Stress has become a universal biological phenomenon in the body, which leads to pathophysiological changes. However, the molecular network interactions between endoplasmic reticulum (ER) stress and ferroptosis under stressful conditions are not clear. For this purpose, we screened the gene expression profile of GSE173795 for intersection with ferroptosis genes and screened 68 differentially expressed genes (DEGs) (63 up-regulated, 5 down-regulated), mainly related to lipid and atherosclerosis, autophagy-animal, mitophagy-animal, focal adhesion, DNA replication, proteasome, oocyte meiosis, toll-like receptor signaling pathway, cell cycle, etc. Immune infiltration analysis revealed that stress resulted in decreased B cells memory, T cells CD8 and T cells CD4 memory resting, monocytes, macrophages M2, and increased B cells naive, T cells follicular helper, and macrophages M1. 19 core-DEGs (ASNS, TRIB3, ATF4, EIF2S1, CEBPG, RELA, HSPA5, DDIT3, STAT3, MAP3K5, HIF1A, HNF4A, MAPK14, HMOX1, CDKN1A, KRAS, SP1, SIRT1, EGFR) were screened, all of which were up-regulated DEGs. These biological processes and pathways were mainly involved in responding to ER stress, lipid and atherosclerosis, cellular response to stress, cellular response to chemical stress, and regulation of DNA-templated transcription in response to stress, etc. Spearman analysis did not find MAPK14 to be significantly associated with immune cells. Other core-DEGs were associated with immune cells, including B cells naive, T cells follicular helper, and monocytes. Based on core-DEGs, 283 miRNAs were predicted. Among the 22 miRNAs with highly cross-linked DEGs, 11 had upstream lncRNA, mainly targeting STAT3, SP1, CDKN1A, and SIRT1, and a total of 39 lncRNA were obtained. 85 potential drugs targeting 11 core-DEGs were identified and were expected to be potential immunotherapeutic agents for stress injury. Our experiments also confirmed that Liproxstatin-1 alleviates common cross-linked proteins between ER stress and ferroptosis. In conclusion, our study explored the molecular mechanisms and network interactions among stress-ER stress-ferroptosis from a novel perspective, which provides new research ideas for studying stressful injury.
{"title":"Bioinformatics Analysis of Molecular Interactions between Endoplasmic Reticulum Stress and Ferroptosis under Stress Exposure.","authors":"Weihao Zhu, Yingmin Li, Meili Li, Jingmin Liu, Guowei Zhang, Xiaoying Ma, Weibo Shi, Bin Cong","doi":"10.1155/2023/9979291","DOIUrl":"10.1155/2023/9979291","url":null,"abstract":"<p><p>Stress has become a universal biological phenomenon in the body, which leads to pathophysiological changes. However, the molecular network interactions between endoplasmic reticulum (ER) stress and ferroptosis under stressful conditions are not clear. For this purpose, we screened the gene expression profile of GSE173795 for intersection with ferroptosis genes and screened 68 differentially expressed genes (DEGs) (63 up-regulated, 5 down-regulated), mainly related to lipid and atherosclerosis, autophagy-animal, mitophagy-animal, focal adhesion, DNA replication, proteasome, oocyte meiosis, toll-like receptor signaling pathway, cell cycle, etc. Immune infiltration analysis revealed that stress resulted in decreased B cells memory, T cells CD8 and T cells CD4 memory resting, monocytes, macrophages M2, and increased B cells naive, T cells follicular helper, and macrophages M1. 19 core-DEGs (ASNS, TRIB3, ATF4, EIF2S1, CEBPG, RELA, HSPA5, DDIT3, STAT3, MAP3K5, HIF1A, HNF4A, MAPK14, HMOX1, CDKN1A, KRAS, SP1, SIRT1, EGFR) were screened, all of which were up-regulated DEGs. These biological processes and pathways were mainly involved in responding to ER stress, lipid and atherosclerosis, cellular response to stress, cellular response to chemical stress, and regulation of DNA-templated transcription in response to stress, etc. Spearman analysis did not find MAPK14 to be significantly associated with immune cells. Other core-DEGs were associated with immune cells, including B cells naive, T cells follicular helper, and monocytes. Based on core-DEGs, 283 miRNAs were predicted. Among the 22 miRNAs with highly cross-linked DEGs, 11 had upstream lncRNA, mainly targeting STAT3, SP1, CDKN1A, and SIRT1, and a total of 39 lncRNA were obtained. 85 potential drugs targeting 11 core-DEGs were identified and were expected to be potential immunotherapeutic agents for stress injury. Our experiments also confirmed that Liproxstatin-1 alleviates common cross-linked proteins between ER stress and ferroptosis. In conclusion, our study explored the molecular mechanisms and network interactions among stress-ER stress-ferroptosis from a novel perspective, which provides new research ideas for studying stressful injury.</p>","PeriodicalId":49326,"journal":{"name":"Analytical Cellular Pathology","volume":"2023 ","pages":"9979291"},"PeriodicalIF":2.6,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10079382/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9266675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ziyuan Que, Kang Yang, Nan Wang, Shuying Li, Tao Li
