Pub Date : 2024-03-01DOI: 10.22074/cellj.2024.2015571.1446
Sam Zarbakhsh, Parisa Hayat
Objective: Schwann cells are the main cells for myelination and regeneration of peripheral nerves. Idebenone is a synthetic antioxidant used to treat central nervous system diseases. The aim of the study is to determine whether idebenone can protect Schwann cells and increase cell activity under conditions of oxidative stress caused by hydrogen peroxide (H2O2) in vitro.
Materials and methods: In this experimental study, Schwann cells were pre-treated with various concentrations of idebenone and H2O2; after determining the appropriate doses, the cells were treated with 10 μM idebenone for 48 hours and 1000 μM H2O2 for the last two hours. The malondialdehyde (MDA) level, and activity of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) were assessed by ELISA. Cell viability was assessed by the MTT assay. Western blot analysis was conducted to determine the expressions of myelin protein zero (MPZ) and peripheral myelin protein 22 (PMP22), and expression ratio of the Bax/Bcl-2 proteins. The percentage of cell apoptosis was evaluated by annexin V staining using flow cytometry.
Results: Schwann cells under oxidative stress conditions caused by H2O2 and treated with idebenone had increased cell viability; increased SOD, CAT, and GPx activity; and increased expressions of the MPZ and PMP22 proteins. There was a decreased level of MDA, decreased expression ratio of Bax/Bcl-2 proteins, and a decrease in the percentage of apoptotic cells stained with Annexin V.
Conclusion: The appropriate dose of idebenone may improve both survival and function of Schwann cells exposed to H2O2 by reducing oxidative stress and apoptosis.
{"title":"Effects of Idebenone on Rat Schwann Cells with Toxicity Induced by Hydrogen Peroxide: Assessment of Molecular, Apoptosis, and Oxidative Stress Parameters.","authors":"Sam Zarbakhsh, Parisa Hayat","doi":"10.22074/cellj.2024.2015571.1446","DOIUrl":"https://doi.org/10.22074/cellj.2024.2015571.1446","url":null,"abstract":"<p><strong>Objective: </strong>Schwann cells are the main cells for myelination and regeneration of peripheral nerves. Idebenone is a synthetic antioxidant used to treat central nervous system diseases. The aim of the study is to determine whether idebenone can protect Schwann cells and increase cell activity under conditions of oxidative stress caused by hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) <i>in vitro</i>.</p><p><strong>Materials and methods: </strong>In this experimental study, Schwann cells were pre-treated with various concentrations of idebenone and H<sub>2</sub>O<sub>2</sub>; after determining the appropriate doses, the cells were treated with 10 μM idebenone for 48 hours and 1000 μM H<sub>2</sub>O<sub>2</sub> for the last two hours. The malondialdehyde (MDA) level, and activity of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) were assessed by ELISA. Cell viability was assessed by the MTT assay. Western blot analysis was conducted to determine the expressions of myelin protein zero (MPZ) and peripheral myelin protein 22 (PMP22), and expression ratio of the Bax/Bcl-2 proteins. The percentage of cell apoptosis was evaluated by annexin V staining using flow cytometry.</p><p><strong>Results: </strong>Schwann cells under oxidative stress conditions caused by H<sub>2</sub>O<sub>2</sub> and treated with idebenone had increased cell viability; increased SOD, CAT, and GPx activity; and increased expressions of the MPZ and PMP22 proteins. There was a decreased level of MDA, decreased expression ratio of Bax/Bcl-2 proteins, and a decrease in the percentage of apoptotic cells stained with Annexin V.</p><p><strong>Conclusion: </strong>The appropriate dose of idebenone may improve both survival and function of Schwann cells exposed to H<sub>2</sub>O<sub>2</sub> by reducing oxidative stress and apoptosis.</p>","PeriodicalId":49224,"journal":{"name":"Cell Journal","volume":"26 3","pages":"194-201"},"PeriodicalIF":2.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140867910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-01DOI: 10.22074/cellj.2024.2024274.1523
Bahareh Sadri, Massoud Vosough
The rapid development of knowledge on healthy nutrition, and hygiene practices, as well as the advent of antibiotics and vaccines, has led to increased life expectancy in the recent century. The extended lifespan has brought new challenges for healthcare professionals, including the management of chronic degenerative diseases, malignancies, and autoimmune disorders. Advanced therapeutic medicinal products (ATMPs) have emerged as a promising frontier alongside conventional therapeutic modalities, offering innovative solutions through cell-based therapies, gene therapy, and tissue engineering. Recent years have witnessed remarkable advancements in regenerative medicine and the launching of innovative ATMPs. Numerous ATMPs have been registered and approved by regulatory agencies for the management of different diseases in 2023. The approval of groundbreaking therapies around the world has made 2023 an exceptional year. Novel ATMPs and the development of artificial intelligence (AI) in 2023 will pave the way for the integration of ATMPs and advanced technologies in personalized medicine, early diagnosis and targeted treatments.
