首页 > 最新文献

Journal of Hydro-environment Research最新文献

英文 中文
Impacts on fish transported in tube fishways 对经管状鱼道运输的鱼类的影响
IF 2.8 3区 环境科学与生态学 Q2 Engineering Pub Date : 2022-05-01 DOI: 10.1016/j.jher.2022.03.001
William L. Peirson , John H. Harris , Iain M. Suthers , Maryam Farzadkhoo , Richard T Kingsford , Stefan Felder

Experimental data and numerical predictions of steady and unsteady flow in a 4 m high, 86 mm internal diameter tube fishway were compared quantitatively, and reflected expected uncertainties characteristic of the experiments and flow hydraulics. We then measured the response of a neutrally-buoyant fluid sensor and the behaviour of live fish transported vertically within the tube fishway. Ten repeat tests using the sensor and tests with seventy individual live fish demonstrated transport with 100% reliability. No ill effects were observed over a post-test monitoring period for two species of Australian native fish (Australian bass (Percalates novemaculeata) and Silver perch (Bidyanus bidyanus)) or as a function of size of the Silver perch that can be related to their passage through the fishway. There may have been temporary bruising of a few of the largest Silver perch tested. The largest Silver perch averaged 137 mm in length. The spatial distributions of the inert sensor and fish relative to the moving front during the transport process were quantified. Consequently, the volumes of water required during each operational cycle to ensure reliable delivery of fish over vertical distances less than 4 m were determined. The sensor measurements indicated negligible interactions with straight pipe walls but exposure to significant accelerations at sharp bends. Further experiments with live fish are required to quantify the possible adverse effects of alternative pipe transition designs on animals transported through them. Safe transport of fish up to a fish length/tube fishway delivery diameter ratio of 1.6 is demonstrated.

对4 m高、86 mm内径的管状鱼道定常和非定常流动的实验数据与数值预测进行了定量比较,反映了实验和流动水力学的预期不确定性特征。然后,我们测量了中性浮力流体传感器的响应以及在管状鱼道内垂直运输的活鱼的行为。使用传感器进行了10次重复测试,并对70条活鱼进行了测试,结果表明运输的可靠性为100%。在测试后的监测期间,没有观察到两种澳大利亚本地鱼类(澳大利亚鲈鱼(Percalates novemaculeata)和银鲈(Bidyanus Bidyanus))的不良影响,也没有观察到银鲈大小的函数,这可能与它们通过鱼道有关。几条被测试的最大的银鲈可能有暂时的瘀伤。最大的银鲈平均长度为137毫米。在此过程中,对传感器和鱼相对于移动锋的空间分布进行了量化。因此,确定了在每个操作周期内确保在小于4米的垂直距离上可靠交付鱼类所需的水量。传感器测量表明,与直管壁的相互作用可以忽略不计,但在急弯处暴露在显著的加速度下。需要对活鱼进行进一步的实验,以量化替代管道过渡设计对通过它们的动物可能产生的不利影响。鱼的安全运输达到鱼的长度/管鱼道输送直径比为1.6。
{"title":"Impacts on fish transported in tube fishways","authors":"William L. Peirson ,&nbsp;John H. Harris ,&nbsp;Iain M. Suthers ,&nbsp;Maryam Farzadkhoo ,&nbsp;Richard T Kingsford ,&nbsp;Stefan Felder","doi":"10.1016/j.jher.2022.03.001","DOIUrl":"10.1016/j.jher.2022.03.001","url":null,"abstract":"<div><p>Experimental data and numerical predictions of steady and unsteady flow in a 4 m high, 86 mm internal diameter tube fishway were compared quantitatively, and reflected expected uncertainties characteristic of the experiments and flow hydraulics. We then measured the response of a neutrally-buoyant fluid sensor and the behaviour of live fish transported vertically within the tube fishway. Ten repeat tests using the sensor and tests with seventy individual live fish demonstrated transport with 100% reliability. No ill effects were observed over a post-test monitoring period for two species of Australian native fish (Australian bass (<em>Percalates novemaculeata</em>) and Silver perch (<span><em>Bidyanus bidyanus</em></span>)) or as a function of size of the Silver perch that can be related to their passage through the fishway. There may have been temporary bruising of a few of the largest Silver perch tested. The largest Silver perch averaged 137 mm in length. The spatial distributions of the inert sensor and fish relative to the moving front during the transport process were quantified. Consequently, the volumes of water required during each operational cycle to ensure reliable delivery of fish over vertical distances less than 4 m were determined. The sensor measurements indicated negligible interactions with straight pipe walls but exposure to significant accelerations at sharp bends. Further experiments with live fish are required to quantify the possible adverse effects of alternative pipe transition designs on animals transported through them. Safe transport of fish up to a fish length/tube fishway delivery diameter ratio of 1.6 is demonstrated.</p></div>","PeriodicalId":49303,"journal":{"name":"Journal of Hydro-environment Research","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42960202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Equilibrium scour hole size at setback abutments with varied aspect ratios in floodplains 洪泛平原中具有不同纵横比的后退桥台处的平衡冲刷孔尺寸
IF 2.8 3区 环境科学与生态学 Q2 Engineering Pub Date : 2022-05-01 DOI: 10.1016/j.jher.2022.04.001
Ahmed A. Abdelaziz , Siow Y. Lim

The key features of the equilibrium scour depth dse, width Wse, length Lse and the volume Vse with large abutment aspect ratios (i.e., abutment width Lc divided by its length L) in floodplain are different compared to narrow abutments. Seven models with Lc/L ranging from 0.125 (narrow abutment) to 4 (very wide abutment) were tested. The results show that the combined effect in terms of the abutment aspect ratio Lc/L is a key parameter with wide abutments. Furthermore, the average equilibrium scour width observed was much larger than previous studies and extends up to 3.5 times the floodplain water depth. This implies the current guideline by FHWA (Federal Highway Administration), (2009) to provide a riprap countermeasure apron width for 2 times the floodplain water depth may be insufficient. The much wider scour formation is caused by the migration of the maximum scour location around wide abutments. The results show generally the scour hole dimensions for setback abutments in compound channel are less than that abutments in rectangular channel under the same flow conditions. To this end, empirical equations, which agree well with the data from the present and previous studies are proposed to predict these characteristics at the equilibrium state.