Malignant bone neoplasms can be represented by osteosarcoma (OS), which accounts for 36% of all sarcomas. To reduce tumor malignancy, extensive efforts have been devoted to find an ideal target from numerous candidates, among which RNA-binding proteins (RBPs) have shown their unparalleled competitiveness. With the special structure of RNA-binding domains, RBPs have the potential to establish relationships with RNAs or small molecules and are considered regulators of different sections of RNA processes, including splicing, transport, translation, and degradation of RNAs. RBPs have considerable significant roles in various cancers, and experiments revealed that there was a strong association of RBPs with tumorigenesis and tumor cell progression. Regarding OS, RBPs are a new orientation, but achievements in hand are noteworthy. Higher or lower expression of RBPs was first found in tumor cells compared to normal tissue. By binding to different molecules, RBPs are capable of influencing tumor cell phenotypes through different signaling pathways or other axes, and researches on medical treatment have been largely inspired. Exploring the prognostic and therapeutic values of RBPs in OS is a hotspot where diverse avenues on regulating RBPs have achieved dramatical effects. In this review, we briefly summarize the contribution of RBPs and their binding molecules to OS oncogenicity and generally introduce distinctive RBPs as samples. Moreover, we focus on the attempts to differentiate RBP's opposite functions in predicting prognosis and collect possible strategies for treatment. Our review provides forwards insight into improving the understanding of OS and suggests RBPs as potential biomarkers for therapies.
{"title":"Functional Role of RBP in Osteosarcoma: Regulatory Mechanism and Clinical Therapy.","authors":"Ziyuan Que, Kang Yang, Nan Wang, Shuying Li, Tao Li","doi":"10.1155/2023/9849719","DOIUrl":"https://doi.org/10.1155/2023/9849719","url":null,"abstract":"<p><p>Malignant bone neoplasms can be represented by osteosarcoma (OS), which accounts for 36% of all sarcomas. To reduce tumor malignancy, extensive efforts have been devoted to find an ideal target from numerous candidates, among which RNA-binding proteins (RBPs) have shown their unparalleled competitiveness. With the special structure of RNA-binding domains, RBPs have the potential to establish relationships with RNAs or small molecules and are considered regulators of different sections of RNA processes, including splicing, transport, translation, and degradation of RNAs. RBPs have considerable significant roles in various cancers, and experiments revealed that there was a strong association of RBPs with tumorigenesis and tumor cell progression. Regarding OS, RBPs are a new orientation, but achievements in hand are noteworthy. Higher or lower expression of RBPs was first found in tumor cells compared to normal tissue. By binding to different molecules, RBPs are capable of influencing tumor cell phenotypes through different signaling pathways or other axes, and researches on medical treatment have been largely inspired. Exploring the prognostic and therapeutic values of RBPs in OS is a hotspot where diverse avenues on regulating RBPs have achieved dramatical effects. In this review, we briefly summarize the contribution of RBPs and their binding molecules to OS oncogenicity and generally introduce distinctive RBPs as samples. Moreover, we focus on the attempts to differentiate RBP's opposite functions in predicting prognosis and collect possible strategies for treatment. Our review provides forwards insight into improving the understanding of OS and suggests RBPs as potential biomarkers for therapies.</p>","PeriodicalId":49326,"journal":{"name":"Analytical Cellular Pathology","volume":"2023 ","pages":"9849719"},"PeriodicalIF":3.2,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10328736/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10168737","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Purpose: Long non-coding RNAs (LncRNAs) OIP5-AS1 and miR-25-3p play important roles in myocardial injury, whereas their roles in lipopolysaccharide (LPS)-induced myocardial injury remain unknown. The purpose of our study was to investigate the functional mechanisms of OIP5-AS1 and miR-25-3p in LPS-induced myocardial injury.
