首页 > 最新文献

Journal of Hydro-environment Research最新文献

英文 中文
Study on bioretention for stormwater management in cold climate, Part I: Hydraulics 寒冷气候下雨水管理的生物滞留研究(一)水力学
IF 2.8 3区 环境科学与生态学 Q2 ENGINEERING, CIVIL Pub Date : 2021-09-01 DOI: 10.1016/j.jher.2021.01.007
Zhan Li , Hannah Kratky , Tong Yu , Xiangfei Li , Haifeng Jia

Simulated storm events were applied to four large bioretention columns to approximate 1.6 years of equivalent volume in Edmonton, Alberta’s typical climate. Summer, winter, and spring runoff were simulated in temperature-controlled laboratories with a range of −20 °C to +20 °C. During summer less porous bioretention media (i.e. loam soil) effectively weakened peak flows by >83% for 1:2 year events while more porous bioretention media (i.e. sandy loam soil) maintained hydraulic conductivities >9.1 cm/h. Winter operation consisted of all columns being subjected to −20 °C and then 1 °C repeatedly. Events were applied at an air temperature of 1 °C and, although frozen initially, more porous media experienced faster water breakthrough and ponding disappearance in winter indicating that hydraulic performance during intermittent warming periods in winter may be achievable. All columns’ hydraulic performance rebounded quickly in the subsequent summer. All columns successfully managed 1:2 year events in terms of infiltration rate, ponding depth and duration. Preliminary results also showed that both media have the potential to manage less frequent (1:5 and 1:10 year) events.

模拟的风暴事件应用于四个大型生物滞留柱,在艾伯塔省埃德蒙顿的典型气候中,大约1.6 年的等效体积。夏季、冬季和春季径流在温度控制的实验室中模拟,温度范围为- 20 °C至+20 °C。在夏季,多孔性较少的生物滞留介质(即壤土)在1:2年的事件中有效地削弱了83%的峰值流量,而多孔性较多的生物滞留介质(即砂质壤土)保持了9.1 cm/h的水力导率。冬季操作包括将所有色谱柱置于- 20 °C,然后反复置于1 °C。事件在1 °C的空气温度下进行,尽管最初是冻结的,但更多多孔介质在冬季经历了更快的水突破和池塘消失,这表明在冬季间歇性变暖期间的水力性能是可以实现的。所有柱的水力性能在随后的夏季迅速回升。所有栏目在入渗率、积水深度和持续时间方面都成功地管理了1:2年的事件。初步结果还表明,这两种媒体都有可能管理较低频率(1:5和1:10 年)的事件。
{"title":"Study on bioretention for stormwater management in cold climate, Part I: Hydraulics","authors":"Zhan Li ,&nbsp;Hannah Kratky ,&nbsp;Tong Yu ,&nbsp;Xiangfei Li ,&nbsp;Haifeng Jia","doi":"10.1016/j.jher.2021.01.007","DOIUrl":"10.1016/j.jher.2021.01.007","url":null,"abstract":"<div><p><span>Simulated storm events were applied to four large bioretention columns to approximate 1.6 years of equivalent volume in Edmonton, Alberta’s typical climate. Summer, winter, and spring runoff were simulated in temperature-controlled laboratories with a range of −20 °C to +20 °C. During summer less porous bioretention media (i.e. loam soil) effectively weakened peak flows by &gt;83% for 1:2 year events while more porous bioretention media (i.e. sandy loam soil) maintained hydraulic conductivities &gt;9.1 cm/h. Winter operation consisted of all columns being subjected to −20 °C and then 1 °C repeatedly. Events were applied at an air temperature of 1 °C and, although frozen initially, more porous media experienced faster water breakthrough and ponding disappearance in winter indicating that hydraulic performance during intermittent warming periods in winter may be achievable. All columns’ hydraulic performance rebounded quickly in the subsequent summer. All columns successfully managed 1:2 year events in terms of </span>infiltration rate, ponding depth and duration. Preliminary results also showed that both media have the potential to manage less frequent (1:5 and 1:10 year) events.</p></div>","PeriodicalId":49303,"journal":{"name":"Journal of Hydro-environment Research","volume":"38 ","pages":"Pages 25-34"},"PeriodicalIF":2.8,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jher.2021.01.007","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43008876","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Comparison of infiltration models to describe infiltration characteristics of bioretention 描述生物滞留物渗透特性的渗透模型比较
IF 2.8 3区 环境科学与生态学 Q2 ENGINEERING, CIVIL Pub Date : 2021-09-01 DOI: 10.1016/j.jher.2021.08.002
Jianlong Wang , Jianying Song , Hongjun Lin , Liuwei Peng , Kai Li , Zexi Wang

Bioretention is one of low-impact development measures, which widely used not only because it can reduce stormwater runoff total volume, decrease peak flow rate and delay peak flow time, but also can remove the runoff pollutants. Infiltration is an important hydrological process for bioretention to evaluate its runoff total volume reduction and pollutants removal. So, it is important to find an optimal infiltration model that can well describe the infiltration performance of bioretention. The Horton, Philip and Kostiakov infiltration models were selected to compare their accuracy when using for describe the infiltration characteristics of bioretention, and the errors between the different models simulate results and experiment results were assessed via the maximum absolute error (MAE), bias and coefficient of determination (R2). The experimental results showed that Horton model is fitting well and flexible under different experiment conditions, especially when the hydraulic head was 10 cm, with MAE of 0.50–0.81 cm/h, bias of 0.1–0.23 cm/h and R2 of 0.98–0.99. R2 of the Philip and Kostiakov models were all over than 0.87 at the initial infiltration period, but the model fitting accuracy decreased significantly with infiltration time elapse. Furthermore, the total runoff volume capture ratio and emptying time were advanced used to evaluate the flexibility of Horton model, and the Nash-Sutcliffe efficiency coefficients of them were over than 0.61 and 0.58, respectively. Therefore, the Horton model can be optimal selected to describe the infiltration process of bioretention and for its hydrological evaluation.

