Pub Date : 2023-01-03DOI: 10.1177/1475472X221150180
Ye Li, Xin-biao Xiao, Yumei Zhang, Zhao Tang, Aipeng Pan
In this study, porous sound-absorbing materials used as a lining in double-panel structure applications (such as high-speed train body structures) to limit flow-induced vibration interior noise were studied, and acoustic optimization design was performed. First, in the wavenumber domain, the cross-spectrum Corcos model was used to characterize the dynamic hydrodynamic pressure of turbulence. Biot’s theory is used to model the porous materials. The transmission loss (TL) of the sandwich panel were also determined based on the model superposition method. Three types of sandwich panel structures were considered: air–air (A–A), bonded-bonded (B–B), and bonded-air (B–A). The TL of the three structure types under hydrodynamic pressure was used to evaluate the suppression of flow-induced vibration interior noise in porous materials. The effects of flow velocity, thickness and density of the porous material, and three types of polyimide foam on the TL characteristics of the sandwich panel were investigated. The results show that the flow velocity has a significant influence on the TL of the sandwich panel. The TL of the sandwich panel decreases by 3–4 dB when the flow velocity increases by 100 km/h The B–A configuration has satisfactory sound insulation performance at most frequencies. With an increase in material thickness, the TL of the sandwich panel structure first increases and then decreases, and the material density mainly affects the TL of the structure at intermediate and high frequencies. Based on the objectives of maximizing the average transmission loss (TLavg) and minimizing the structural weight, the acoustic optimization design of the B–A structure was performed, and the balance between the two objective functions was achieved by a nondominated sorting genetic algorithm (NSGA-Ⅱ). The TLavg s of the sandwich panel structure increased by 5.2 dB when the total mass of the structure was decreased by 0.2 kg.
{"title":"Acoustic optimization design of porous materials on sandwich panel under flow-induced vibration","authors":"Ye Li, Xin-biao Xiao, Yumei Zhang, Zhao Tang, Aipeng Pan","doi":"10.1177/1475472X221150180","DOIUrl":"https://doi.org/10.1177/1475472X221150180","url":null,"abstract":"In this study, porous sound-absorbing materials used as a lining in double-panel structure applications (such as high-speed train body structures) to limit flow-induced vibration interior noise were studied, and acoustic optimization design was performed. First, in the wavenumber domain, the cross-spectrum Corcos model was used to characterize the dynamic hydrodynamic pressure of turbulence. Biot’s theory is used to model the porous materials. The transmission loss (TL) of the sandwich panel were also determined based on the model superposition method. Three types of sandwich panel structures were considered: air–air (A–A), bonded-bonded (B–B), and bonded-air (B–A). The TL of the three structure types under hydrodynamic pressure was used to evaluate the suppression of flow-induced vibration interior noise in porous materials. The effects of flow velocity, thickness and density of the porous material, and three types of polyimide foam on the TL characteristics of the sandwich panel were investigated. The results show that the flow velocity has a significant influence on the TL of the sandwich panel. The TL of the sandwich panel decreases by 3–4 dB when the flow velocity increases by 100 km/h The B–A configuration has satisfactory sound insulation performance at most frequencies. With an increase in material thickness, the TL of the sandwich panel structure first increases and then decreases, and the material density mainly affects the TL of the structure at intermediate and high frequencies. Based on the objectives of maximizing the average transmission loss (TLavg) and minimizing the structural weight, the acoustic optimization design of the B–A structure was performed, and the balance between the two objective functions was achieved by a nondominated sorting genetic algorithm (NSGA-Ⅱ). The TLavg s of the sandwich panel structure increased by 5.2 dB when the total mass of the structure was decreased by 0.2 kg.","PeriodicalId":49304,"journal":{"name":"International Journal of Aeroacoustics","volume":"22 1","pages":"60 - 84"},"PeriodicalIF":1.0,"publicationDate":"2023-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44090898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-02DOI: 10.1177/1475472X221150175
Rong Xue, C. Mak, Dizi Wu, K. W. Ma
Helmholtz resonators (HR) are widely used in aero-engine systems for noise reduction. By connecting a pair of HRs in series (neck-cavity-neck-cavity), a dual HRs system is formed. This study investigated the influence of neck length, cavity volume and flow Mach number on the noise attenuation performance of a dual HRs system. A three-dimensional numerical simulation was performed to calculate the transmission loss results. The transmission loss (TL) results indicated that the second neck length can influence the second resonance frequency and TL max . Changing the cavity volume significantly influences the noise attenuation ability under lower flow rate conditions compared to higher flow rate conditions. The flow Mach number had a more significant impact on the first TL peak than on the second TL peak. This study shows the relationship between the geometric parameters, grazing flow and noise attenuation performance of a dual HRs system and could provide guidance in designing suitable dual HRs for aero-engine systems.