Methods: Rats and H9C2 cells were treated with LPS to establish the model of myocardial injury in vivo and in vitro, respectively. The expression levels of OIP5-AS1 and miR-25-3p were determined by quantitative reverse transcriptase-polymerase chain reaction. Enzyme-linked immunosorbent assay was performed to measure the serum levels of IL-6 and TNF-α. The relationship between OIP5-AS1 and miR-25-3p/NOX4 was determined by luciferase reporter assay and/or RNA immunoprecipitation assay. The apoptosis rate was detected by flow cytometry, and cell viability was detected by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay. Western blot was performed to detect the protein levels of Bax, Bcl-2, caspase3, c-caspase3, NOX4, and p-NF-κB p65/NF-κB p65.
Results: OIP5-AS1 was up-regulated, and miR-25-3p was down-regulated in myocardial tissues of LPS-induced rats and LPS-treated H9C2 cells. Knockdown of OIP5-AS1 relieved the myocardial injury in LPS-induced rats. Knockdown of OIP5-AS1 also inhibited the inflammation and apoptosis of myocardial cells in vivo, which was subsequently confirmed by in vitro experiments. In addition, OIP5-AS1 targeted miR-25-3p. MiR-25-3p mimics reversed the effects of OIP5-AS1 overexpression on promoting cell apoptosis and inflammation and on inhibiting cell viability. Besides, miR-25-3p mimics blocked the NOX4/NF-κB signalling pathway in LPS-induced H9C2 cells.
Conclusion: Silencing of lncRNA OIP5-AS1 alleviated LPS-induced myocardial injury by regulating miR-25-3p.
目的:长链非编码rna (LncRNAs) OIP5-AS1和miR-25-3p在心肌损伤中发挥重要作用,而它们在脂多糖(LPS)诱导的心肌损伤中的作用尚不清楚。我们的研究目的是探讨OIP5-AS1和miR-25-3p在lps诱导的心肌损伤中的作用机制。方法:采用LPS处理大鼠和H9C2细胞,分别建立体内和体外心肌损伤模型。定量逆转录-聚合酶链反应检测OIP5-AS1和miR-25-3p的表达水平。采用酶联免疫吸附法测定血清IL-6、TNF-α水平。OIP5-AS1与miR-25-3p/NOX4的关系通过荧光素酶报告基因法和/或RNA免疫沉淀法确定。流式细胞术检测细胞凋亡率,3-(4,5-二甲基-2-噻唑基)-2,5-二苯基-2- h -溴化四唑试验检测细胞活力。Western blot检测Bax、Bcl-2、caspase3、c-caspase3、NOX4、p-NF-κB p65/NF-κB p65蛋白表达水平。结果:lps诱导的大鼠心肌组织和lps处理的H9C2细胞中,OIP5-AS1上调,miR-25-3p下调。敲低OIP5-AS1可减轻lps诱导大鼠心肌损伤。在体内,OIP5-AS1的敲低也能抑制心肌细胞的炎症和凋亡,这一点随后在体外实验中得到了证实。此外,OIP5-AS1靶向miR-25-3p。MiR-25-3p模拟物逆转了OIP5-AS1过表达促进细胞凋亡和炎症以及抑制细胞活力的作用。此外,在lps诱导的H9C2细胞中,miR-25-3p模拟物阻断了NOX4/NF-κB信号通路。结论:沉默lncRNA OIP5-AS1可通过调节miR-25-3p减轻lps诱导的心肌损伤。
{"title":"Suppression of lncRNA OIP5-AS1 Attenuates Apoptosis and Inflammation, and Promotes Proliferation by Mediating miR-25-3p Expression in Lipopolysaccharide-Induced Myocardial Injury.","authors":"Jiaju Ma, Hebu Qian, Han Zou","doi":"10.1155/2023/3154223","DOIUrl":"https://doi.org/10.1155/2023/3154223","url":null,"abstract":"<p><strong>Purpose: </strong>Long non-coding RNAs (LncRNAs) OIP5-AS1 and miR-25-3p play important roles in myocardial injury, whereas their roles in lipopolysaccharide (LPS)-induced myocardial injury remain unknown. The purpose of our study was to investigate the functional mechanisms of OIP5-AS1 and miR-25-3p in LPS-induced myocardial injury.</p><p><strong>Methods: </strong>Rats and H9C2 cells were treated with LPS to establish the model of myocardial injury <i>in vivo</i> and <i>in vitro</i>, respectively. The expression levels of OIP5-AS1 and miR-25-3p were determined by quantitative reverse transcriptase-polymerase chain reaction. Enzyme-linked immunosorbent assay was performed to measure the serum levels of IL-6 and TNF-<i>α</i>. The relationship between OIP5-AS1 and miR-25-3p/NOX4 was determined by luciferase reporter assay and/or RNA immunoprecipitation assay. The apoptosis rate was detected by flow cytometry, and cell viability was detected by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay. Western blot was performed to detect the protein levels of Bax, Bcl-2, caspase3, c-caspase3, NOX4, and p-NF-<i>κ</i>B p65/NF-<i>κ</i>B p65.