生物滞留是一种低影响开发措施,不仅可以减少雨水径流总量,降低洪峰流量,延迟洪峰时间,而且可以去除径流污染物,因此得到广泛应用。入渗是生物滞留的重要水文过程,可以评价其径流总量减少和污染物去除效果。因此,寻找一个能很好地描述生物滞留渗透性能的最佳渗透模型是很重要的。选择Horton、Philip和Kostiakov模型,比较其描述生物滞留渗透特性的准确性,并通过最大绝对误差(MAE)、偏差和决定系数(R2)评估不同模型模拟结果与实验结果之间的误差。实验结果表明,Horton模型在不同的实验条件下均具有较好的拟合性和灵活性,特别是在水头为10 cm时,MAE为0.50 ~ 0.81 cm/h,偏差为0.1 ~ 0.23 cm/h, R2为0.98 ~ 0.99。Philip和Kostiakov模型在入渗初期R2均大于0.87,但随着入渗时间的延长,模型拟合精度显著降低。提出以总径流量捕获比和排空时间评价Horton模型的灵活性,二者的Nash-Sutcliffe效率系数分别大于0.61和0.58。因此,可以优选Horton模型来描述生物滞留物的入渗过程及其水文评价。
{"title":"Comparison of infiltration models to describe infiltration characteristics of bioretention","authors":"Jianlong Wang ,&nbsp;Jianying Song ,&nbsp;Hongjun Lin ,&nbsp;Liuwei Peng ,&nbsp;Kai Li ,&nbsp;Zexi Wang","doi":"10.1016/j.jher.2021.08.002","DOIUrl":"10.1016/j.jher.2021.08.002","url":null,"abstract":"<div><p>Bioretention is one of low-impact development measures, which widely used not only because it can reduce stormwater runoff total volume, decrease peak flow rate and delay peak flow time, but also can remove the runoff pollutants. Infiltration is an important hydrological process for bioretention to evaluate its runoff total volume reduction and pollutants removal. So, it is important to find an optimal infiltration model that can well describe the infiltration performance of bioretention. The Horton, Philip and Kostiakov infiltration models were selected to compare their accuracy when using for describe the infiltration characteristics of bioretention, and the errors between the different models simulate results and experiment results were assessed via the maximum absolute error (MAE), bias and coefficient of determination (R<sup>2</sup>). The experimental results showed that Horton model is fitting well and flexible under different experiment conditions, especially when the hydraulic head was 10 cm, with MAE of 0.50–0.81 cm/h, bias of 0.1–0.23 cm/h and R<sup>2</sup> of 0.98–0.99. R<sup>2</sup> of the Philip and Kostiakov models were all over than 0.87 at the initial infiltration period, but the model fitting accuracy decreased significantly with infiltration time elapse. Furthermore, the total runoff volume capture ratio and emptying time were advanced used to evaluate the flexibility of Horton model, and the Nash-Sutcliffe efficiency coefficients of them were over than 0.61 and 0.58, respectively. Therefore, the Horton model can be optimal selected to describe the infiltration process of bioretention and for its hydrological evaluation.</p></div>","PeriodicalId":49303,"journal":{"name":"Journal of Hydro-environment Research","volume":"38 ","pages":"Pages 35-43"},"PeriodicalIF":2.8,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44718865","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Modeling air flow in sanitary sewer systems: A review 卫生下水道系统中空气流动的建模:综述
IF 2.8 3区 环境科学与生态学 Q2 ENGINEERING, CIVIL Pub Date : 2021-09-01 DOI: 10.1016/j.jher.2020.10.003
Yu Qian , Weiyun Shao , David Z. Zhu , Khaled A.A. Mohamad , Peter M. Steffler , Stephen Edwini-Bonsu , David Yue , Dave Krywiak

Current designs of sanitary collection systems normally only consider the transport of wastewater without attention on the air movement in the sewer airspaces. Under anaerobic conditions, hydrogen sulfide (H2S) can be generated in the liquid phase in sewer systems. H2S is corrosive to concrete and steel structures and odorous or even toxic to human, which can cause corrosion and sewer odor issues. To develop a feasible sewer corrosion and odor control strategy, it is necessary to understand the mechanisms of air flow in sewer systems for developing practical tools to predict and control the air flow. This paper comprehensively reviewed previous efforts on modeling the air flow in sewer systems and provided recommendations on predicting the air flow for engineering applications. The air flow in a single pipe was firstly reviewed followed by the air flow in sewer structures as well as air flow models in sewer networks. Some other considerations such as temperature driven flow, transient water flow, and wind effect were also reviewed. The knowledge gaps were then identified, and recommendations on the further studies were provided.