{"title":"2023, A Landmark Year in Biomedical Research; A Turning Point in Medical History.","authors":"Bahareh Sadri, Massoud Vosough","doi":"10.22074/cellj.2024.2024274.1523","DOIUrl":"https://doi.org/10.22074/cellj.2024.2024274.1523","url":null,"abstract":"<p><p>The rapid development of knowledge on healthy nutrition, and hygiene practices, as well as the advent of antibiotics and vaccines, has led to increased life expectancy in the recent century. The extended lifespan has brought new challenges for healthcare professionals, including the management of chronic degenerative diseases, malignancies, and autoimmune disorders. Advanced therapeutic medicinal products (ATMPs) have emerged as a promising frontier alongside conventional therapeutic modalities, offering innovative solutions through cell-based therapies, gene therapy, and tissue engineering. Recent years have witnessed remarkable advancements in regenerative medicine and the launching of innovative ATMPs. Numerous ATMPs have been registered and approved by regulatory agencies for the management of different diseases in 2023. The approval of groundbreaking therapies around the world has made 2023 an exceptional year. Novel ATMPs and the development of artificial intelligence (AI) in 2023 will pave the way for the integration of ATMPs and advanced technologies in personalized medicine, early diagnosis and targeted treatments.</p>","PeriodicalId":49224,"journal":{"name":"Cell Journal","volume":"26 3","pages":"210-211"},"PeriodicalIF":2.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140869146","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Infertility is a common clinical condition and about half of the major causes are due to male-related infertility. Pathogenesis of this abnormality is generally undefined; so establishing a proper treatment option is relatively uncertain. In recent years, several evidences demonstrated that mesenchymal stem cells (MSCs) can be a hope for innovative and efficient treatment of male infertility. This study reviews possible applications of MSCs in the restoration of spermatogenesis in male infertility of both humans and animals to suggest new avenues for future clinical practices. Articles published in "PubMed" and "Google Scholar" from January 1, 2000, to August 1, 2023, were investigated by searching items of "mesenchymal stem cells", "cell therapy", "cell transplantation", and, "regenerative medicine" keywords, in addition to the "urology", "andrology", "reproductive medicine", "male infertility", "azoospermia", and "spermatogenesis". The results obtained from the transplantation of MSCs in the treatment of male infertility seemed encouraging and they revealed the safety and efficacy of these cells to recover spermatogenesis; eventhough further stem cell research is still required before recruiting clinical application of MSCs in the treatment of human male infertility. Undertaking more well-defined, standardized, and reproducible protocols and enrolling larger sample sizes during a longer follow-up period can benefit the relevance of MSC transplantation in the restoration of spermatogenesis and treatment of male infertility. It seems that developing and utilizing stem cell transplantations, exosomes, scaffold delivery systems, and three dimensional (3D) culture methods may open a new window to getting more benefits from cell therapy in the treatment of men infertility.
{"title":"Mesenchymal Stem Cells in Regenerative Medicine, Possible Applications in The Restoration of Spermatogenesis: A Review.","authors":"Dariush Irani, Davood Mehrabani, Feridoun Karimi-Busheri","doi":"10.22074/cellj.2024.2015141.1442","DOIUrl":"https://doi.org/10.22074/cellj.2024.2015141.1442","url":null,"abstract":"<p><p>Infertility is a common clinical condition and about half of the major causes are due to male-related infertility. Pathogenesis of this abnormality is generally undefined; so establishing a proper treatment option is relatively uncertain. In recent years, several evidences demonstrated that mesenchymal stem cells (MSCs) can be a hope for innovative and efficient treatment of male infertility. This study reviews possible applications of MSCs in the restoration of spermatogenesis in male infertility of both humans and animals to suggest new avenues for future clinical practices. Articles published in \"PubMed\" and \"Google Scholar\" from January 1, 2000, to August 1, 2023, were investigated by searching items of \"mesenchymal stem cells\", \"cell therapy\", \"cell transplantation\", and, \"regenerative medicine\" keywords, in addition to the \"urology\", \"andrology\", \"reproductive medicine\", \"male infertility\", \"azoospermia\", and \"spermatogenesis\". The results obtained from the transplantation of MSCs in the treatment of male infertility seemed encouraging and they revealed the safety and efficacy of these cells to recover spermatogenesis; eventhough further stem cell research is still required before recruiting clinical application of MSCs in the treatment of human male infertility. Undertaking more well-defined, standardized, and reproducible protocols and enrolling larger sample sizes during a longer follow-up period can benefit the relevance of MSC transplantation in the restoration of spermatogenesis and treatment of male infertility. It seems that developing and utilizing stem cell transplantations, exosomes, scaffold delivery systems, and three dimensional (3D) culture methods may open a new window to getting more benefits from cell therapy in the treatment of men infertility.</p>","PeriodicalId":49224,"journal":{"name":"Cell Journal","volume":"26 3","pages":"169-184"},"PeriodicalIF":2.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140859670","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Objective: According to the response-to-retention hypothesis, the inception of atherosclerosis is attributed to the deposition and retention of lipoprotein in the arterial intima, facilitated by altered proteoglycans with hyperelongated glycosaminoglycan (GAG) chains. Recent studies have elucidated a signaling pathway whereby transforming growth factor-β (TGF-β) promotes the expression of genes linked to proteoglycan GAG chain elongation (CHSY1 and CHST11) via reactive oxygen species (ROS) and the downstream phosphorylation of ERK1/2 and Smad2L. Atorvastatin is known to exhibit pleiotropic effects, including antioxidant and anti-inflammatory. The purpose of the present research was to ascertain the influence of atorvastatin on TGF-β-stimulated expression of CHSY1 and CHST11 and associated signaling pathways using an in vitro model.