{"title":"The acoustic performance of a dual Helmholtz resonators system in the presence of a grazing flow","authors":"Rong Xue, C. Mak, Dizi Wu, K. W. Ma","doi":"10.1177/1475472X221150175","DOIUrl":"https://doi.org/10.1177/1475472X221150175","url":null,"abstract":"Helmholtz resonators (HR) are widely used in aero-engine systems for noise reduction. By connecting a pair of HRs in series (neck-cavity-neck-cavity), a dual HRs system is formed. This study investigated the influence of neck length, cavity volume and flow Mach number on the noise attenuation performance of a dual HRs system. A three-dimensional numerical simulation was performed to calculate the transmission loss results. The transmission loss (TL) results indicated that the second neck length can influence the second resonance frequency and TL max . Changing the cavity volume significantly influences the noise attenuation ability under lower flow rate conditions compared to higher flow rate conditions. The flow Mach number had a more significant impact on the first TL peak than on the second TL peak. This study shows the relationship between the geometric parameters, grazing flow and noise attenuation performance of a dual HRs system and could provide guidance in designing suitable dual HRs for aero-engine systems.","PeriodicalId":49304,"journal":{"name":"International Journal of Aeroacoustics","volume":"22 1","pages":"23 - 40"},"PeriodicalIF":1.0,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47326436","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-02DOI: 10.1177/1475472X221150177
Yongle Du, Hangwen Yu, Yanchen Liu, Dangguo Yang
Development of advanced noise reduction devices requires an in-depth understanding of two fundamental questions: what are the true noise sources and how are the acoustic radiations generated. An accurate separation of the hydrodynamic and acoustic fluctuations helps to reveal the answers, but no consensus exists on its feasibility in the near-field source region of compressible flows. This study proposes a methodology to examine the dynamics of vortex sound generation in a two-dimensional artificially excited subsonic mixing layer. The parabolized stability equation (PSE) is applied to resolve the hydrodynamic fluctuations and the vortex sound theory is used to predict the acoustic pressures. Numerical simulations show that the PSE solutions capture the vortex pairing reasonably accurately and damp the acoustic modes to a negligible level, and that the vortex sound theory recovers the acoustic pressures. Good agreement of both solutions with the direct simulations indicates that a physically reasonable separation of hydrodynamic sources is achieved and can be used to further examine the vortex dynamics and noise source mechanisms.
{"title":"Hydrodynamic sources of the vortex sound in a two-dimensional shear layer","authors":"Yongle Du, Hangwen Yu, Yanchen Liu, Dangguo Yang","doi":"10.1177/1475472X221150177","DOIUrl":"https://doi.org/10.1177/1475472X221150177","url":null,"abstract":"Development of advanced noise reduction devices requires an in-depth understanding of two fundamental questions: what are the true noise sources and how are the acoustic radiations generated. An accurate separation of the hydrodynamic and acoustic fluctuations helps to reveal the answers, but no consensus exists on its feasibility in the near-field source region of compressible flows. This study proposes a methodology to examine the dynamics of vortex sound generation in a two-dimensional artificially excited subsonic mixing layer. The parabolized stability equation (PSE) is applied to resolve the hydrodynamic fluctuations and the vortex sound theory is used to predict the acoustic pressures. Numerical simulations show that the PSE solutions capture the vortex pairing reasonably accurately and damp the acoustic modes to a negligible level, and that the vortex sound theory recovers the acoustic pressures. Good agreement of both solutions with the direct simulations indicates that a physically reasonable separation of hydrodynamic sources is achieved and can be used to further examine the vortex dynamics and noise source mechanisms.","PeriodicalId":49304,"journal":{"name":"International Journal of Aeroacoustics","volume":"22 1","pages":"41 - 59"},"PeriodicalIF":1.0,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47879886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-11-01DOI: 10.1177/1475472X221136884
Sai Manikanta Kaja, Srinath Srinivasan, S. Chaitanya, Krishnamurthy Srinivasan
This study uses specialized deep neural networks comprising dense and convolutional neural networks to localize noise sources and reconstruct acoustic data on a reconstruction plane. The networks are trained on simulated acoustic data free from any form of noise in the signal. It is observed that neural networks can effectively localize monopole and dipole sources and reconstruct the acoustic data in reconstruction planes with higher accuracy than conventional methods. Performance of the networks is consistent over changes in some parameters like the source strength, noise in the input signal, and frequency range. Various tests are performed to assess the individual network performance. Results indicate that neural networks trained on a subset of the data are effective over the entire data set without significant bias or variance. Errors as low as 1% are observed, and the maximum error observed is below 5%. While reconstruction error decreased with an increase in the frequency of monopole sources, it increased with an increase in frequency for dipole sources.