目前卫生收集系统的设计通常只考虑废水的输送,而不考虑下水道空气空间中的空气运动。在厌氧条件下,下水道系统中的液相会产生硫化氢(H2S)。H2S对混凝土和钢结构具有腐蚀性,对人体有臭味甚至有毒,可能导致腐蚀和下水道异味问题。为了制定可行的下水道腐蚀和气味控制策略,有必要了解下水道系统中空气流动的机制,以开发实用的工具来预测和控制空气流动。本文全面回顾了前人在污水系统气流建模方面的研究成果,并对工程应用中的气流预测提出了建议。首先回顾了单个管道内的空气流动,其次是下水道结构中的空气流动以及下水道网络中的空气流动模型。对温度驱动流、瞬态水流和风效应等因素进行了评述。然后确定了知识差距,并提出了进一步研究的建议。
{"title":"Modeling air flow in sanitary sewer systems: A review","authors":"Yu Qian ,&nbsp;Weiyun Shao ,&nbsp;David Z. Zhu ,&nbsp;Khaled A.A. Mohamad ,&nbsp;Peter M. Steffler ,&nbsp;Stephen Edwini-Bonsu ,&nbsp;David Yue ,&nbsp;Dave Krywiak","doi":"10.1016/j.jher.2020.10.003","DOIUrl":"10.1016/j.jher.2020.10.003","url":null,"abstract":"<div><p><span>Current designs of sanitary collection systems normally only consider the transport of wastewater without attention on the air movement in the sewer airspaces. Under anaerobic conditions<span>, hydrogen sulfide (H</span></span><sub>2</sub><span>S) can be generated in the liquid phase in sewer systems. H</span><sub>2</sub><span>S is corrosive to concrete and steel structures and odorous or even toxic to human, which can cause corrosion and sewer odor issues. To develop a feasible sewer corrosion and odor control strategy, it is necessary to understand the mechanisms of air flow in sewer systems for developing practical tools to predict and control the air flow. This paper comprehensively reviewed previous efforts on modeling the air flow in sewer systems and provided recommendations on predicting the air flow for engineering applications. The air flow in a single pipe was firstly reviewed followed by the air flow in sewer structures as well as air flow models in sewer networks. Some other considerations such as temperature driven flow, transient water flow, and wind effect were also reviewed. The knowledge gaps were then identified, and recommendations on the further studies were provided.</span></p></div>","PeriodicalId":49303,"journal":{"name":"Journal of Hydro-environment Research","volume":"38 ","pages":"Pages 84-95"},"PeriodicalIF":2.8,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jher.2020.10.003","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42835962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
A mechanistic model for estimating bacteria levels in stormwater ponds 估计雨水池中细菌水平的机制模型
IF 2.8 3区 环境科学与生态学 Q2 ENGINEERING, CIVIL Pub Date : 2021-09-01 DOI: 10.1016/j.jher.2021.06.002
Farzam Allafchi , Caterina Valeo , Jianxun He , Norman Neumann

This paper presents a three-dimensional CFD based hydro-environmental model that simulates fate and transport of bacteria in water bodies. The model numerically solves unsteady incompressible Reynolds-Averaged Navier-Stokes equations on a structured grid. Free-floating and particle-attached bacteria were modelled separately regarding both fate and transport. Therefore, a sediment transport model was integrated into the main model in order to model particle-attached bacteria transport. In addition, Volume of Fluid approach was implemented to capture the water surface movements. Wind effect was also considered in the modelling using shear stress on the water surface. Since stormwater reuse is the source of some public health concerns, a stormwater pond was chosen as the test case for the model. The model was applied to simulate the distribution of bacterial indicator organisms in the Inverness Stormwater Pond in Calgary, Alberta, which is a large T-shaped pond with several inlets and outlets. The bacteria distribution in the pond was simulated for three rain events that occurred in the area. In six locations of the pond the modelled bacteria distribution was compared to collected data using non-dimensional bacteria concentrations. The comparison showed good agreement and indicated that the middle of the pond, close to the surface had the lowest levels of bacteria and thus, was considered the optimal location for withdrawal for reusing pond water. Furthermore, planting a tree barrier on the north bank of the West wing of the pond was shown to mitigate bacteria transport away from the inlets into the pond body and substantially decrease the risk of contamination at the optimal water withdrawal location.