Materials and methods: In this experimental study, vascular smooth muscle cells (VSMCs) were pre-incubated with atorvastatin (0.1-10 μM) prior to being stimulated with TGF-β (2 ng/ml). The experiment aimed to evaluate the phosphorylation levels of Smad2C, Smad2L, ERK1/2, the NOX p47phox subunit, ROS production, and the mRNA expression of CHST11 and CHSY1.
Results: Our research results indicated that atorvastatin inhibited TGF-β-stimulated CHSY1 and CHST11 mRNA expression. Further experiments showed that atorvastatin diminished TGF-β-stimulated ROS production and weakened TGF-β-stimulated phosphorylation of p47phox, ERK1/2, and Smad2L; however, we observed no effect on the TGF-β- Smad2C pathway.
Conclusion: These data suggest that atorvastatin demonstrates anti-atherogenic properties through the modulation of the ROS-ERK1/2-Smad2L signaling pathway. This provides valuable insight into the potential mechanisms by which atorvastatin exerts its pleiotropic effects against atherosclerosis.
{"title":"Atorvastatin's Therapeutic Potential in Atherosclerosis: Inhibiting TGF-β-Induced Proteoglycan Glycosaminoglycan Chain Elongation through ROS-ERK1/2-Smad2L Signaling Pathway Modulation in Vascular Smooth Muscle Cells.","authors":"Hossein Ghaderi-Zefrehi, Ghorban Mohammadzadeh, Mojtaba Rashidi, Maryam Adelipour, Hossein Babaahmadi Rezaei","doi":"10.22074/cellj.2023.2010482.1397","DOIUrl":"10.22074/cellj.2023.2010482.1397","url":null,"abstract":"<p><strong>Objective: </strong>According to the response-to-retention hypothesis, the inception of atherosclerosis is attributed to the deposition and retention of lipoprotein in the arterial intima, facilitated by altered proteoglycans with hyperelongated glycosaminoglycan (GAG) chains. Recent studies have elucidated a signaling pathway whereby transforming growth factor-β (TGF-β) promotes the expression of genes linked to proteoglycan GAG chain elongation (<i>CHSY1</i> and <i>CHST11</i>) via reactive oxygen species (ROS) and the downstream phosphorylation of ERK1/2 and Smad2L. Atorvastatin is known to exhibit pleiotropic effects, including antioxidant and anti-inflammatory. The purpose of the present research was to ascertain the influence of atorvastatin on TGF-β-stimulated expression of <i>CHSY1</i> and <i>CHST11</i> and associated signaling pathways using an <i>in vitro</i> model.</p><p><strong>Materials and methods: </strong>In this experimental study, vascular smooth muscle cells (VSMCs) were pre-incubated with atorvastatin (0.1-10 μM) prior to being stimulated with TGF-β (2 ng/ml). The experiment aimed to evaluate the phosphorylation levels of Smad2C, Smad2L, ERK1/2, the NOX p47phox subunit, ROS production, and the mRNA expression of <i>CHST11</i> and <i>CHSY1</i>.</p><p><strong>Results: </strong>Our research results indicated that atorvastatin inhibited TGF-β-stimulated <i>CHSY1</i> and <i>CHST11</i> mRNA expression. Further experiments showed that atorvastatin diminished TGF-β-stimulated ROS production and weakened TGF-β-stimulated phosphorylation of p47phox, ERK1/2, and Smad2L; however, we observed no effect on the TGF-β- Smad2C pathway.</p><p><strong>Conclusion: </strong>These data suggest that atorvastatin demonstrates anti-atherogenic properties through the modulation of the ROS-ERK1/2-Smad2L signaling pathway. This provides valuable insight into the potential mechanisms by which atorvastatin exerts its pleiotropic effects against atherosclerosis.</p>","PeriodicalId":49224,"journal":{"name":"Cell Journal","volume":"26 2","pages":"158-166"},"PeriodicalIF":2.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10924836/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140066086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Exposure to phosgene, a colourless poisonous gas, can lead to various health issues including eye irritation, a dry and burning throat, vomiting, coughing, the production of foamy sputum, difficulty in breathing, and chest pain. This systematic review aims to provide a comprehensive overview of the clinical manifestations and treatment of phosgene toxicity by systematically analyzing available literature. The search was carried out on various scientific online databases to include related studies based on inclusion and exclusion criteria with the use of PRISMA