大坝肩宽比(即坝肩宽Lc除以坝肩长L)下洪泛平原平衡冲刷深度、宽度、长度和体积的关键特征与窄坝肩不同。七个模型的Lc/L从0.125(窄基台)到4(极宽基台)进行了测试。结果表明,桥台长宽比Lc/L的综合效应是桥台宽的关键参数。此外,观测到的平均平衡冲刷宽度比以往的研究大得多,延伸到漫滩水深的3.5倍。这意味着FHWA(联邦公路管理局)(2009年)目前的指导方针提供的抛石对策围裙宽度为洪泛区水深的两倍可能是不够的。较宽的冲刷地层是由最大冲刷位置在较宽的坝肩附近的偏移造成的。结果表明,在相同的水流条件下,复合河道中后退桥台的冲刷孔尺寸一般小于矩形河道中的桥台;为此,提出了与本研究和以往研究数据吻合较好的经验方程来预测平衡状态下的这些特征。
{"title":"Equilibrium scour hole size at setback abutments with varied aspect ratios in floodplains","authors":"Ahmed A. Abdelaziz ,&nbsp;Siow Y. Lim","doi":"10.1016/j.jher.2022.04.001","DOIUrl":"10.1016/j.jher.2022.04.001","url":null,"abstract":"<div><p>The key features of the equilibrium scour depth <span><math><msub><mi>d</mi><mrow><mi>se</mi></mrow></msub></math></span>, width <span><math><msub><mi>W</mi><mrow><mi>se</mi></mrow></msub></math></span>, length <span><math><msub><mi>L</mi><mrow><mi>se</mi></mrow></msub></math></span> and the volume <span><math><msub><mi>V</mi><mrow><mi>se</mi></mrow></msub></math></span> with large abutment aspect ratios (i.e., abutment width <span><math><msub><mi>L</mi><mi>c</mi></msub></math></span> divided by its length <span><math><mi>L</mi></math></span>) in floodplain are different compared to narrow abutments. Seven models with <span><math><mrow><msub><mi>L</mi><mi>c</mi></msub><mo>/</mo><mi>L</mi></mrow></math></span> ranging from 0.125 (narrow abutment) to 4 (very wide abutment) were tested. The results show that the combined effect in terms of the abutment aspect ratio <span><math><mrow><msub><mi>L</mi><mi>c</mi></msub><mo>/</mo><mi>L</mi></mrow></math></span> is a key parameter with wide abutments. Furthermore, the average equilibrium scour width observed was much larger than previous studies and extends up to 3.5 times the floodplain water depth. This implies the current guideline by <span>FHWA (Federal Highway Administration), (2009)</span> to provide a riprap countermeasure apron width for 2 times the floodplain water depth may be insufficient. The much wider scour formation is caused by the migration of the maximum scour location around wide abutments. The results show generally the scour hole dimensions for setback abutments in compound channel are less than that abutments in rectangular channel under the same flow conditions. To this end, empirical equations, which agree well with the data from the present and previous studies are proposed to predict these characteristics at the equilibrium state.</p></div>","PeriodicalId":49303,"journal":{"name":"Journal of Hydro-environment Research","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45083639","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Unsteady shallow meandering flows in rectangular reservoirs: A modal analysis of URANS modelling 矩形水库中的非定常浅曲流——URANS模型的模态分析
IF 2.8 3区 环境科学与生态学 Q2 Engineering Pub Date : 2022-05-01 DOI: 10.1016/j.jher.2022.03.002
Daniel Valero , Daniel B. Bung , Sebastien Erpicum , Yann Peltier , Benjamin Dewals

Shallow flows are common in natural and human-made environments. Even for simple rectangular shallow reservoirs, recent laboratory experiments show that the developing flow fields are particularly complex, involving large-scale turbulent structures. For specific combinations of reservoir size and hydraulic conditions, a meandering jet can be observed. While some aspects of this pseudo-2D flow pattern can be reproduced using a 2D numerical model, new 3D simulations, based on the unsteady Reynolds-Averaged Navier-Stokes equations, show consistent advantages as presented herein. A Proper Orthogonal Decomposition was used to characterize the four most energetic modes of the meandering jet at the free surface level, allowing comparison against experimental data and 2D (depth-averaged) numerical results. Three different isotropic eddy viscosity models (RNG k-ε, k-ε, k-ω) were tested. The 3D models accurately predicted the frequency of the modes, whereas the amplitudes of the modes and associated energy were damped for the friction-dominant cases and augmented for non-frictional ones. The performance of the three turbulence models remained essentially similar, with slightly better predictions by RNG k-ε model in the case with the highest Reynolds number. Finally, the Q-criterion was used to identify vortices and study their dynamics, assisting on the identification of the differences between: i) the three-dimensional phenomenon (here reproduced), ii) its two-dimensional footprint in the free surface (experimental observations) and iii) the depth-averaged case (represented by 2D models).