本文提出了一个基于CFD的三维水环境模型,用于模拟水体中细菌的命运和迁移。该模型在结构网格上数值求解非定常不可压缩reynolds - average Navier-Stokes方程。自由漂浮的细菌和颗粒附着的细菌分别模拟了它们的命运和运输。因此,在主模型中加入泥沙输运模型,以模拟颗粒附着细菌的输运。此外,采用流体体积法来捕捉水面运动。在利用水面剪应力进行建模时,还考虑了风的影响。由于雨水再利用是一些公共卫生问题的来源,因此选择了一个雨水池作为该模型的测试案例。将该模型应用于模拟阿尔伯塔省卡尔加里因弗内斯雨水池中细菌指示生物的分布,该池塘是一个有几个入口和出口的大型t形池塘。在该地区发生的三次降雨事件中,模拟了池塘中的细菌分布。在池塘的六个地点,模拟的细菌分布与使用无量纲细菌浓度收集的数据进行了比较。结果表明,池塘中部靠近水面的细菌含量最低,是回用池塘水的最佳取水位置。此外,在池塘西翼的北岸种植树木屏障被证明可以减少细菌从入口转移到池塘体,并大大降低最佳取水位置的污染风险。
{"title":"A mechanistic model for estimating bacteria levels in stormwater ponds","authors":"Farzam Allafchi ,&nbsp;Caterina Valeo ,&nbsp;Jianxun He ,&nbsp;Norman Neumann","doi":"10.1016/j.jher.2021.06.002","DOIUrl":"10.1016/j.jher.2021.06.002","url":null,"abstract":"<div><p>This paper presents a three-dimensional CFD based hydro-environmental model that simulates fate and transport of bacteria in water bodies. The model numerically solves unsteady incompressible Reynolds-Averaged Navier-Stokes equations on a structured grid. Free-floating and particle-attached bacteria were modelled separately regarding both fate and transport. Therefore, a sediment transport model was integrated into the main model in order to model particle-attached bacteria transport. In addition, Volume of Fluid approach was implemented to capture the water surface movements. Wind effect was also considered in the modelling using shear stress on the water surface. Since stormwater reuse is the source of some public health concerns, a stormwater pond was chosen as the test case for the model. The model was applied to simulate the distribution of bacterial indicator organisms in the Inverness Stormwater Pond in Calgary, Alberta, which is a large T-shaped pond with several inlets and outlets. The bacteria distribution in the pond was simulated for three rain events that occurred in the area. In six locations of the pond the modelled bacteria distribution was compared to collected data using non-dimensional bacteria concentrations. The comparison showed good agreement and indicated that the middle of the pond, close to the surface had the lowest levels of bacteria and thus, was considered the optimal location for withdrawal for reusing pond water. Furthermore, planting a tree barrier on the north bank of the West wing of the pond was shown to mitigate bacteria transport away from the inlets into the pond body and substantially decrease the risk of contamination at the optimal water withdrawal location.</p></div>","PeriodicalId":49303,"journal":{"name":"Journal of Hydro-environment Research","volume":"38 ","pages":"Pages 14-24"},"PeriodicalIF":2.8,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41593676","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing the effectiveness of urban drainage system design with an improved ACO-based method 用改进的aco方法提高城市排水系统设计的有效性
IF 2.8 3区 环境科学与生态学 Q2 ENGINEERING, CIVIL Pub Date : 2021-09-01 DOI: 10.1016/j.jher.2020.11.002
Hang Yin , Feifei Zheng , Huan-Feng Duan , Qingzhou Zhang , Weiwei Bi

In the context of climate change and urbanization, urban floods have been one of the major issues around the world, causing significant impacts on the society and environment. To effectively handle these floods, an appropriate design of the urban drainage system (UDS) is highly important as its function can significantly influence the flooding severity and distribution. In recent years, evolutionary algorithms (EAs) have been increasingly used to design UDS due to their great ability in identifying optimal solutions. However, low computational efficiency and low solution practicality (i.e. the final solutions do not satisfy the design criteria) are major challenges for the majority of EA-based methods. To this end, this paper proposes an improved ant colony optimization (ACO, a typical type of EAs) based method to enhance the UDS design effectiveness, where the optimization efficiency is enhanced by initializing the ACO using an approximate design solution identified by the engineering design method, and the solution practicality is improved by explicitly accounting for the design criteria within the optimization using a proposed sampling method. The utility of the proposed method is demonstrated using two real-world UDSs with different system complexities. Results show that the proposed method can identify design solutions with significantly improved efficiency and solution practicality compared to the traditional design approach, with advantages being more prominent for larger UDS design problems. The proposed method can be used by researchers/ practitioners to explore and develop better understanding of the UDS design alternatives under various challenges of climate change and rapid urbanization.

在气候变化和城市化的背景下,城市洪水已成为世界范围内的主要问题之一,对社会和环境造成了重大影响。城市排水系统的功能对洪水的严重程度和分布有重要影响,因此合理设计城市排水系统是有效应对洪水的关键。近年来,进化算法因其识别最优解的能力而被越来越多地应用于UDS的设计中。然而,低计算效率和低解的实用性(即最终解不满足设计标准)是大多数基于ea的方法面临的主要挑战。为此,本文提出了一种基于改进蚁群优化(典型的ea)的方法来提高UDS的设计有效性,其中通过使用工程设计方法识别的近似设计解初始化蚁群优化来提高优化效率,并通过使用所提出的采样方法明确考虑优化中的设计准则来提高解决方案的实用性。使用两个具有不同系统复杂性的实际uds演示了所提出方法的实用性。结果表明,与传统设计方法相比,该方法能够识别出效率和实用性显著提高的设计方案,且在较大的UDS设计问题中优势更为突出。研究人员/从业人员可以使用该方法来探索和更好地理解在气候变化和快速城市化的各种挑战下的UDS设计方案。
{"title":"Enhancing the effectiveness of urban drainage system design with an improved ACO-based method","authors":"Hang Yin ,&nbsp;Feifei Zheng ,&nbsp;Huan-Feng Duan ,&nbsp;Qingzhou Zhang ,&nbsp;Weiwei Bi","doi":"10.1016/j.jher.2020.11.002","DOIUrl":"10.1016/j.jher.2020.11.002","url":null,"abstract":"<div><p>In the context of climate change and urbanization, urban floods have been one of the major issues around the world, causing significant impacts on the society and environment. To effectively handle these floods, an appropriate design of the urban drainage system (UDS) is highly important as its function can significantly influence the flooding severity and distribution. In recent years, evolutionary algorithms (EAs) have been increasingly used to design UDS due to their great ability in identifying optimal solutions. However, low computational efficiency and low solution practicality (i.e. the final solutions do not satisfy the design criteria) are major challenges for the majority of EA-based methods. To this end, this paper proposes an improved ant colony optimization (ACO, a typical type of EAs) based method to enhance the UDS design effectiveness, where the optimization efficiency is enhanced by initializing the ACO using an approximate design solution identified by the engineering design method, and the solution practicality is improved by explicitly accounting for the design criteria within the optimization using a proposed sampling method. The utility of the proposed method is demonstrated using two real-world UDSs with different system complexities. Results show that the proposed method can identify design solutions with significantly improved efficiency and solution practicality compared to the traditional design approach, with advantages being more prominent for larger UDS design problems. The proposed method can be used by researchers/ practitioners to explore and develop better understanding of the UDS design alternatives under various challenges of climate change and rapid urbanization.</p></div>","PeriodicalId":49303,"journal":{"name":"Journal of Hydro-environment Research","volume":"38 ","pages":"Pages 96-105"},"PeriodicalIF":2.8,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jher.2020.11.002","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48918878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
Investigation on the lateral anti-seepage capacity of a vertical soil sand layer (VSSL) in a sunken lawn 下沉式草坪垂直土砂层横向防渗能力研究
IF 2.8 3区 环境科学与生态学 Q2 ENGINEERING, CIVIL Pub Date : 2021-09-01 DOI: 10.1016/j.jher.2020.12.001
Zhiqiang Zhang , Zijian Wang , Kunyu Chen , Sheping Wang , Yanping Ding , Yuxiang Huang , Jinsuo Lu