</p><p><strong>Results: </strong>OIP5-AS1 was up-regulated, and miR-25-3p was down-regulated in myocardial tissues of LPS-induced rats and LPS-treated H9C2 cells. Knockdown of OIP5-AS1 relieved the myocardial injury in LPS-induced rats. Knockdown of OIP5-AS1 also inhibited the inflammation and apoptosis of myocardial cells <i>in vivo</i>, which was subsequently confirmed by <i>in vitro</i> experiments. In addition, OIP5-AS1 targeted miR-25-3p. MiR-25-3p mimics reversed the effects of OIP5-AS1 overexpression on promoting cell apoptosis and inflammation and on inhibiting cell viability. Besides, miR-25-3p mimics blocked the NOX4/NF-<i>κ</i>B signalling pathway in LPS-induced H9C2 cells.</p><p><strong>Conclusion: </strong>Silencing of lncRNA OIP5-AS1 alleviated LPS-induced myocardial injury by regulating miR-25-3p.</p>","PeriodicalId":49326,"journal":{"name":"Analytical Cellular Pathology","volume":"2023 ","pages":"3154223"},"PeriodicalIF":3.2,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10042636/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9959032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Extensive peritoneal spread and capacity for distant metastasis account for the majority of mortality from epithelial ovarian cancer (EOC). Accumulating evidence shows that interleukin-6 (IL-6) promotes tumor invasion and migration in EOC, although the molecular mechanisms remain to be fully elucidated. Meanwhile, the hypoxic microenvironment has been recognized to cause metastasis by triggering epithelial-mesenchymal transition (EMT) in several types of cancers. Here, we studied the synergy between IL-6 and hypoxia in inducing EMT in two EOC cell lines, A2780 cells and SKOV3 cells. Exogenous recombination of IL-6 and autocrine production of IL-6 regulated by plasmids both induced EMT phenotype in EOC cells characterized by downregulated E-cadherin as well as upregulated expression of vimentin and EMT-related transcription factors. The combined effects of IL-6 and hypoxia were more significant than those of either one treatment on EMT. Suppression of hypoxia-inducible factor-1α (HIF-1α) before IL-6 treatment inhibited the EMT phenotype and invasion ability of EOC cells, indicating that HIF-1α occupies a key position in the regulatory pathway of EMT associated with IL-6. EMT score was found positively correlated with mRNA levels of IL-6, signal transducer and activator of transcription 3 (STAT3), and HIF-1α, respectively, in 489 ovarian samples from The Cancer Genome Atlas dataset. Next, blockade of the abovementioned molecules by chemical inhibitors reversed the alteration in the protein levels of EMT markers induced by either exogenous or endogenous IL-6. These findings indicate a positive feedback loop between IL-6 and HIF-1α, and induce and maintain EMT phenotype through STAT3 signaling, which might provide a novel rationale for prognostic prediction and therapeutic targets in EOC.