浅水流在自然和人为环境中都很常见。即使是简单的矩形浅储层,最近的实验室实验表明,发展中的流场也特别复杂,涉及大规模湍流结构。对于油藏规模和水力条件的特定组合,可以观察到曲流射流。虽然这种伪二维流型的某些方面可以使用二维数值模型再现,但基于非定常reynolds - average Navier-Stokes方程的新的三维模拟显示出本文所述的一致优势。采用正交分解法对自由表面上的四种最高能量模式进行了表征,并与实验数据和二维(深度平均)数值结果进行了比较。测试了三种不同的各向同性涡旋粘度模型(RNG k-ε、k-ε、k-ω)。三维模型准确地预测了模态的频率,而模态的振幅和相关能量在摩擦占主导地位的情况下被阻尼,而在非摩擦情况下被增强。三种湍流模型的性能基本相似,在雷诺数最高的情况下,RNG k-ε模型的预测效果略好。最后,使用q准则识别漩涡并研究其动力学,帮助识别以下三者之间的差异:i)三维现象(此处再现),ii)其在自由表面的二维足迹(实验观测)和iii)深度平均情况(由2D模型表示)。
{"title":"Unsteady shallow meandering flows in rectangular reservoirs: A modal analysis of URANS modelling","authors":"Daniel Valero ,&nbsp;Daniel B. Bung ,&nbsp;Sebastien Erpicum ,&nbsp;Yann Peltier ,&nbsp;Benjamin Dewals","doi":"10.1016/j.jher.2022.03.002","DOIUrl":"10.1016/j.jher.2022.03.002","url":null,"abstract":"<div><p>Shallow flows are common in natural and human-made environments. Even for simple rectangular shallow reservoirs, recent laboratory experiments show that the developing flow fields are particularly complex, involving large-scale turbulent structures. For specific combinations of reservoir size and hydraulic conditions, a meandering jet can be observed. While some aspects of this pseudo-2D flow pattern can be reproduced using a 2D numerical model, new 3D simulations, based on the unsteady Reynolds-Averaged Navier-Stokes equations, show consistent advantages as presented herein. A Proper Orthogonal Decomposition was used to characterize the four most energetic modes of the meandering jet at the free surface level, allowing comparison against experimental data and 2D (depth-averaged) numerical results. Three different isotropic eddy viscosity models (RNG <em>k-ε</em>, <em>k-ε</em>, <em>k-ω</em>) were tested. The 3D models accurately predicted the frequency of the modes, whereas the amplitudes of the modes and associated energy were damped for the friction-dominant cases and augmented for non-frictional ones. The performance of the three turbulence models remained essentially similar, with slightly better predictions by RNG <em>k-ε</em> model in the case with the highest Reynolds number. Finally, the Q-criterion was used to identify vortices and study their dynamics, assisting on the identification of the differences between: i) the three-dimensional phenomenon (here reproduced), ii) its two-dimensional footprint in the free surface (experimental observations) and iii) the depth-averaged case (represented by 2D models).</p></div>","PeriodicalId":49303,"journal":{"name":"Journal of Hydro-environment Research","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43839123","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Estimation of actual evapotranspiration and water stress in the Lijiang River Basin, China using a modified Operational Simplified Surface Energy Balance (SSEBop) model 基于改进的SSEBop模型估算丽江流域实际蒸散发和水分胁迫
IF 2.8 3区 环境科学与生态学 Q2 Engineering Pub Date : 2022-03-01 DOI: 10.1016/j.jher.2022.01.003
Yuefeng Yao , Azim U. Mallik

Due to the simultaneous impacts of economic development and climate change, the Lijiang River Basin in China—the largest karst tourist attraction in the world—has experienced dramatic water shortages during the dry season. As actual evapotranspiration (ETa) plays a critical role in the water cycle, accurate estimation of ETa and water stress are important for sustainable water resources management. In this paper, we mapped the distribution of daily ETa using a modified Operational Simplified Surface Energy Balance (SSEBop) model in combination with Landsat 8 images and assessed water stress using the Crop Water Stress Index (CWSI) during the dry season in the Lijiang River Basin. In general, the daily ETa simulated by the SSEBop model with aerodynamic resistance value of 110 s m−1 was higher than that of satellite-based actual evapotranspiration products (i.e., MOD16A2 and Penman-Monteith-Leuning (PML)_V2 actual evapotranspiration products in this study). Aerodynamic resistance plays a critical role in the estimation of energy fluxes in the SSEBop model and should be readjusted and calibrated with available datasets to improve the model’s performance in estimating actual evapotranspiration for particular regions. Readjusted values between 20 and 35 s m−1 of aerodynamic resistance produced reasonable agreement with satellite-based actual evapotranspiration products in the Lijiang River Basin. In addition, insufficient ground-level measurements of actual evapotranspiration might have increased the uncertainty of the SSEBop model’s performance. The achievement of higher accuracy in the estimation of actual evapotranspiration and water availability will require establishing local flux towers, particularly in forested areas, to collect evapotranspiration, temperature and other in situ data. For different land-cover classes, forest areas exhibited the highest actual evapotranspiration, whereas farmland and built-up areas had the lowest actual evapotranspiration values compared to the other land-cover classes. All land-cover classes, especially farmland areas, experienced severe water stress. Inadequate precipitation as a result of climate change, combined with high actual evapotranspiration will result in less water being available for the Lijiang River Basin. Additional water is required to compensate for evapotranspiration and support plant growth in the Lijiang River Basin during the growing season.