The use of a sunken lawn is an emerging Low Impact Development (LID) technique to effectively control storm runoffs. However, the random infiltration of rainwater that occurs due to the construction of a sunken lawn in an area of collapsible loess seriously threatens the safety of buildings around it. Setting up a vertical soil sand layer (VSSL) structure next to a sunken lawn as an anti-permeate method has been proposed in this study. To analyze the lateral anti-seepage effects of a VSSL, a sunken lawn model around a building was established based on soil physical parameters, and water seepage in the sunken lawn was investigated using a infiltration experiment and HYDRUS-2D software. The results show that the anti-seepage effects of a VSSL can significantly reduce the average wetting front migration length and water content at the observation points behind the sand layer. The Nash-Sutcliff Efficiency (NSE) index was used to evaluate the accuracy and reliability of the HYDRUS-2D model. The values of the NSE index obtained were greater than 0.82 (varied between 0.82 and 0.98) which confirmed the applicability of the HYDRUS-2D software in accurately describing the hydraulic behavior of the lateral anti-seepage effects of the VSSL in a sunken lawn. Simulation infiltration tests showed that, on the side of the VSSL, the wetting front migration length was reduced by 55.5% on average, and the water content of the observation points behind the sand layer was reduced by 40.5%, increasing the stability of the loess around the building infrastructure. The results are of value in practical applications, such as for devising engineering or non-engineering measures to avoid loess collapsibility around sunken lawns.

使用下沉草坪是一种新兴的低影响开发(LID)技术,可以有效地控制暴雨径流。然而,在湿陷性黄土地区修建下陷式草坪会导致雨水随意入渗,严重威胁着周边建筑的安全。本研究提出在下陷草坪旁设置垂直土砂层结构作为防渗方法。为分析VSSL的横向防渗效果,基于土壤物理参数,建立了建筑物周围的下陷草坪模型,采用入渗试验和HYDRUS-2D软件对下陷草坪的渗水情况进行了研究。结果表明:VSSL的防渗作用可显著降低湿锋平均迁移长度和砂层后各观测点的含水率;采用Nash-Sutcliff效率(NSE)指数评价HYDRUS-2D模型的准确性和可靠性。得到的NSE指数值均大于0.82(变化范围在0.82 ~ 0.98之间),证实了HYDRUS-2D软件能够准确描述凹陷草坪中VSSL横向防渗效果的水力特性。模拟入渗试验结果表明,在VSSL一侧,湿锋迁移长度平均缩短55.5%,沙层后观测点含水量平均减少40.5%,增加了建筑基础设施周围黄土的稳定性。研究结果对设计工程或非工程措施防止陷地草坪周围黄土湿陷具有一定的实际应用价值。
{"title":"Investigation on the lateral anti-seepage capacity of a vertical soil sand layer (VSSL) in a sunken lawn","authors":"Zhiqiang Zhang ,&nbsp;Zijian Wang ,&nbsp;Kunyu Chen ,&nbsp;Sheping Wang ,&nbsp;Yanping Ding ,&nbsp;Yuxiang Huang ,&nbsp;Jinsuo Lu","doi":"10.1016/j.jher.2020.12.001","DOIUrl":"10.1016/j.jher.2020.12.001","url":null,"abstract":"<div><p>The use of a sunken lawn is an emerging Low Impact Development (LID) technique to effectively control storm runoffs. However, the random infiltration of rainwater that occurs due to the construction of a sunken lawn in an area of collapsible loess seriously threatens the safety of buildings around it. Setting up a vertical soil sand layer (VSSL) structure next to a sunken lawn as an anti-permeate method has been proposed in this study. To analyze the lateral anti-seepage effects of a VSSL, a sunken lawn model around a building was established based on soil physical parameters, and water seepage in the sunken lawn was investigated using a infiltration experiment and HYDRUS-2D software. The results show that the anti-seepage effects of a VSSL can significantly reduce the average wetting front migration length and water content at the observation points behind the sand layer. The Nash-Sutcliff Efficiency (NSE) index was used to evaluate the accuracy and reliability of the HYDRUS-2D model. The values of the NSE index obtained were greater than 0.82 (varied between 0.82 and 0.98) which confirmed the applicability of the HYDRUS-2D software in accurately describing the hydraulic behavior of the lateral anti-seepage effects of the VSSL in a sunken lawn. Simulation infiltration tests showed that, on the side of the VSSL, the wetting front migration length was reduced by 55.5% on average, and the water content of the observation points behind the sand layer was reduced by 40.5%, increasing the stability of the loess around the building infrastructure. The results are of value in practical applications, such as for devising engineering or non-engineering measures to avoid loess collapsibility around sunken lawns.</p></div>","PeriodicalId":49303,"journal":{"name":"Journal of Hydro-environment Research","volume":"38 ","pages":"Pages 44-52"},"PeriodicalIF":2.8,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jher.2020.12.001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42577138","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Performance of lot-level low impact development technologies under historical and climate change scenarios 地块级低影响开发技术在历史和气候变化情景下的表现
IF 2.8 3区 环境科学与生态学 Q2 ENGINEERING, CIVIL Pub Date : 2021-09-01 DOI: 10.1016/j.jher.2021.07.004
Albert Z. Jiang, Edward A. McBean