广泛的腹膜扩散和远处转移的能力是上皮性卵巢癌(EOC)死亡的主要原因。越来越多的证据表明,白细胞介素-6 (IL-6)促进EOC中肿瘤的侵袭和迁移,尽管其分子机制尚未完全阐明。同时,在几种类型的癌症中,低氧微环境通过触发上皮-间质转化(EMT)而引起转移。在此,我们研究了IL-6和缺氧在两种EOC细胞系A2780细胞和SKOV3细胞中诱导EMT的协同作用。外源重组IL-6和质粒调控IL-6的自分泌均可诱导EOC细胞EMT表型,其特征是E-cadherin下调,vimentin和EMT相关转录因子表达上调。IL-6和缺氧的联合作用比任何一种治疗对EMT的影响更显著。在IL-6处理前抑制缺氧诱导因子-1α (HIF-1α)可抑制EOC细胞的EMT表型和侵袭能力,表明HIF-1α在与IL-6相关的EMT调控通路中占据关键位置。在The Cancer Genome Atlas数据集中的489个卵巢样本中,EMT评分与IL-6、信号换能器和转录激活因子3 (STAT3)和HIF-1α的mRNA水平分别呈正相关。接下来,通过化学抑制剂阻断上述分子,逆转外源性或内源性IL-6诱导的EMT标记蛋白水平的改变。这些发现表明IL-6和HIF-1α之间存在正反馈回路,并通过STAT3信号诱导和维持EMT表型,这可能为EOC的预后预测和治疗靶点提供新的理论基础。
{"title":"Interleukin-6 and Hypoxia Synergistically Promote EMT-Mediated Invasion in Epithelial Ovarian Cancer via the IL-6/STAT3/HIF-1<i>α</i> Feedback Loop.","authors":"Tongshuo Zhang, Jing Yang, Yang Sun, Jiangnan Song, Dandan Gao, Suhui Huang, Aibo Pang, Jianhui Zhang, Junhong Wang, Yue Wang, Yanqiu Li","doi":"10.1155/2023/8334881","DOIUrl":"https://doi.org/10.1155/2023/8334881","url":null,"abstract":"<p><p>Extensive peritoneal spread and capacity for distant metastasis account for the majority of mortality from epithelial ovarian cancer (EOC). Accumulating evidence shows that interleukin-6 (IL-6) promotes tumor invasion and migration in EOC, although the molecular mechanisms remain to be fully elucidated. Meanwhile, the hypoxic microenvironment has been recognized to cause metastasis by triggering epithelial-mesenchymal transition (EMT) in several types of cancers. Here, we studied the synergy between IL-6 and hypoxia in inducing EMT in two EOC cell lines, A2780 cells and SKOV3 cells. Exogenous recombination of IL-6 and autocrine production of IL-6 regulated by plasmids both induced EMT phenotype in EOC cells characterized by downregulated E-cadherin as well as upregulated expression of vimentin and EMT-related transcription factors. The combined effects of IL-6 and hypoxia were more significant than those of either one treatment on EMT. Suppression of hypoxia-inducible factor-1<i>α</i> (HIF-1<i>α</i>) before IL-6 treatment inhibited the EMT phenotype and invasion ability of EOC cells, indicating that HIF-1<i>α</i> occupies a key position in the regulatory pathway of EMT associated with IL-6. EMT score was found positively correlated with mRNA levels of IL-6, signal transducer and activator of transcription 3 (STAT3), and HIF-1<i>α</i>, respectively, in 489 ovarian samples from The Cancer Genome Atlas dataset. Next, blockade of the abovementioned molecules by chemical inhibitors reversed the alteration in the protein levels of EMT markers induced by either exogenous or endogenous IL-6. These findings indicate a positive feedback loop between IL-6 and HIF-1<i>α</i>, and induce and maintain EMT phenotype through STAT3 signaling, which might provide a novel rationale for prognostic prediction and therapeutic targets in EOC.</p>","PeriodicalId":49326,"journal":{"name":"Analytical Cellular Pathology","volume":"2023 ","pages":"8334881"},"PeriodicalIF":3.2,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9940980/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10823547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In recent years, the involvement of E3 ubiquitin ligase constitutive photomorphogenesis 1 (COP1) in the tumorigenesis of gastric cancer (GC) has been elucidated. However, the exact underlying mechanism remains to be clarified. In the present study, the expression