由于经济发展和气候变化的共同影响,世界上最大的喀斯特旅游胜地——中国丽江流域在旱季经历了严重的水资源短缺。由于实际蒸散发(ETa)在水循环中起着至关重要的作用,因此准确估算ETa和水分胁迫对水资源的可持续管理具有重要意义。利用改良的SSEBop模型,结合Landsat 8影像,绘制了丽江流域旱季日ETa的分布,并利用作物水分胁迫指数(CWSI)评估了水分胁迫。总体而言,气动阻力值为110 s m−1的SSEBop模式模拟的日ETa高于基于卫星的实际蒸散发产品(即本研究的MOD16A2和Penman-Monteith-Leuning (PML)_V2实际蒸散发产品)。空气动力阻力在估算SSEBop模型的能量通量中起着关键作用,应利用现有数据集对其进行重新调整和校准,以提高模型估算特定区域实际蒸散发的性能。20 ~ 35 s m−1的空气动力阻力调整值与基于卫星的丽江流域实际蒸散发产品基本吻合。此外,对实际蒸散发的地面测量不足可能增加了SSEBop模式性能的不确定性。为了提高对实际蒸散量和可得水量的估计的准确性,将需要在当地建立通量塔,特别是在森林地区,以收集蒸散量、温度和其他就地数据。在不同的土地覆盖类型中,林地的实际蒸散量最高,而农田和建成区的实际蒸散量最低。所有土地覆盖层,尤其是农田,都经历了严重的水资源压力。气候变化导致的降水不足,加上实际蒸散量大,将导致丽江流域可用水量减少。在生长季节,丽江流域需要额外的水来补偿蒸散和支持植物生长。
{"title":"Estimation of actual evapotranspiration and water stress in the Lijiang River Basin, China using a modified Operational Simplified Surface Energy Balance (SSEBop) model","authors":"Yuefeng Yao ,&nbsp;Azim U. Mallik","doi":"10.1016/j.jher.2022.01.003","DOIUrl":"10.1016/j.jher.2022.01.003","url":null,"abstract":"<div><p>Due to the simultaneous impacts of economic development and climate change, the Lijiang River Basin in China—the largest karst tourist attraction in the world—has experienced dramatic water shortages during the dry season. As actual evapotranspiration (<span><math><msub><mrow><mi>ET</mi></mrow><mi>a</mi></msub></math></span>) plays a critical role in the water cycle, accurate estimation of <span><math><msub><mrow><mi>ET</mi></mrow><mi>a</mi></msub></math></span> and water stress are important for sustainable water resources management. In this paper, we mapped the distribution of daily <span><math><msub><mrow><mi>ET</mi></mrow><mi>a</mi></msub></math></span> using a modified Operational Simplified Surface Energy Balance (SSEBop) model in combination with Landsat 8 images and assessed water stress using the Crop Water Stress Index (CWSI) during the dry season in the Lijiang River Basin. In general, the daily <span><math><msub><mrow><mi>ET</mi></mrow><mi>a</mi></msub></math></span> simulated by the SSEBop model with aerodynamic resistance value of 110 s m<sup>−1</sup> was higher than that of satellite-based actual evapotranspiration products (i.e., MOD16A2 and Penman-Monteith-Leuning (PML)_V2 actual evapotranspiration products in this study). Aerodynamic resistance plays a critical role in the estimation of energy fluxes in the SSEBop model and should be readjusted and calibrated with available datasets to improve the model’s performance in estimating actual evapotranspiration for particular regions. Readjusted values between 20 and 35 s m<sup>−1</sup> of aerodynamic resistance produced reasonable agreement with satellite-based actual evapotranspiration products in the Lijiang River Basin. In addition, insufficient ground-level measurements of actual evapotranspiration might have increased the uncertainty of the SSEBop model’s performance. The achievement of higher accuracy in the estimation of actual evapotranspiration and water availability will require establishing local flux towers, particularly in forested areas, to collect evapotranspiration, temperature and other in situ data. For different land-cover classes, forest areas exhibited the highest actual evapotranspiration, whereas farmland and built-up areas had the lowest actual evapotranspiration values compared to the other land-cover classes. All land-cover classes, especially farmland areas, experienced severe water stress. Inadequate precipitation as a result of climate change, combined with high actual evapotranspiration will result in less water being available for the Lijiang River Basin. Additional water is required to compensate for evapotranspiration and support plant growth in the Lijiang River Basin during the growing season.</p></div>","PeriodicalId":49303,"journal":{"name":"Journal of Hydro-environment Research","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44182196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of renewed solar dimming on streamflow generation in monsoon dominated tropical river basins 太阳再次变暗对季风主导的热带河流流域水流生成的影响
IF 2.8 3区 环境科学与生态学 Q2 Engineering Pub Date : 2022-03-01 DOI: 10.1016/j.jher.2022.02.002
Pramod Soni , Shivam Tripathi , Rajesh Srivastava

From 1950s to 1980s, various observational studies around the globe found a significant decrease in surface solar radiation (SSR), which reversed in late 1980s for most of the countries including India. SSR observations at 12 stations located across India revealed that a much stronger dimming has reappeared during the last decade (2006–2015) after a brightening during 1996–2005. In the present study, effects of renewed solar dimming on actual evapotranspiration and runoff were analyzed using a semi-distributed hydrological model, Soil and Water Assessment Tool (SWAT) in 24 river basins (ranging from 1260 to 40000 km2) located in peninsular India. For these river basins, calibration (2003–2009) and validation (2010–2014) were performed using the observed daily discharge data, obtained from water resources information system (WRIS) of India, with a 3 year warm up period (2000–2002). The sequential uncertainty domain parameter fitting algorithm (SUFI-2) of SWAT-CUP (calibration and uncertainty program) was used with modified Nash–Sutcliffe efficiency (MNS) as the objective function to calibrate 13 model parameters, which can potentially affect streamflow. In nearly all the river basins, the p- and r-factor of 95 percentage prediction uncertainty (PPU) were more than 0.7 and less than 1, respectively. At daily timescale, MNS values were more than 0.5 in most of the river basins, reaching up to 0.66 and 0.71 during calibration and validation periods, respectively. Calibrated model was used to analyze the water balance of these river basins and different sets of experiments (with observed SSR trends) were performed to find SSR impacts on it. The model was simulated with and without the observed declines in SSR trends. The average change in SSR (in terms of evaporation equivalent) was −267.93 ± 100.92 mm/day/year (−5.62 ± 2.12%) with maximum reaching up to −417.12 mm/day/year (−8.99%). Due to this SSR change, actual evaporation was reduced resulting in 18.97 ± 9.78 mm/day/year (4.13 ± 2.50%) change in percolation. The percolation changes were higher for river basins having areas covered by forests and cropland/woodland, and having loam and sandy-clay soils. The increase in runoff generated was 6.90 ± 3.42 mm/day/year (2.14 ± 1.58%) with a maximum of 15.25 mm/day/year (7.56%) whereas corresponding increase in streamflow was found to be 9.93 ± 5.27 mm/day/year(4.21 ± 2.38%) with a maximum of 26.71 mm/day/year (11.86 %). The study reveals that the recent observed SSR changes are significant enough to have resulted in increased streamflow in the monsoon dominated tropical river basins of India.