{"title":"Data-driven neural networks for source localization and reconstruction using a planar array","authors":"Sai Manikanta Kaja, Srinath Srinivasan, S. Chaitanya, Krishnamurthy Srinivasan","doi":"10.1177/1475472X221136884","DOIUrl":"https://doi.org/10.1177/1475472X221136884","url":null,"abstract":"This study uses specialized deep neural networks comprising dense and convolutional neural networks to localize noise sources and reconstruct acoustic data on a reconstruction plane. The networks are trained on simulated acoustic data free from any form of noise in the signal. It is observed that neural networks can effectively localize monopole and dipole sources and reconstruct the acoustic data in reconstruction planes with higher accuracy than conventional methods. Performance of the networks is consistent over changes in some parameters like the source strength, noise in the input signal, and frequency range. Various tests are performed to assess the individual network performance. Results indicate that neural networks trained on a subset of the data are effective over the entire data set without significant bias or variance. Errors as low as 1% are observed, and the maximum error observed is below 5%. While reconstruction error decreased with an increase in the frequency of monopole sources, it increased with an increase in frequency for dipole sources.","PeriodicalId":49304,"journal":{"name":"International Journal of Aeroacoustics","volume":"21 1","pages":"684 - 707"},"PeriodicalIF":1.0,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45991707","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-11-01DOI: 10.1177/1475472X221136883
T. Yang, Xi Chen, Qi-jun Zhao, Guo-qing Zhao
To study the influence of non-uniform flowfield on the propagation characteristics of helicopter rotor noise, a Hybrid Computational Aeroacoustics (HCAA) method is developed. The acoustic source region is simulated by Computational Fluid Dynamics (CFD) technique with the Unsteady Reynolds Averaged Navier-Stokes equations (URANS) as the governing equations. Acoustic near-field is simulated by Computational Aeroacoustics (CAA) technique with the Linearized Euler Equations (LEE) as the governing equations, and the numerical discretization of the LEE is accomplished by Runge-Kutta Discontinuous Galerkin (RKDG) method. A novel acoustic source extraction method based on pressure and pressure gradient is proposed to accomplish the one-way CFD-CAA weak coupling. The HCAA method is validated through comparisons with noise experimental data of the UH-1H model rotor and the BO-105 model rotor. Based on the proposed HCAA method, the convection and refraction effects of rotor noise under different collective pitch angles are analyzed. The results show that the distortion effect of the rotor noise is most affected by the non-uniformly distributed downwash velocity field, resulting in an increment of acoustic energy below the rotor plane. The effect of non-uniformly distributed downwash velocity on noise propagation increases with the increase of the collective pitch angle. For the UH-1H model rotor, the maximum change of the sound pressure level is 0.8 dB (about 10% change of the effective sound pressure).