Low impact development (LID) systems have potential to make urban cities more sustainable and resilient, particularly under challenging climate conditions. To quantify performance capabilities, modeling results for an array of combinations of LIDs are described using PCSWMM at lot-level to examine performance of individual LIDs on volume and peak flow reductions. Among the four LIDs studied: rain barrel (RB), vegetative swale (VS), bioretention cell (BC), and permeable pavement (PP), PP at lot-level demonstrated the best capability for reducing surface runoff volumes and peak runoff rates under historical weather conditions, while BC showed similar capability for reduction of runoff volumes but minimal peak flow reduction. With PP as the controlling method at lot-level, the maximum percentage reduction of runoff volume for a 2-year storm is 58% whereas for a 100-year storm, the runoff volume reduction is 20%. These results mean the extent of flooding that may arise from the 100-year storm is reduced, but not eliminated. Effectively, the 100-year storm volumes with LID are devolved to have flooding equivalent to a 25-year storm. Under climate change scenarios, performance for all LIDs declined at various levels, where BC was the most resilient LID for a climate change scenario, such that projected 2-year or 5-year storms with climate change will have its impact devolved with LID in place, to result in similar volumes and peaks without LID under historical conditions. Furthermore, even with an assembly of lot-level LIDs distributed throughout the community, there is not attenuation to substantial degrees of flooding for major events, but there can be effective control for water quantity for small (2- to 5-years in particular) storm events.

低影响发展(LID)系统有潜力使城市更具可持续性和韧性,特别是在具有挑战性的气候条件下。为了量化性能,使用PCSWMM在批量水平上描述了一系列盖子组合的建模结果,以检查单个盖子在体积和峰值流量减少方面的性能。在雨桶(RB)、植被洼地(VS)、生物滞留池(BC)和透水路面(PP)这4种植被覆盖物中,地块水平的PP在历史天气条件下减少地表径流量和峰值径流量的能力最好,而BC在减少径流量方面表现出类似的能力,但减少峰值流量的能力最小。以PP作为地块控制方式,2年暴雨径流量最大减少百分比为58%,100年暴雨径流量减少百分比为20%。这些结果意味着百年一遇的风暴可能导致的洪水程度有所减少,但并不能完全消除。有效地,100年的风暴量与LID被下放到洪水相当于25年的风暴。在气候变化情景下,所有LID的表现在不同程度上都有所下降,其中BC是气候变化情景下最具弹性的LID,因此,预测的2年或5年的气候变化风暴的影响将随着LID的存在而减弱,从而导致在历史条件下没有LID的相似数量和峰值。此外,即使在整个社区中分布了大量的井盖,也不会在重大事件中减少大量的洪水,但可以有效地控制小型(特别是2至5年)风暴事件的水量。
{"title":"Performance of lot-level low impact development technologies under historical and climate change scenarios","authors":"Albert Z. Jiang,&nbsp;Edward A. McBean","doi":"10.1016/j.jher.2021.07.004","DOIUrl":"10.1016/j.jher.2021.07.004","url":null,"abstract":"<div><p>Low impact development (LID) systems have potential to make urban cities more sustainable and resilient, particularly under challenging climate conditions. To quantify performance capabilities, modeling results for an array of combinations of LIDs are described using PCSWMM at lot-level to examine performance of individual LIDs on volume and peak flow reductions. Among the four LIDs studied: rain barrel (RB), vegetative swale (VS), bioretention cell (BC), and permeable pavement (PP), PP at lot-level demonstrated the best capability for reducing surface runoff volumes and peak runoff rates under historical weather conditions, while BC showed similar capability for reduction of runoff volumes but minimal peak flow reduction. With PP as the controlling method at lot-level, the maximum percentage reduction of runoff volume for a 2-year storm is 58% whereas for a 100-year storm, the runoff volume reduction is 20%. These results mean the extent of flooding that may arise from the 100-year storm is reduced, but not eliminated. Effectively, the 100-year storm volumes with LID are devolved to have flooding equivalent to a 25-year storm. Under climate change scenarios, performance for all LIDs declined at various levels, where BC was the most resilient LID for a climate change scenario, such that projected 2-year or 5-year storms with climate change will have its impact devolved with LID in place, to result in similar volumes and peaks without LID under historical conditions. Furthermore, even with an assembly of lot-level LIDs distributed throughout the community, there is not attenuation to substantial degrees of flooding for major events, but there can be effective control for water quantity for small (2- to 5-years in particular) storm events.</p></div>","PeriodicalId":49303,"journal":{"name":"Journal of Hydro-environment Research","volume":"38 ","pages":"Pages 4-13"},"PeriodicalIF":2.8,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47108817","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Integrated urban stormwater management: Evolution and multidisciplinary perspective 城市雨水综合管理:演变与多学科视角
IF 2.8 3区 环境科学与生态学 Q2 ENGINEERING, CIVIL Pub Date : 2021-09-01 DOI: 10.1016/j.jher.2020.11.003
Jean-Luc Bertrand-Krajewski