guidelines. The quality of the studies was assessed using the Mixed Methods Appraisal Tool (MMAT). Thirteen articles were included in this study after the screening process. Inhalation was found to be the primary health problem of phosgene exposure with respiratory symptoms such as coughing and dyspnea. Chest pain and pulmonary oedema were also observed in some cases. Furthermore, pulmonary crackle was the most common reported physical examination. Beyond respiratory tract health issues, other organs involvements such as cardiac, skin, eye, and renal were also reported in some studies. The symptoms can occur within minutes to hours after exposure, and the severity of symptoms depends on the amount of inhaled phosgene. The findings showed that bronchodilators can alleviate symptoms of bronchoconstriction caused by phosgene. Oxygen therapy is essential for restoring oxygen levels and improving respiratory function in cases of hypoxemia. In severe cases, endotracheal intubation and invasive mechanical ventilation are used for artificial respiration, along with the removal of tracheal secretions and pulmonary oedema fluid through suctioning as crucial components of supportive therapy.
{"title":"Phosgene Toxicity Clinical Manifestations and Treatment: A Systematic Review.","authors":"Alireza Asgari, Mohammadreza Parak, Yazdan Hasani Nourian, Mostafa Ghanei","doi":"10.22074/cellj.2024.2011864.1405","DOIUrl":"10.22074/cellj.2024.2011864.1405","url":null,"abstract":"<p><p>Exposure to phosgene, a colourless poisonous gas, can lead to various health issues including eye irritation, a dry and burning throat, vomiting, coughing, the production of foamy sputum, difficulty in breathing, and chest pain. This systematic review aims to provide a comprehensive overview of the clinical manifestations and treatment of phosgene toxicity by systematically analyzing available literature. The search was carried out on various scientific online databases to include related studies based on inclusion and exclusion criteria with the use of PRISMA guidelines. The quality of the studies was assessed using the Mixed Methods Appraisal Tool (MMAT). Thirteen articles were included in this study after the screening process. Inhalation was found to be the primary health problem of phosgene exposure with respiratory symptoms such as coughing and dyspnea. Chest pain and pulmonary oedema were also observed in some cases. Furthermore, pulmonary crackle was the most common reported physical examination. Beyond respiratory tract health issues, other organs involvements such as cardiac, skin, eye, and renal were also reported in some studies. The symptoms can occur within minutes to hours after exposure, and the severity of symptoms depends on the amount of inhaled phosgene. The findings showed that bronchodilators can alleviate symptoms of bronchoconstriction caused by phosgene. Oxygen therapy is essential for restoring oxygen levels and improving respiratory function in cases of hypoxemia. In severe cases, endotracheal intubation and invasive mechanical ventilation are used for artificial respiration, along with the removal of tracheal secretions and pulmonary oedema fluid through suctioning as crucial components of supportive therapy.</p>","PeriodicalId":49224,"journal":{"name":"Cell Journal","volume":"26 2","pages":"91-97"},"PeriodicalIF":2.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10924841/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140066026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Objective: Enhanced cell survival and drug resistance in tumor cells have been linked to the overexpression of antiapoptotic members of the Bcl-2 family proteins, including Bcl-2 and Mcl-1. The aim of this study was to explore the impact of formononetin and dihydroartemisinin combination on the growth and apoptosis of acute myeloid leukemia (AML) cells.
Materials and methods: In this experimental study, the cell survival and cell proliferation were tested by MTT assay and trypan blue staining. The evaluation of cell apoptosis was conducted using Hoechst 33342 staining and a colorimetric assay to measure caspase-3 activity. To determine the mRNA levels of Mcl-1, Bcl-2, Bax, and Cyclin D1, a quantitative real-time polymerase chain reaction (qRT-PCR) was performed.