{"title":"Numerical study on the noise propagation characteristics of rotor in non-uniform downwash flowfield Based on Linearized Euler Equations","authors":"T. Yang, Xi Chen, Qi-jun Zhao, Guo-qing Zhao","doi":"10.1177/1475472X221136883","DOIUrl":"https://doi.org/10.1177/1475472X221136883","url":null,"abstract":"To study the influence of non-uniform flowfield on the propagation characteristics of helicopter rotor noise, a Hybrid Computational Aeroacoustics (HCAA) method is developed. The acoustic source region is simulated by Computational Fluid Dynamics (CFD) technique with the Unsteady Reynolds Averaged Navier-Stokes equations (URANS) as the governing equations. Acoustic near-field is simulated by Computational Aeroacoustics (CAA) technique with the Linearized Euler Equations (LEE) as the governing equations, and the numerical discretization of the LEE is accomplished by Runge-Kutta Discontinuous Galerkin (RKDG) method. A novel acoustic source extraction method based on pressure and pressure gradient is proposed to accomplish the one-way CFD-CAA weak coupling. The HCAA method is validated through comparisons with noise experimental data of the UH-1H model rotor and the BO-105 model rotor. Based on the proposed HCAA method, the convection and refraction effects of rotor noise under different collective pitch angles are analyzed. The results show that the distortion effect of the rotor noise is most affected by the non-uniformly distributed downwash velocity field, resulting in an increment of acoustic energy below the rotor plane. The effect of non-uniformly distributed downwash velocity on noise propagation increases with the increase of the collective pitch angle. For the UH-1H model rotor, the maximum change of the sound pressure level is 0.8 dB (about 10% change of the effective sound pressure).","PeriodicalId":49304,"journal":{"name":"International Journal of Aeroacoustics","volume":"21 1","pages":"731 - 765"},"PeriodicalIF":1.0,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47616424","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-11-01DOI: 10.1177/1475472X221140869
Arun Mg, S. Tj
The present study experimentally investigates the aerodynamic noise from the flow around cylinders of square and equilateral triangle cross-sections at different angles of incidence (α). The cylinder models have a side dimension of 10 mm and a span of 300 mm. The free stream velocity (U 0 ) is in the range of 12–36 m/s, and the corresponding Reynolds numbers are 7.8 × 103 to 2.3 × 104, which is in the subcritical flow regime. The characteristic acoustic tones are generated at α = 30° and 45° for square and triangular cylinders. The frequency of acoustic tones linearly increases with the free stream velocity, and the corresponding Strouhal numbers are found to be in the range of 0.13–0.16. Depending on the angle of incidence, the overall sound pressure level is higher than the background noise by 4–24 dB for the square cylinder and 3–15 dB for the triangular cylinder at U 0 = 36 m/s. The highest noise level of the square cylinder is 90 dB at α = 45° and 79 dB at α = 30° for the triangular cylinder. The spectral scaling with the sixth power of the free stream velocity indicates the dipole behaviour of the acoustic tones. The mean and root-mean-square velocity profiles in the wake region characterise the noise emissions at different angles of incidence. The comparative acoustic study of the non-circular cylinders with a circular counterpart showed that the highest noise level is from the square cylinder at α = 45°. The directivity study shows that the noise level of the square cylinder at α = 45° at 90° angular location (θ) is higher by 6.5 dB than that at θ = 30°.
{"title":"Aerodynamic noise characteristics of non-circular cylinders in subcritical flow regime","authors":"Arun Mg, S. Tj","doi":"10.1177/1475472X221140869","DOIUrl":"https://doi.org/10.1177/1475472X221140869","url":null,"abstract":"The present study experimentally investigates the aerodynamic noise from the flow around cylinders of square and equilateral triangle cross-sections at different angles of incidence (α). The cylinder models have a side dimension of 10 mm and a span of 300 mm. The free stream velocity (U 0 ) is in the range of 12–36 m/s, and the corresponding Reynolds numbers are 7.8 × 103 to 2.3 × 104, which is in the subcritical flow regime. The characteristic acoustic tones are generated at α = 30° and 45° for square and triangular cylinders. The frequency of acoustic tones linearly increases with the free stream velocity, and the corresponding Strouhal numbers are found to be in the range of 0.13–0.16. Depending on the angle of incidence, the overall sound pressure level is higher than the background noise by 4–24 dB for the square cylinder and 3–15 dB for the triangular