This paper proposes an introductory review of the historical evolution of urban stormwater management, as well as of current trends, challenges, and changes of paradigm. It reminds us first that most of the existing urban stormwater infrastructures in developed cities are based on the modern urban sewer systems developed in the second half of the 19th century in Europe. They have been built and for decades managed almost solely by urban sanitation and water specialists, relatively independently of other technical services and, more generally, of other stakeholders in cities. They contributed significantly to public health and fast conveyance of stormwater outside the cities. However, at the turn of the 1970s, it became evident with increasing urbanisation that they also had drawbacks: artificialisation of soils, reduction of aquifer recharge, pollution of surface water and ecological impacts, etc. The paper indicates how new concepts and paradigms thereafter emerged to manage stormwater by means of more sustainable and integrated approaches, aiming to solve the problems engendered by the previous approaches. This integration embraces more and more disciplines and issues, far beyond the traditional field of urban water engineers and specialists. The paper attempts to explain the need for this evolution, making urban stormwater management more much complex, dealing and interacting with ecology, biodiversity, bioinspiration, architecture, landscape and water values, citizens’ well-being, history, culture, and socio-economic aspects.

本文介绍了城市雨水管理的历史演变,以及当前的趋势、挑战和范式的变化。它首先提醒我们,发达城市现有的大多数城市雨水基础设施都是基于19世纪下半叶欧洲发展起来的现代城市下水道系统。几十年来,它们几乎完全由城市卫生和供水专家建造和管理,相对独立于其他技术服务,更普遍地说,独立于城市中的其他利益攸关方。它们对公共卫生和将雨水快速输送到城外作出了重大贡献。然而,在20世纪70年代初,随着城市化进程的加快,它们也有明显的缺点:土壤的人工化、含水层补给的减少、地表水的污染和生态影响等。本文指出了新的概念和范例是如何通过更可持续和综合的方法来管理雨水的,旨在解决以前的方法所产生的问题。这种整合包含了越来越多的学科和问题,远远超出了城市水工程师和专家的传统领域。本文试图解释这种演变的必要性,使城市雨水管理变得更加复杂,与生态、生物多样性、生物灵感、建筑、景观和水价值、公民福祉、历史、文化和社会经济方面进行处理和互动。
{"title":"Integrated urban stormwater management: Evolution and multidisciplinary perspective","authors":"Jean-Luc Bertrand-Krajewski","doi":"10.1016/j.jher.2020.11.003","DOIUrl":"10.1016/j.jher.2020.11.003","url":null,"abstract":"<div><p><span>This paper proposes an introductory review of the historical evolution of urban stormwater management<span>, as well as of current trends, challenges, and changes of paradigm. It reminds us first that most of the existing urban stormwater infrastructures in developed cities are based on the modern urban sewer systems developed in the second half of the 19</span></span><sup>th</sup><span> century in Europe. They have been built and for decades managed almost solely by urban sanitation and water specialists, relatively independently of other technical services and, more generally, of other stakeholders in cities. They contributed significantly to public health and fast conveyance of stormwater outside the cities. However, at the turn of the 1970s, it became evident with increasing urbanisation that they also had drawbacks: artificialisation of soils, reduction of aquifer recharge, pollution of surface water and ecological impacts, etc. The paper indicates how new concepts and paradigms thereafter emerged to manage stormwater by means of more sustainable and integrated approaches, aiming to solve the problems engendered by the previous approaches. This integration embraces more and more disciplines and issues, far beyond the traditional field of urban water engineers and specialists. The paper attempts to explain the need for this evolution, making urban stormwater management more much complex, dealing and interacting with ecology, biodiversity, bioinspiration, architecture, landscape and water values, citizens’ well-being, history, culture, and socio-economic aspects.</span></p></div>","PeriodicalId":49303,"journal":{"name":"Journal of Hydro-environment Research","volume":"38 ","pages":"Pages 72-83"},"PeriodicalIF":2.8,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45924896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 11
Sustainable urban drainage: Current interests and future needs 可持续城市排水:当前利益与未来需求
IF 2.8 3区 环境科学与生态学 Q2 ENGINEERING, CIVIL Pub Date : 2021-09-01 DOI: 10.1016/j.jher.2021.09.002
David Z. Zhu, Tong Yu, Yanchen Liu, Yongchao Zhou
{"title":"Sustainable urban drainage: Current interests and future needs","authors":"David Z. Zhu,&nbsp;Tong Yu,&nbsp;Yanchen Liu,&nbsp;Yongchao Zhou","doi":"10.1016/j.jher.2021.09.002","DOIUrl":"10.1016/j.jher.2021.09.002","url":null,"abstract":"","PeriodicalId":49303,"journal":{"name":"Journal of Hydro-environment Research","volume":"38 ","pages":"Pages 1-3"},"PeriodicalIF":2.8,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48781924","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Effects of climate and land use changes on stream flow of Chitral river basin of northern highland Hindu-Kush region of Pakistan 气候和土地利用变化对巴基斯坦兴都库什北部高地吉德拉尔河流域水流的影响
IF 2.8 3区 环境科学与生态学 Q2 ENGINEERING, CIVIL Pub Date : 2021-09-01 DOI: 10.1016/j.jher.2021.08.001
Shakeel Ahmad , Haifeng Jia , Zhengxia Chen , Qian Li , Dingkun Yin , Muhammad Israr , Waseem Hayat , Hazrat Bilal , Rasheed Ahmed , Anam Ashraf