Results: We showed that treatment with either formononetin or dihydroartemisinin alone, led to significant decrease in the cell survival and growth, and triggered apoptosis in U937 and KG-1 AML cell lines. Moreover, treatment with each of the compounds alone significantly decreased the mRNA levels of Mcl-1, Bcl-2 and Cyclin D1 mRNA, while, the expression level of Bax mRNA was enhanced. Combination of two compounds showed a synergistic anti-cancer effect.
Conclusion: The anti-leukemic potential of formononetin and dihydroartemisinin is exerted through the effect on cell cycle progression and intrinsic pathway of apoptosis. Therefore, they can be considered as a potential anti-leukemic agent alone or along with existing chemotherapeutic drugs.
{"title":"Formononetin and Dihydroartemisinin Act Synergistically to Induce Apoptosis in Human Acute Myeloid Leukemia Cell Lines.","authors":"Yusef Abbasi, Marziyeh Pooladi, Roya Nazmabadi, Jamal Amri, Helia Abbasi, Hadi Karami","doi":"10.22074/cellj.2024.2016937.1459","DOIUrl":"10.22074/cellj.2024.2016937.1459","url":null,"abstract":"<p><strong>Objective: </strong>Enhanced cell survival and drug resistance in tumor cells have been linked to the overexpression of antiapoptotic members of the Bcl-2 family proteins, including Bcl-2 and Mcl-1. The aim of this study was to explore the impact of formononetin and dihydroartemisinin combination on the growth and apoptosis of acute myeloid leukemia (AML) cells.</p><p><strong>Materials and methods: </strong>In this experimental study, the cell survival and cell proliferation were tested by MTT assay and trypan blue staining. The evaluation of cell apoptosis was conducted using Hoechst 33342 staining and a colorimetric assay to measure caspase-3 activity. To determine the mRNA levels of Mcl-1, Bcl-2, Bax, and <i>Cyclin D1</i>, a quantitative real-time polymerase chain reaction (qRT-PCR) was performed.</p><p><strong>Results: </strong>We showed that treatment with either formononetin or dihydroartemisinin alone, led to significant decrease in the cell survival and growth, and triggered apoptosis in U937 and KG-1 AML cell lines. Moreover, treatment with each of the compounds alone significantly decreased the mRNA levels of <i>Mcl-1, Bcl-2</i> and <i>Cyclin D1</i> mRNA, while, the expression level of Bax mRNA was enhanced. Combination of two compounds showed a synergistic anti-cancer effect.</p><p><strong>Conclusion: </strong>The anti-leukemic potential of formononetin and dihydroartemisinin is exerted through the effect on cell cycle progression and intrinsic pathway of apoptosis. Therefore, they can be considered as a potential anti-leukemic agent alone or along with existing chemotherapeutic drugs.</p>","PeriodicalId":49224,"journal":{"name":"Cell Journal","volume":"26 2","pages":"121-129"},"PeriodicalIF":2.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10924837/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140066025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-01DOI: 10.22074/cellj.2024.2015187.1444
Neda Parvini, Mohammad Esmaeil Akbari, Amir Ali Hamidieh, Fardin Fathi, Abbas Ali Amini, Marzieh Ebrahimi, Zakaria Vahabzadeh
Objective: There is interest in using cytotoxic T lymphocyte antigen-4 (CTLA-4) immunotherapy to treat blood cancers. Unfortunately, patients with acute lymphoblastic leukaemia (ALL) frequently exhibit resistance to treatment and natural killer (NK) cell exhaustion. This study aims to increase the cytotoxic potency of natural killer cells by using CTLA-4 to block the Nalm-6 leukaemia cell line.
Materials and methods: In this experimental study, NK cells were purified from the peripheral blood mononuclear cells (PBMCs) of 10 healthy people and assessed by flow cytometry for purity and viability. The purified cells were activated overnight at 37°C and 5% CO2 with interleukin-15 (IL-15, 10 ng/ml) followed by evaluation of expressions of CTLA-4, activating and inhibitory receptors, and the release of interferon gamma (IFN-γ) and granzyme B (GZM B). CTLA-4 expression on NK cells from recurrent ALL patients was also evaluated. Finally, the cytotoxic activity of NK cells was assessed after the CTLA-4 blockade.
Results: The purity of the isolated cells was 96.58 ± 2.57%. Isolated NK cells activated with IL-15 resulted in significantly higher CTLA-4 expression (8.75%, P<0.05). Similarly, CTLA-4 expression on the surface of NK cells from patients with ALL was higher (7.46%) compared to healthy individuals (1.46%, P<0.05). IL-15 reduced NKG2A expression (P<0.01), and increased expressions of NKP30 (P<0.05) and NKP46 (P<0.01). The activated NK cells released more IFN-γ (P<0.5) and GZM B (P<0.01) compared to unactivated NK cells. Blockade of CTLA-4 enhanced the NK cell killing potential against Nalm-6 cells (56.3%, P<0.05); however, IFN-γ and GZM B levels were not statistically different between the blocked and non-blocked groups.
