs) survival, hemocompatibility, and BCI. As a sustained release system, only 31.68 ± 0.1% of RSV was released from the PCL-Gelatin-2.5 mg/10 ml RSV scaffold over 30 days. In addition, the results of ALP activity showed that RSV increased the osteogenic differentiation potential of the scaffolds.</p><p><strong>Conclusion: </strong>PCL-Gelatin-2.5 mg/10 ml RSV scaffolds have favorable mechanical, physical, and osteogenic properties for bone tissue and provide a favorable release system for RSV. They can mentioned as a a promising strategy for bone regeneration that should be further assessed in animals and clinical studies.</p>","PeriodicalId":49224,"journal":{"name":"Cell Journal","volume":"26 1","pages":"70-80"},"PeriodicalIF":2.0,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10864776/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139730815","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}