从20世纪50年代到80年代,全球各种观测研究发现,地表太阳辐射(SSR)显著减少,在20世纪80年代后期,包括印度在内的大多数国家都出现了逆转。在印度12个观测站的SSR观测显示,在1996-2005年的增亮之后,在过去十年(2006-2015年)再次出现了更强的变暗。在本研究中,利用半分布式水文模型,土壤和水评估工具(SWAT)分析了印度半岛24个河流流域(范围从1260到40000 km2)的重新太阳变暗对实际蒸散发和径流的影响。对这些流域进行了标定(2003-2009年)和验证(2010-2014年),使用的是印度水资源信息系统(WRIS)的日观测流量数据,暖期为3年(2000-2002年)。采用SWAT-CUP(定标与不确定程序)序列不确定域参数拟合算法(SUFI-2),以改进的Nash-Sutcliffe效率(MNS)为目标函数,对可能影响水流的13个模型参数进行了定标。在几乎所有流域,95%预测不确定性(PPU)的p-因子大于0.7,r-因子小于1。在日尺度上,大部分流域的MNS值均大于0.5,在定标期和验证期分别达到0.66和0.71。利用校正后的模型对流域水平衡进行分析,并通过不同的实验(观察到SSR趋势)来研究SSR对流域水平衡的影响。对该模型进行了有和无SSR下降趋势的模拟。SSR的平均变化(蒸发当量)为−267.93±100.92 mm/day/year(−5.62±2.12%),最大值为−417.12 mm/day/year(−8.99%)。由于SSR的变化,实际蒸发量减少,导致渗流变化18.97±9.78 mm/天/年(4.13±2.50%)。有森林和耕地/林地覆盖的流域,以及有壤土和沙土的流域,其渗滤变化较大。径流增加量为6.90±3.42 mm/d /年(2.14±1.58%),最大增加量为15.25 mm/d /年(7.56%);径流增加量为9.93±5.27 mm/d /年(4.21±2.38%),最大增加量为26.71 mm/d /年(11.86%)。研究表明,最近观测到的SSR变化足以导致印度季风主导的热带河流流域的流量增加。
{"title":"Impact of renewed solar dimming on streamflow generation in monsoon dominated tropical river basins","authors":"Pramod Soni ,&nbsp;Shivam Tripathi ,&nbsp;Rajesh Srivastava","doi":"10.1016/j.jher.2022.02.002","DOIUrl":"10.1016/j.jher.2022.02.002","url":null,"abstract":"<div><p><span>From 1950s to 1980s, various observational studies<span><span> around the globe found a significant decrease in surface solar radiation (SSR), which reversed in late 1980s for most of the countries including India. SSR observations at 12 stations located across India revealed that a much stronger dimming has reappeared during the last decade (2006–2015) after a brightening during 1996–2005. In the present study, effects of renewed solar dimming on actual evapotranspiration and runoff were analyzed using a semi-distributed </span>hydrological model, Soil and Water Assessment Tool (SWAT) in 24 river basins (ranging from 1260 to 40000 km</span></span><sup>2</sup><span>) located in peninsular India. For these river basins, calibration (2003–2009) and validation (2010–2014) were performed using the observed daily discharge data, obtained from water resources information system (WRIS) of India, with a 3 year warm up period (2000–2002). The sequential uncertainty domain parameter fitting algorithm (SUFI-2) of SWAT-CUP (calibration and uncertainty program) was used with modified Nash–Sutcliffe efficiency (MNS) as the objective function to calibrate 13 model parameters, which can potentially affect streamflow. In nearly all the river basins, the p- and r-factor of 95 percentage prediction uncertainty (PPU) were more than 0.7 and less than 1, respectively. At daily timescale, MNS values were more than 0.5 in most of the river basins, reaching up to 0.66 and 0.71 during calibration and validation periods, respectively. Calibrated model was used to analyze the water balance of these river basins and different sets of experiments (with observed SSR trends) were performed to find SSR impacts on it. The model was simulated with and without the observed declines in SSR trends. The average change in SSR (in terms of evaporation equivalent) was −267.93 ± 100.92 mm/day/year (−5.62 ± 2.12%) with maximum reaching up to −417.12 mm/day/year (−8.99%). Due to this SSR change, actual evaporation was reduced resulting in 18.97 ± 9.78 mm/day/year (4.13 ± 2.50%) change in percolation. The percolation changes were higher for river basins having areas covered by forests and cropland/woodland, and having loam and sandy-clay soils. The increase in runoff generated was 6.90 ± 3.42 mm/day/year (2.14 ± 1.58%) with a maximum of 15.25 mm/day/year (7.56%) whereas corresponding increase in streamflow was found to be 9.93 ± 5.27 mm/day/year(4.21 ± 2.38%) with a maximum of 26.71 mm/day/year (11.86 %). The study reveals that the recent observed SSR changes are significant enough to have resulted in increased streamflow in the monsoon dominated tropical river basins of India.</span></p></div>","PeriodicalId":49303,"journal":{"name":"Journal of Hydro-environment Research","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41386338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wave attenuation by multiple slotted barriers with a zig-zag arrangement -A physical and numerical approach 锯齿形排列的多个开槽屏障对波浪的衰减——一种物理和数值方法
IF 2.8 3区 环境科学与生态学 Q2 Engineering Pub Date : 2022-03-01 DOI: 10.1016/j.jher.2022.02.001
V. Kumaran , S. Neelamani , K.G. Vijay , N. Al-Anjari , A. Al-Ragum

In the present study, scattering of surface gravity waves by multiple slotted vertical barriers arranged in a zig-zag manner is analyzed by employing Computational Fluid Dynamics (CFD) and validated with physical model tests. The porosity of the vertical slotted barrier is varied from 10% to 40%, and the number of slotted barriers varied from 1 to 6. The results from CFD correlate well with the laboratory measurements on the scattering coefficients for a wide range of input conditions giving a high level of confidence. For relatively short waves (h/λ > 0.3, h- water depth and λ- wave length), slotted barriers up to 3 numbers and porosity from 20% to 30% are required to achieve wave transmission coefficient in the range of 0.2 to 0.3. For relatively long waves (h/λ < 0.3), slotted barriers of 5 to 6 numbers and porosity in the range of 10% to 20% are needed to obtain wave transmission of 0.2 to 0.3. The results presented in this study can be used for a wide range of wave damping applications in the field of coastal engineering.