cylinder at U 0 = 36 m/s. The highest noise level of the square cylinder is 90 dB at α = 45° and 79 dB at α = 30° for the triangular cylinder. The spectral scaling with the sixth power of the free stream velocity indicates the dipole behaviour of the acoustic tones. The mean and root-mean-square velocity profiles in the wake region characterise the noise emissions at different angles of incidence. The comparative acoustic study of the non-circular cylinders with a circular counterpart showed that the highest noise level is from the square cylinder at α = 45°. The directivity study shows that the noise level of the square cylinder at α = 45° at 90° angular location (θ) is higher by 6.5 dB than that at θ = 30°.","PeriodicalId":49304,"journal":{"name":"International Journal of Aeroacoustics","volume":"21 1","pages":"766 - 792"},"PeriodicalIF":1.0,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43585679","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-11-01DOI: 10.1177/1475472X221136882
S. Redonnet, Thomas G Schmidt
This study concerns the experimental characterization of trailing edge noise, the understanding of which is crucial for mitigating acoustic pollution across major industries. An aeroacoustic experiment is carried out using a closed-vein wind tunnel to investigate the laminar boundary layer vortex-shedding (LBL-VS) noise of a symmetric NACA0021 airfoil in low Reynolds number flows (Re ≤ 163,500). Steady aerodynamic and acoustic measurements are performed, with numerous conditions covered (flow velocity from 10 m/s to 24.5 m/s, airfoil incidence from −10° to 10°). The aerodynamic results reveal that, in the pre-stall regime, the airfoil’ suction side exhibits both a laminar separation bubble (LSB) and a trailing edge detached flow – which both make LBL-VS noise likely to occur. The acoustic results reveal that, when at low speed and moderate incidence, the airfoil emits one to two tones, which can be both attributed to LBL-VS noise. In particular, their respective frequency is seen to scale as the 0.8th power of the flow velocity, whereas varying linearly with the incidence. At higher speeds, these two tones vanish to the profit of other, more intense tonal emissions, whose frequency does not scale with the velocity nor the incidence. These tones are attributed to resonance effects coming from a retroaction of the reverberant environment onto the LBL-VS noise emission, which then locks-on to some of the duct resonant frequencies via an acoustic feedback loop. Revealing indirectly the presence of the pre-existing LBL-VS noise, these resonant tones emerge only when the flow velocity and incidence obey specific conditions, namely a roughly linear relationship.
{"title":"Experimental investigation of the laminar boundary layer vortex-shedding noise by an airfoil within a closed-vein wind tunnel","authors":"S. Redonnet, Thomas G Schmidt","doi":"10.1177/1475472X221136882","DOIUrl":"https://doi.org/10.1177/1475472X221136882","url":null,"abstract":"This study concerns the experimental characterization of trailing edge noise, the understanding of which is crucial for mitigating acoustic pollution across major industries. An aeroacoustic experiment is carried out using a closed-vein wind tunnel to investigate the laminar boundary layer vortex-shedding (LBL-VS) noise of a symmetric NACA0021 airfoil in low Reynolds number flows (Re ≤ 163,500). Steady aerodynamic and acoustic measurements are performed, with numerous conditions covered (flow velocity from 10 m/s to 24.5 m/s, airfoil incidence from −10° to 10°). The aerodynamic results reveal that, in the pre-stall regime, the airfoil’ suction side exhibits both a laminar separation bubble (LSB) and a trailing edge detached flow – which both make LBL-VS noise likely to occur. The acoustic results reveal that, when at low speed and moderate incidence, the airfoil emits one to two tones, which can be both attributed to LBL-VS noise. In particular, their respective frequency is seen to scale as the 0.8th power of the flow velocity, whereas varying linearly with the incidence. At higher speeds, these two tones vanish to the profit of other, more intense tonal emissions, whose frequency does not scale with the velocity nor the incidence. These tones are attributed to resonance effects coming from a retroaction of the reverberant environment onto the LBL-VS noise emission, which then locks-on to some of the duct resonant frequencies via an acoustic feedback loop. Revealing indirectly the presence of the pre-existing LBL-VS noise, these resonant tones emerge only when the flow velocity and incidence obey specific conditions, namely a roughly linear relationship.","PeriodicalId":49304,"journal":{"name":"International Journal of Aeroacoustics","volume":"21 1","pages":"658 - 683"},"PeriodicalIF":1.0,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47627436","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-10-29DOI: 10.1177/1475472X221136885