Conclusion: Our findings suggest that CTLA-4 blockage of Nalm-6 cells causes an increase in antitumour activity of NK cells against these cells. Our study also provides evidence for the potential of cancer immunotherapy treatment using blocking anti-CTLA-4 mAbs.
目的:人们对使用细胞毒性 T 淋巴细胞抗原-4(CTLA-4)免疫疗法治疗血癌很感兴趣。遗憾的是,急性淋巴细胞白血病(ALL)患者经常表现出抗药性和自然杀伤细胞(NK)衰竭。本研究旨在利用CTLA-4阻断Nalm-6白血病细胞系,从而提高自然杀伤细胞的细胞毒性:在这项实验研究中,从 10 名健康人的外周血单核细胞(PBMCs)中纯化出 NK 细胞,并通过流式细胞术评估其纯度和活力。纯化的细胞在 37°C 和 5% CO2 下用白细胞介素-15(IL-15,10 ng/ml)活化过夜,然后评估 CTLA-4、活化受体和抑制受体的表达以及γ干扰素(IFN-γ)和颗粒酶 B(GZM B)的释放。此外,还评估了复发性 ALL 患者 NK 细胞上 CTLA-4 的表达。最后,评估了 CTLA-4 阻断后 NK 细胞的细胞毒活性:分离细胞的纯度为96.58 ± 2.57%。结果:分离出的细胞纯度为 96.58 ± 2.57%,IL-15 激活的分离 NK 细胞 CTLA-4 表达明显升高(8.75%,PC):我们的研究结果表明,阻断 Nalm-6 细胞的 CTLA-4 可提高 NK 细胞对这些细胞的抗肿瘤活性。我们的研究还为使用阻断抗 CTLA-4 mAbs 治疗癌症免疫疗法的潜力提供了证据。
{"title":"CTLA-4 Blockade of Natural Killer Cells Increases Cytotoxicity against Acute Lymphoid Leukaemia Cells Neda.","authors":"Neda Parvini, Mohammad Esmaeil Akbari, Amir Ali Hamidieh, Fardin Fathi, Abbas Ali Amini, Marzieh Ebrahimi, Zakaria Vahabzadeh","doi":"10.22074/cellj.2024.2015187.1444","DOIUrl":"10.22074/cellj.2024.2015187.1444","url":null,"abstract":"<p><strong>Objective: </strong>There is interest in using cytotoxic T lymphocyte antigen-4 (CTLA-4) immunotherapy to treat blood cancers. Unfortunately, patients with acute lymphoblastic leukaemia (ALL) frequently exhibit resistance to treatment and natural killer (NK) cell exhaustion. This study aims to increase the cytotoxic potency of natural killer cells by using CTLA-4 to block the Nalm-6 leukaemia cell line.</p><p><strong>Materials and methods: </strong>In this experimental study, NK cells were purified from the peripheral blood mononuclear cells (PBMCs) of 10 healthy people and assessed by flow cytometry for purity and viability. The purified cells were activated overnight at 37°C and 5% CO2 with interleukin-15 (IL-15, 10 ng/ml) followed by evaluation of expressions of CTLA-4, activating and inhibitory receptors, and the release of interferon gamma (IFN-γ) and granzyme B (GZM B). CTLA-4 expression on NK cells from recurrent ALL patients was also evaluated. Finally, the cytotoxic activity of NK cells was assessed after the CTLA-4 blockade.</p><p><strong>Results: </strong>The purity of the isolated cells was 96.58 ± 2.57%. Isolated NK cells activated with IL-15 resulted in significantly higher CTLA-4 expression (8.75%, P<0.05). Similarly, CTLA-4 expression on the surface of NK cells from patients with ALL was higher (7.46%) compared to healthy individuals (1.46%, P<0.05). IL-15 reduced NKG2A expression (P<0.01), and increased expressions of NKP30 (P<0.05) and NKP46 (P<0.01). The activated NK cells released more IFN-γ (P<0.5) and GZM B (P<0.01) compared to unactivated NK cells. Blockade of CTLA-4 enhanced the NK cell killing potential against Nalm-6 cells (56.3%, P<0.05); however, IFN-γ and GZM B levels were not statistically different between the blocked and non-blocked groups.</p><p><strong>Conclusion: </strong>Our findings suggest that CTLA-4 blockage of Nalm-6 cells causes an increase in antitumour activity of NK cells against these cells. Our study also provides evidence for the potential of cancer immunotherapy treatment using blocking anti-CTLA-4 mAbs.</p>","PeriodicalId":49224,"journal":{"name":"Cell Journal","volume":"26 2","pages":"150-157"},"PeriodicalIF":2.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10924838/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140066024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kidney-liver crosstalk plays a crucial role in normal and certain pathological conditions. In pathologic states, both renal-induced liver damage and liver-induced kidney diseases may happen through these kidney-liver interactions. This bidirectional crosstalk takes place through the systemic conditions that mutually influence both the liver and kidneys. Ischemia and reperfusion, cytokine release and pro-inflammatory signaling pathways, metabolic acidosis, oxidative stress, and altered enzyme activity and metabolic pathways establish the base of this interaction between the kidneys and liver. In these concomitant kidney-liver diseases, the survival rates strongly correlate with early intervention and treatment of organ dysfunction. Proper care of a nephrologist and hepatologist and the identification of pathological conditions using biomarkers at early stages are necessary to prevent the complications induced by this complex and potentially vicious cycle. Therefore, understanding the characteristics of this crosstalk is essential for better management. In this review, we discussed the available literature concerning the detrimental effects of kidney failure on liver functions and liver-induced kidney diseases.