本文采用计算流体力学(CFD)方法分析了多个锯齿形开槽垂直屏障对表面重力波的散射,并进行了物理模型试验验证。垂直槽状屏障的孔隙率为10% ~ 40%,槽状屏障的数量为1 ~ 6个。计算流体力学的结果与实验室对大范围输入条件下散射系数的测量结果相吻合,具有较高的置信度。对于相对较短的波(h/λ >0.3 (h-水深,λ-波长)、3个数的槽状屏障、20% - 30%的孔隙度,才能实现0.2 - 0.3的波透射系数。对于相对较长的波(h/λ <0.3),需要5 ~ 6位数的槽状阻隔,孔隙度在10% ~ 20%之间,才能获得0.2 ~ 0.3的波透射率。本研究结果可广泛应用于海岸工程领域的波浪阻尼。
{"title":"Wave attenuation by multiple slotted barriers with a zig-zag arrangement -A physical and numerical approach","authors":"V. Kumaran ,&nbsp;S. Neelamani ,&nbsp;K.G. Vijay ,&nbsp;N. Al-Anjari ,&nbsp;A. Al-Ragum","doi":"10.1016/j.jher.2022.02.001","DOIUrl":"10.1016/j.jher.2022.02.001","url":null,"abstract":"<div><p>In the present study, scattering of surface gravity waves by multiple slotted vertical barriers arranged in a zig-zag manner is analyzed by employing Computational Fluid Dynamics (CFD) and validated with physical model tests. The porosity of the vertical slotted barrier is varied from 10% to 40%, and the number of slotted barriers varied from 1 to 6. The results from CFD correlate well with the laboratory measurements on the scattering coefficients for a wide range of input conditions giving a high level of confidence. For relatively short waves (<span><math><mrow><mi>h</mi><mo>/</mo><mi>λ</mi></mrow></math></span> &gt; 0.3, <span><math><mrow><mi>h</mi></mrow></math></span>- water depth and <span><math><mrow><mi>λ</mi></mrow></math></span>- wave length), slotted barriers up to 3 numbers and porosity from 20% to 30% are required to achieve wave transmission coefficient in the range of 0.2 to 0.3. For relatively long waves (<span><math><mrow><mi>h</mi><mo>/</mo><mi>λ</mi></mrow></math></span> &lt; 0.3), slotted barriers of 5 to 6 numbers and porosity in the range of 10% to 20% are needed to obtain wave transmission of 0.2 to 0.3. The results presented in this study can be used for a wide range of wave damping applications in the field of coastal engineering.</p></div>","PeriodicalId":49303,"journal":{"name":"Journal of Hydro-environment Research","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49290887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Three different models to evaluate water discharge: An application to a river section at Vinh Tuy location in the Lo river basin, Vietnam 评估排水量的三种不同模型:在越南洛河流域永都河段的应用
IF 2.8 3区 环境科学与生态学 Q2 Engineering Pub Date : 2022-01-01 DOI: 10.1016/j.jher.2021.12.002
Chien Pham Van, Giang Nguyen–Van

This study presents three different models, namely power-law rating curve, one-dimensional lateral distribution method (1D–LDM), and gated recurrent network (GRU) model that can be applied to evaluate water discharge from water surface elevation time-series in a river cross-section for a long time period. A river section at Vinh Tuy location on the Lo river basin (Vietnam) is used to demonstrate the models. Appropriate values of modelling parameters are carefully determined using (i) the daily observed discharge values collected in the period from 2012 to 2018 and (ii) five error estimates for quantitatively assessing the agreement between estimated and observed water discharges. The results showed that all three models reproduced very well the observed discharge values, with root mean square error and mean absolute error, as well as mean error of discharge, are only about 5.5% of the maximum value of discharge monitoring in the studied cross-section, while Nash–Sutcliffe efficiency and Pearson’s correlation coefficient are greater than 0.89. The models are then applied to evaluate discharge values in the studied cross-section for the period from 1972 to 2011, revealing that statistical indicators, i.e. mean value, standard derivation, and covariance of estimated water discharge, are consistent with those obtained from the observations. Among three investigated models, the GRU model was finally proved to be the best one, providing even better results than the 1D-LDM and power-law rating curve.

本文提出了幂律评级曲线、一维横向分布法(1D-LDM)和门控循环网络(GRU)三种不同的模型,可用于评价河流断面长时间内水面高程时间序列的水量。在洛河流域(越南)的永图(Vinh Tuy)的河段被用来演示模型。使用(i) 2012年至2018年期间收集的每日观测排放值和(ii)用于定量评估估计水量与观测水量之间一致性的五个误差估计,仔细确定了适当的建模参数值。结果表明,3种模型均能较好地再现实测流量值,流量的均方根误差、平均绝对误差和平均误差仅为所研究截面流量监测最大值的5.5%左右,Nash-Sutcliffe效率和Pearson相关系数均大于0.89。利用该模型对研究断面1972 ~ 2011年的径流量进行了评价,结果表明,估算径流量的均值、标准差、协方差等统计指标与观测结果基本一致。在研究的三个模型中,GRU模型最终被证明是最好的模型,其结果甚至优于1D-LDM和幂律评级曲线。
{"title":"Three different models to evaluate water discharge: An application to a river section at Vinh Tuy location in the Lo river basin, Vietnam","authors":"Chien Pham Van,&nbsp;Giang Nguyen–Van","doi":"10.1016/j.jher.2021.12.002","DOIUrl":"10.1016/j.jher.2021.12.002","url":null,"abstract":"<div><p>This study presents three different models, namely power-law rating curve, one-dimensional lateral distribution method (1D–LDM), and gated recurrent network (GRU) model that can be applied to evaluate water discharge from water surface elevation time-series in a river cross-section for a long time period. A river section at Vinh Tuy location on the Lo river basin (Vietnam) is used to demonstrate the models. Appropriate values of modelling parameters are carefully determined using (i) the daily observed discharge values collected in the period from 2012 to 2018 and (ii) five error estimates for quantitatively assessing the agreement between estimated and observed water discharges. The results showed that all three models reproduced very well the observed discharge values, with root mean square error and mean absolute error, as well as mean error of discharge, are only about 5.5% of the maximum value of discharge monitoring in the studied cross-section, while Nash–Sutcliffe efficiency and Pearson’s correlation coefficient are greater than 0.89. The models are then applied to evaluate discharge values in the studied cross-section for the period from 1972 to 2011, revealing that statistical indicators, i.e. mean value, standard derivation, and covariance of estimated water discharge, are consistent with those obtained from the observations. Among three investigated models, the GRU model was finally proved to be the best one, providing even better results than the 1D-LDM and power-law rating curve.</p></div>","PeriodicalId":49303,"journal":{"name":"Journal of Hydro-environment Research","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49368497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Simulation of energy dissipation downstream of labyrinth weirs by applying support vector regression integrated with meta-heuristic algorithms 支持向量回归与元启发式算法相结合模拟迷宫堰下游消能
IF 2.8 3区 环境科学与生态学 Q2 Engineering Pub Date : 2022-01-01 DOI: 10.1016/j.jher.2021.12.003
Amin Mahdavi-Meymand, Wojciech Sulisz

In this study, multi-tracker optimization algorithm (MTOA), particle swarm optimization (PSO), and differential evolution (DE) algorithms were integrated with support vector regression (SVR) to predict energy dissipation downstream of labyrinth weirs (ΔE). In order to evaluate the performance of these methods, the results are compared with corresponding outcome obtained by applying two other methods, namely, multilayer perceptron neural network (MLPNN) and multiple linear regressions methods (MLR). The input parameters comprise the discharge, the upstream flow depth, the crest length of a single cycle of the labyrinth weir, the width of a single cycle of the labyrinth weir, the apex width, the number of labyrinth weir cycles, the sidewall angle, and the height of weir. The results indicate that the meta-heuristic algorithms substantially improve the performance of SVR. The results show that the integrative methods, SVR-MTOA, SVR-PSO, and SVR-DE, are more accurate than the MLPNN and the MLR. In average, the integrative methods provide 39.63% more accurate results than the MLPNN and 79.34% more accurate results than the MLR. The average RMSE and R2 for the integrative methods are 0.0054 m and 0.977, respectively. Among all integrative methods, the SVR-MTOA yields the best results, with RMSE = 0.0044 m and R2 = 0.986.