Chengchun Zhang, Xiaowei Sun, T. Du, Chun Shen, Zheng-wu Chen, Dong Liang, Jiale Zhao, Yingchao Zhang
The cylinder-airfoil interaction noise can be reduced by changing the shape of the leading edge of the downstream airfoil. Generally, this way not only can reduce the interaction noise at middle and high frequency, but also can change the peak noise at the low frequency. This study attempts to affect the cylinder-airfoil interaction noise from the perspective of reducing the intensity of the upstream wake shedding vortex. In order to achieve this target, the equally spaced grooves were cut into the upstream cylinder, and the acoustic wind tunnel tests at various incoming velocities (20–60m·s−1) were conducted to compare the interaction noise of cylinder-airfoil (NACA0012) models. It is found that the grooved structure can effectively reduce the peak noise at characteristic frequencies bellow 1000 Hz and the broadband noise in the mid-frequency ranging from 1000 Hz to 3000 Hz, especially for the higher incoming velocity. Thereinto, the peak noise and overall sound pressure level (OASPL) with the grooved cylinder are reduced by 13 dB and 7.2 dB, respectively at the incoming velocity of 60 m·s−1. The numerical simulations based on the large eddy simulation (LES) and Ffowcs Williams–Hawkings (FW-H) acoustic analogy were performed to further reveal the mechanisms of noise reduction when the velocity is 60 m·s−1. The results show that the vortex shedding from cylinder wake is suppressed by the grooved cylinder and the vortex structure at the leading edge of the airfoil is also cut into the small-scale vortex structures by the grooved structure. The pressure fluctuation amplitude and the peak value turbulent kinetic energy in the wake of the grooved cylinder are significantly reduced. In addition, the further spectrum analysis reveals that the weak correlation of the vortex shedding on the grooved cylinder could lead to the suppression of the pressure fluctuation in the cylinder wake, and thereby the interaction noise is significantly reduced.
{"title":"Reduction of noise generated by cylinder-airfoil interaction using grooved structures on the upstream cylinder","authors":"Chengchun Zhang, Xiaowei Sun, T. Du, Chun Shen, Zheng-wu Chen, Dong Liang, Jiale Zhao, Yingchao Zhang","doi":"10.1177/1475472X221136885","DOIUrl":"https://doi.org/10.1177/1475472X221136885","url":null,"abstract":"The cylinder-airfoil interaction noise can be reduced by changing the shape of the leading edge of the downstream airfoil. Generally, this way not only can reduce the interaction noise at middle and high frequency, but also can change the peak noise at the low frequency. This study attempts to affect the cylinder-airfoil interaction noise from the perspective of reducing the intensity of the upstream wake shedding vortex. In order to achieve this target, the equally spaced grooves were cut into the upstream cylinder, and the acoustic wind tunnel tests at various incoming velocities (20–60m·s−1) were conducted to compare the interaction noise of cylinder-airfoil (NACA0012) models. It is found that the grooved structure can effectively reduce the peak noise at characteristic frequencies bellow 1000 Hz and the broadband noise in the mid-frequency ranging from 1000 Hz to 3000 Hz, especially for the higher incoming velocity. Thereinto, the peak noise and overall sound pressure level (OASPL) with the grooved cylinder are reduced by 13 dB and 7.2 dB, respectively at the incoming velocity of 60 m·s−1. The numerical simulations based on the large eddy simulation (LES) and Ffowcs Williams–Hawkings (FW-H) acoustic analogy were performed to further reveal the mechanisms of noise reduction when the velocity is 60 m·s−1. The results show that the vortex shedding from cylinder wake is suppressed by the grooved cylinder and the vortex structure at the leading edge of the airfoil is also cut into the small-scale vortex structures by the grooved structure. The pressure fluctuation amplitude and the peak value turbulent kinetic energy in the wake of the grooved cylinder are significantly reduced. In addition, the further spectrum analysis reveals that the weak correlation of the vortex shedding on the grooved cylinder could lead to the suppression of the pressure fluctuation in the cylinder wake, and thereby the interaction noise is significantly reduced.","PeriodicalId":49304,"journal":{"name":"International Journal of Aeroacoustics","volume":"21 1","pages":"708 - 730"},"PeriodicalIF":1.0,"publicationDate":"2022-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43587164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}