{"title":"Review on Kidney-Liver Crosstalk: Pathophysiology of Their Disorders.","authors":"Niloofar Khoshdel Rad, Zahra Heydari, Amir Hossein Tamimi, Ensieh Zahmatkesh, Anastasia Shpichka, Maryam Barekat, Peter Timashev, Nikoo Hossein-Khannazer, Moustapha Hassan, Massoud Vosough","doi":"10.22074/cellj.2023.2007757.1376","DOIUrl":"10.22074/cellj.2023.2007757.1376","url":null,"abstract":"<p><p>Kidney-liver crosstalk plays a crucial role in normal and certain pathological conditions. In pathologic states, both renal-induced liver damage and liver-induced kidney diseases may happen through these kidney-liver interactions. This bidirectional crosstalk takes place through the systemic conditions that mutually influence both the liver and kidneys. Ischemia and reperfusion, cytokine release and pro-inflammatory signaling pathways, metabolic acidosis, oxidative stress, and altered enzyme activity and metabolic pathways establish the base of this interaction between the kidneys and liver. In these concomitant kidney-liver diseases, the survival rates strongly correlate with early intervention and treatment of organ dysfunction. Proper care of a nephrologist and hepatologist and the identification of pathological conditions using biomarkers at early stages are necessary to prevent the complications induced by this complex and potentially vicious cycle. Therefore, understanding the characteristics of this crosstalk is essential for better management. In this review, we discussed the available literature concerning the detrimental effects of kidney failure on liver functions and liver-induced kidney diseases.</p>","PeriodicalId":49224,"journal":{"name":"Cell Journal","volume":"26 2","pages":"98-111"},"PeriodicalIF":1.7,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10924833/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140066028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Objective: The aim of this study was to synthesize chitosan nanoparticles (Cs NPs) for resveratrol (RSV) delivery and assess their effectiveness in inducing autophagy in MDA-MB 231 cells.
Materials and methods: In this experimental study, Pure and RSV-loaded Cs NPs (RSV. Cs NPs) were prepared via the ionic gelation method, and their physicochemical properties were characterized using standard techniques, and RSV release was measured in vitro. MDA-MB 231 cells were incubated with RSV, Cs NPs, and RSV. Cs NPs and Half-maximal inhibitory concentration (IC50) values were calculated following the MTT test. Cell viability was assessed by lactate dehydrogenase (LDH) assay, and autophagy was evaluated using the real-time polymerase chain reaction (PCR).
Results: NP formation was confirmed with the analysis of FTIR spectra. Pure and RSV. Cs NPs had 36.7 and 94.07 nm sizes with 18.3 and 27 mV zeta potentials, respectively. Above 60% of RSV entrapped within NPs was released in an initial burst manner followed by a gradual release till 72 hours. Cs and RSV. Cs NPs restrained cell proliferation at lower concentrations. RSV. Cs NPs showed the highest anticancer effect and stimulated autophagy, indicated by increased Beclin-1 ATG5, ATG7, LC3A, and P62 expression.
Conclusion: RSV. Cs NPs show promising effects in inhibiting invasive breast cancer (BC) cells in vitro by inducing autophagy.