Adverse impacts of climate change on the ecosystem have been a significant concern in the last decades. However, the studies related to the impacts of climate change on water resources, especially in northern Pakistan are of great importance as this region is the main supplier of freshwater to the downstream areas. So, the present study was carried out in Chitral River Basin (CRB) to investigate the long term climatic and topographic changes. Spatiotemporal datasets from MODIS Land Cover Type product (MCD12Q1) from 2001 to 2018, ground-based observational climatic and hydrological data were used. Moreover, the Mann-Kendall trend test, linear regression analysis, correlation, and Sen’s slope values for the mean annual and seasonal flows were assessed. The acquired results show that land use changes are the key non-natural factors in transforming the ecological and hydrological processes of CRB. The mixed and evergreen forest, shrubland, savannas, and barren land respectively decreased from 0.07 to 0.03%, 0.07 to 0.05%, 3.64 to 3.25%, and 70.10 to 67.17%, from 2001 to 2018. In addition, a considerable increment in snow cover from 8.79% to 10.71%, and slight increment in grasslands, wetlands, and croplands were also found between the period of observation. In addition, total annual precipitation and mean annual stream flow showed slight upward trends. Annual increment in total rainfall and snow covered area could be the possible reasons for the observed increased river flow.

在过去的几十年里,气候变化对生态系统的不利影响一直是一个值得关注的问题。然而,有关气候变化对水资源影响的研究,特别是在巴基斯坦北部,是非常重要的,因为该地区是下游地区的主要淡水供应者。因此,本研究以吉德拉尔河流域为研究对象,探讨其长期的气候和地形变化。利用2001 - 2018年MODIS土地覆盖类型产品(MCD12Q1)的时空数据集,包括地面观测的气候和水文数据。利用Mann-Kendall趋势检验、线性回归分析、相关分析和Sen’s slope值对年平均流量和季节平均流量进行了评价。研究结果表明,土地利用变化是影响流域生态水文过程的关键非自然因素。2001 - 2018年,混交林、常绿林、灌丛、稀树草原、荒地分别从0.07%减少到0.03%、0.07%减少到0.05%、3.64%减少到3.25%、70.10减少到67.17%。此外,积雪覆盖面积从8.79%增加到10.71%,草地、湿地和农田的积雪覆盖面积也略有增加。年总降水量和年平均水流量均呈轻微上升趋势。年总降雨量和积雪面积的增加可能是观测到的河流流量增加的原因。
{"title":"Effects of climate and land use changes on stream flow of Chitral river basin of northern highland Hindu-Kush region of Pakistan","authors":"Shakeel Ahmad ,&nbsp;Haifeng Jia ,&nbsp;Zhengxia Chen ,&nbsp;Qian Li ,&nbsp;Dingkun Yin ,&nbsp;Muhammad Israr ,&nbsp;Waseem Hayat ,&nbsp;Hazrat Bilal ,&nbsp;Rasheed Ahmed ,&nbsp;Anam Ashraf","doi":"10.1016/j.jher.2021.08.001","DOIUrl":"10.1016/j.jher.2021.08.001","url":null,"abstract":"<div><p>Adverse impacts of climate change on the ecosystem have been a significant concern in the last decades. However, the studies related to the impacts of climate change on water resources, especially in northern Pakistan are of great importance as this region is the main supplier of freshwater to the downstream areas. So, the present study was carried out in Chitral River Basin (CRB) to investigate the long term climatic and topographic changes. Spatiotemporal datasets from MODIS Land Cover Type product (MCD12Q1) from 2001 to 2018, ground-based observational climatic and hydrological data were used. Moreover, the Mann-Kendall trend test, linear regression analysis, correlation, and Sen’s slope values for the mean annual and seasonal flows were assessed. The acquired results show that land use changes are the key non-natural factors in transforming the ecological and hydrological processes of CRB. The mixed and evergreen forest, shrubland, savannas, and barren land respectively decreased from 0.07 to 0.03%, 0.07 to 0.05%, 3.64 to 3.25%, and 70.10 to 67.17%, from 2001 to 2018. In addition, a considerable increment in snow cover from 8.79% to 10.71%, and slight increment in grasslands, wetlands, and croplands were also found between the period of observation. In addition, total annual precipitation and mean annual stream flow showed slight upward trends. Annual increment in total rainfall and snow covered area could be the possible reasons for the observed increased river flow.</p></div>","PeriodicalId":49303,"journal":{"name":"Journal of Hydro-environment Research","volume":"38 ","pages":"Pages 53-62"},"PeriodicalIF":2.8,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48535456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
期刊
Journal of Hydro-environment Research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1