本研究将多跟踪优化算法(MTOA)、粒子群优化算法(PSO)和差分进化算法(DE)与支持向量回归(SVR)相结合,用于迷宫堰下游能量耗散预测(ΔE)。为了评价这些方法的性能,将结果与另外两种方法,即多层感知器神经网络(multilayer perceptron neural network, MLPNN)和多元线性回归方法(multiple linear regression methods, MLR)得到的结果进行比较。输入参数包括流量、上游水流深度、迷宫堰单周期波峰长度、迷宫堰单周期宽度、迷宫堰顶点宽度、迷宫堰循环数、侧壁角和堰高。结果表明,元启发式算法显著提高了支持向量回归的性能。结果表明,SVR-MTOA、SVR-PSO和SVR-DE综合方法比MLPNN和MLR方法更准确。综合方法的准确率平均比MLPNN高39.63%,比MLR高79.34%。综合方法的平均RMSE和R2分别为0.0054 m和0.977。在所有综合方法中,SVR-MTOA的结果最好,RMSE = 0.0044 m, R2 = 0.986。
{"title":"Simulation of energy dissipation downstream of labyrinth weirs by applying support vector regression integrated with meta-heuristic algorithms","authors":"Amin Mahdavi-Meymand,&nbsp;Wojciech Sulisz","doi":"10.1016/j.jher.2021.12.003","DOIUrl":"10.1016/j.jher.2021.12.003","url":null,"abstract":"<div><p><span>In this study, multi-tracker optimization algorithm (MTOA), particle swarm<span> optimization (PSO), and differential evolution (DE) algorithms were integrated with support vector regression (SVR) to predict energy dissipation downstream of labyrinth weirs (Δ</span></span><em>E</em><span>). In order to evaluate the performance of these methods, the results are compared with corresponding outcome obtained by applying two other methods, namely, multilayer perceptron neural network (MLPNN) and multiple linear regressions methods (MLR). The input parameters comprise the discharge, the upstream flow depth, the crest length of a single cycle of the labyrinth weir, the width of a single cycle of the labyrinth weir, the apex width, the number of labyrinth weir cycles, the sidewall angle, and the height of weir. The results indicate that the meta-heuristic algorithms substantially improve the performance of SVR. The results show that the integrative methods, SVR-MTOA, SVR-PSO, and SVR-DE, are more accurate than the MLPNN and the MLR. In average, the integrative methods provide 39.63% more accurate results than the MLPNN and 79.34% more accurate results than the MLR. The average RMSE and </span><em>R<sup>2</sup></em> for the integrative methods are 0.0054 m and 0.977, respectively. Among all integrative methods, the SVR-MTOA yields the best results, with <em>RMSE</em> = 0.0044 m and <em>R<sup>2</sup></em> = 0.986.</p></div>","PeriodicalId":49303,"journal":{"name":"Journal of Hydro-environment Research","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49461966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Climate change impact on water quality in the integrated Mahabad Dam watershed-reservoir system 气候变化对Mahabad坝流域-水库综合系统水质的影响
IF 2.8 3区 环境科学与生态学 Q2 Engineering Pub Date : 2022-01-01 DOI: 10.1016/j.jher.2021.12.001
Mohammad Nazari-Sharabian , Masoud Taheriyoun

Climate change, besides global warming, is expected to intensify the hydrological cycle, which can impact watershed nutrient yields and affect water quality in the receiving water bodies. The Mahabad Dam Reservoir in northwest Iran is a eutrophic reservoir due to excessive watershed nutrient input, which could be exacerbated due to climate change. In this regard, a holistic approach was employed by linking a climate model (CanESM2), watershed-scale model (SWAT), and reservoir water quality model (CE-QUAL-W2). The triple model investigates the cumulative climate change effects on hydrological parameters, watershed yields, and the reservoir’s water quality. The SDSM model downscaled the output of the climate model under moderate (RCP4.5) and extreme (RCP8.5) scenarios for the periods of 2021–2040 and 2041–2060. The impact of future climate conditions was investigated on the watershed runoff and total phosphorus (TP) load, and consequently, water quality status in the dam’s reservoir. The results of comparing future conditions (2021–2060) with observed present values under moderate to extreme climate scenarios showed a 4–7% temperature increase and a 6–11% precipitation decrease. Moreover, the SWAT model showed a 9–16% decline in streamflow and a 12–18% decline in the watershed TP load for the same comparative period. Finally, CE-QUAL-W2 model results showed a 3–8% increase in the reservoir water temperature and a 10–16% increase in TP concentration. It indicates that climate change would intensify the thermal stratification and eutrophication level in the reservoir, especially during the year’s warm months. This finding specifies an alarming condition that demands serious preventive and corrective measures.