{"title":"Resveratrol Nanoformulation Inhibits Invasive Breast Cancer Cell Growth through Autophagy Induction: An <i>In Vitro</i> Study.","authors":"Mohammad Rasool Khazaei, Maryam Bozorgi, Mozafar Khazaei, Maryam Aftabi, Azam Bozorgi","doi":"10.22074/cellj.2024.2016930.1458","DOIUrl":"10.22074/cellj.2024.2016930.1458","url":null,"abstract":"<p><strong>Objective: </strong>The aim of this study was to synthesize chitosan nanoparticles (Cs NPs) for resveratrol (RSV) delivery and assess their effectiveness in inducing autophagy in MDA-MB 231 cells.</p><p><strong>Materials and methods: </strong>In this experimental study, Pure and RSV-loaded Cs NPs (RSV. Cs NPs) were prepared via the ionic gelation method, and their physicochemical properties were characterized using standard techniques, and RSV release was measured <i>in vitro</i>. MDA-MB 231 cells were incubated with RSV, Cs NPs, and RSV. Cs NPs and Half-maximal inhibitory concentration (IC50) values were calculated following the MTT test. Cell viability was assessed by lactate dehydrogenase (LDH) assay, and autophagy was evaluated using the real-time polymerase chain reaction (PCR).</p><p><strong>Results: </strong>NP formation was confirmed with the analysis of FTIR spectra. Pure and RSV. Cs NPs had 36.7 and 94.07 nm sizes with 18.3 and 27 mV zeta potentials, respectively. Above 60% of RSV entrapped within NPs was released in an initial burst manner followed by a gradual release till 72 hours. Cs and RSV. Cs NPs restrained cell proliferation at lower concentrations. RSV. Cs NPs showed the highest anticancer effect and stimulated autophagy, indicated by increased Beclin-1 ATG5, ATG7, LC3A, and P62 expression.</p><p><strong>Conclusion: </strong>RSV. Cs NPs show promising effects in inhibiting invasive breast cancer (BC) cells <i>in vitro</i> by inducing autophagy.</p>","PeriodicalId":49224,"journal":{"name":"Cell Journal","volume":"26 2","pages":"112-120"},"PeriodicalIF":2.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10924839/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140066027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Objective: Mesenchymal stem cells (MSCs) are widely recognized as a promising cell type for therapeutic applications due to their ability to secrete and regenerate bioactive molecules. For effective bone healing, it is crucial to select a scaffold that can support, induce, and restore biological function. Evaluating the scaffold should involve assessing MSC survival, proliferation, and differentiation. The principal aim of this investigation was to formulate composite nanofibrous scaffolds apt for applications in bone tissue engineering.
Materials and methods: In this experimental study, nanofibrous scaffolds were fabricated using Poly-L-lactic acid (PLLA) polymer. The PLLA fibers' surface was modified by integrating collagen and hydroxyapatite (HA) nanoparticles.
Results: The findings demonstrated that the collagen- and nanohydroxyapatite-modified electrospun PLLA scaffold positively influenced the attachment, growth, and osteogenic differentiation of MSCs.
Conclusion: Coating the nanofiber scaffold with collagen and nanoparticle HA significantly enhanced the osteogenic differentiation of MSCs on electrospun PLLA scaffolds.
{"title":"Simultaneous Coating of Electrospun Nanofibers with Bioactive Molecules for Stem Cell Osteogenesis <i>In Vitro</i>.","authors":"Mehrdad Zahiri-Toosi, Seyed Jalal Zargar, Ehsan Seyedjafari, Mostafa Saberian, Marziehsadat Ahmadi","doi":"10.22074/cellj.2024.2008921.1388","DOIUrl":"10.22074/cellj.2024.2008921.1388","url":null,"abstract":"<p><strong>Objective: </strong>Mesenchymal stem cells (MSCs) are widely recognized as a promising cell type for therapeutic applications due to their ability to secrete and regenerate bioactive molecules. For effective bone healing, it is crucial to select a scaffold that can support, induce, and restore biological function. Evaluating the scaffold should involve assessing MSC survival, proliferation, and differentiation. The principal aim of this investigation was to formulate composite nanofibrous scaffolds apt for applications in bone tissue engineering.</p><p><strong>Materials and methods: </strong>In this experimental study, nanofibrous scaffolds were fabricated using Poly-L-lactic acid (PLLA) polymer. The PLLA fibers' surface was modified by integrating collagen and hydroxyapatite (HA) nanoparticles.</p><p><strong>Results: </strong>The findings demonstrated that the collagen- and nanohydroxyapatite-modified electrospun PLLA scaffold positively influenced the attachment, growth, and osteogenic differentiation of MSCs.</p><p><strong>Conclusion: </strong>Coating the nanofiber scaffold with collagen and nanoparticle HA significantly enhanced the osteogenic differentiation of MSCs on electrospun PLLA scaffolds.</p>","PeriodicalId":49224,"journal":{"name":"Cell Journal","volume":"26 2","pages":"130-138"},"PeriodicalIF":2.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10924835/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140066029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}