除全球变暖外,气候变化预计还会加剧水文循环,从而影响流域养分产量并影响接收水体的水质。伊朗西北部的Mahabad大坝水库是一个富营养化水库,由于流域养分输入过多,气候变化可能会加剧这种情况。在这方面,采用了一种整体方法,将气候模型(CanESM2)、流域尺度模型(SWAT)和水库水质模型(ce - quality - w2)联系起来。三重模型研究了累积气候变化对水文参数、流域产量和水库水质的影响。SDSM模式降低了2021-2040年和2041-2060年期间中(RCP4.5)和极端(RCP8.5)情景下气候模式的输出。研究了未来气候条件对流域径流和总磷负荷的影响,进而对水库水质状况的影响。在中至极端气候情景下,未来条件(2021-2060年)与观测值的比较结果显示,气温升高4-7%,降水减少6-11%。此外,SWAT模型显示,在相同的比较时期,河流流量下降了9-16%,流域TP负荷下降了12-18%。最后,ce - quality - w2模型结果显示,水库水温升高3-8%,TP浓度升高10-16%。这表明气候变化将加剧水库的热分层和富营养化水平,特别是在一年中温暖的月份。这一发现说明了一种令人震惊的情况,需要采取认真的预防和纠正措施。
{"title":"Climate change impact on water quality in the integrated Mahabad Dam watershed-reservoir system","authors":"Mohammad Nazari-Sharabian ,&nbsp;Masoud Taheriyoun","doi":"10.1016/j.jher.2021.12.001","DOIUrl":"10.1016/j.jher.2021.12.001","url":null,"abstract":"<div><p>Climate change, besides global warming, is expected to intensify the hydrological cycle, which can impact watershed nutrient yields and affect water quality in the receiving water bodies. The Mahabad Dam Reservoir in northwest Iran is a eutrophic reservoir due to excessive watershed nutrient input, which could be exacerbated due to climate change. In this regard, a holistic approach was employed by linking a climate model (CanESM2), watershed-scale model (SWAT), and reservoir water quality model (CE-QUAL-W2). The triple model investigates the cumulative climate change effects on hydrological parameters, watershed yields, and the reservoir’s water quality. The SDSM model downscaled the output of the climate model under moderate (RCP4.5) and extreme (RCP8.5) scenarios for the periods of 2021–2040 and 2041–2060. The impact of future climate conditions was investigated on the watershed runoff and total phosphorus (TP) load, and consequently, water quality status in the dam’s reservoir. The results of comparing future conditions (2021–2060) with observed present values under moderate to extreme climate scenarios showed a 4–7% temperature increase and a 6–11% precipitation decrease. Moreover, the SWAT model showed a 9–16% decline in streamflow and a 12–18% decline in the watershed TP load for the same comparative period. Finally, CE-QUAL-W2 model results showed a 3–8% increase in the reservoir water temperature and a 10–16% increase in TP concentration. It indicates that climate change would intensify the thermal stratification and eutrophication level in the reservoir, especially during the year’s warm months. This finding specifies an alarming condition that demands serious preventive and corrective measures.</p></div>","PeriodicalId":49303,"journal":{"name":"Journal of Hydro-environment Research","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49252461","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
An iterative hydraulic design methodology based on numerical modeling for piano key weirs 基于数值模拟的钢琴键堰迭代水力设计方法
IF 2.8 3区 环境科学与生态学 Q2 Engineering Pub Date : 2022-01-01 DOI: 10.1016/j.jher.2022.01.002
Mete Koken, Ismail Aydin, Serhan Ademoglu

Piano Key Weir (PKW) is a special type of overflow weir which provides an improved discharge capacity with its increased crest length. Increased discharge capacity makes this weir an attractive alternative in the rehabilitation of existing spillways. After the introduction of this new weir type, many experimental and numerical studies are conducted to understand the effect of the numerous geometrical parameters on the discharge capacity. However, empirical discharge formulas suggested by different researchers are not conforming to a unique expression mostly due to dependence on the experimental conditions from which they are derived. A numerical approach is used in the present study to investigate the dependence of discharge capacity of a PKW unit on several geometric parameters. Numerical models are developed and three-dimensional velocity fields are computed using FLOW-3D® software. Discharge efficiency of a PKW over an equivalent linear sharp-crested weir is evaluated within the practical range of parameters from 145 numerical solutions for 29 different PKW models. Numerically obtained data is used to form dimensionless expressions for the weir height and length as function of discharge efficiency which are proposed to facilitate an iterative numerical solution to meet the design requirements of a given project. This approach allows cost optimization while dimensioning the PKW for the required hydraulic capacity. The design procedure based on iterative numerical solutions is described and exemplified.

钢琴键堰(PKW)是一种特殊类型的溢流堰,通过增加波峰长度来提高泄流能力。增加的排放能力使该堰成为修复现有溢洪道的一个有吸引力的选择。引入这种新型堰型后,进行了大量的实验和数值研究,以了解多种几何参数对流量的影响。然而,不同研究人员提出的经验流量公式并不符合一个唯一的表达式,这主要是由于它们的推导依赖于实验条件。本文采用数值方法研究了PKW机组的放电容量与几个几何参数的关系。利用FLOW-3D®软件开发了数值模型并计算了三维速度场。在29种不同PKW模型的145个数值解的实际参数范围内,对等效线性尖峰堰上PKW的放电效率进行了评估。利用数值计算得到的数据,形成堰高和堰长随流量效率的无量纲表达式,以便于迭代求解,以满足工程的设计要求。这种方法可以优化成本,同时根据所需的水力容量确定PKW的尺寸。描述并举例说明了基于迭代数值解的设计过程。
{"title":"An iterative hydraulic design methodology based on numerical modeling for piano key weirs","authors":"Mete Koken,&nbsp;Ismail Aydin,&nbsp;Serhan Ademoglu","doi":"10.1016/j.jher.2022.01.002","DOIUrl":"10.1016/j.jher.2022.01.002","url":null,"abstract":"<div><p>Piano Key Weir (PKW) is a special type of overflow weir which provides an improved discharge capacity with its increased crest length. Increased discharge capacity makes this weir an attractive alternative in the rehabilitation of existing spillways. After the introduction of this new weir type, many experimental and numerical studies are conducted to understand the effect of the numerous geometrical parameters on the discharge capacity. However, empirical discharge formulas suggested by different researchers are not conforming to a unique expression mostly due to dependence on the experimental conditions from which they are derived. A numerical approach is used in the present study to investigate the dependence of discharge capacity of a PKW unit on several geometric parameters. Numerical models are developed and three-dimensional velocity fields are computed using FLOW-3D® software. Discharge efficiency of a PKW over an equivalent linear sharp-crested weir is evaluated within the practical range of parameters from 145 numerical solutions for 29 different PKW models. Numerically obtained data is used to form dimensionless expressions for the weir height and length as function of discharge efficiency which are proposed to facilitate an iterative numerical solution to meet the design requirements of a given project. This approach allows cost optimization while dimensioning the PKW for the required hydraulic capacity. The design procedure based on iterative numerical solutions is described and exemplified.</p></div>","PeriodicalId":49303,"journal":{"name":"Journal of Hydro-environment Research","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45908784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
期刊
Journal of Hydro-environment Research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1