profiles of COP1 in GC were derived from the Gene Expression Omnibus (GEO) and the Cancer Genome Atlas (TCGA) databases, followed by verification via immunohistochemical staining (IHC), Western blotting (WB), and quantitative real-time polymerase chain reaction (qRT-PCR) reaction assays on clinical samples. In vitro, the gain- and loss-of-function experiments of COP1 protein were conducted to explore its role in GC cell lines HGC-27 and SGC-7901. Furthermore, we screened the interaction protein of COP1 by yeast two-hybrid experiment and verified their combination by co-immunoprecipitation (co-IP). We preliminary explored the possible underlying mechanisms of COP1 protein in GC cell lines via WB. COP1 was upregulated in GC tissues compared with the corresponding non-carcinoma tissues. In vitro, the upregulation of COP1 protein promoted the proliferation and migration of GC cells. The yeast two-hybrid experiment and co-IP indicated that Cadherin 18 (CDH18) could constitute a complex with COP1. Moreover, cells with COP1 over-expression showed low levels of CDH18 expression, with the intracellular PI3K/AKT pathway activated and the malignancy of GC cell lines enhanced. Our findings demonstrated that COP1 promoted the GC tumorigenesis by downregulated CDH18 with the involvement of PI3K/AKT signaling pathway in cell lines, suggesting the potential of COP1 as a prognostic biomarker and therapeutic target for GC.
{"title":"Effect of COP1 in Promoting the Tumorigenesis of Gastric Cancer by Down-Regulation of CDH18 via PI3K/AKT Signal Pathway.","authors":"Benhuo Zhao, Jiaojiao Wu, Xiuli Cha, Guangtong Mao, Hengliang Shi, Sujuan Fei, Bei Miao","doi":"10.1155/2023/5617875","DOIUrl":"https://doi.org/10.1155/2023/5617875","url":null,"abstract":"<p><p>In recent years, the involvement of E3 ubiquitin ligase constitutive photomorphogenesis 1 (COP1) in the tumorigenesis of gastric cancer (GC) has been elucidated. However, the exact underlying mechanism remains to be clarified. In the present study, the expression profiles of COP1 in GC were derived from the Gene Expression Omnibus (GEO) and the Cancer Genome Atlas (TCGA) databases, followed by verification via immunohistochemical staining (IHC), Western blotting (WB), and quantitative real-time polymerase chain reaction (qRT-PCR) reaction assays on clinical samples. In vitro, the gain- and loss-of-function experiments of COP1 protein were conducted to explore its role in GC cell lines HGC-27 and SGC-7901. Furthermore, we screened the interaction protein of COP1 by yeast two-hybrid experiment and verified their combination by co-immunoprecipitation (co-IP). We preliminary explored the possible underlying mechanisms of COP1 protein in GC cell lines via WB. COP1 was upregulated in GC tissues compared with the corresponding non-carcinoma tissues. In vitro, the upregulation of COP1 protein promoted the proliferation and migration of GC cells. The yeast two-hybrid experiment and co-IP indicated that Cadherin 18 (CDH18) could constitute a complex with COP1. Moreover, cells with COP1 over-expression showed low levels of CDH18 expression, with the intracellular PI3K/AKT pathway activated and the malignancy of GC cell lines enhanced. Our findings demonstrated that COP1 promoted the GC tumorigenesis by downregulated CDH18 with the involvement of PI3K/AKT signaling pathway in cell lines, suggesting the potential of COP1 as a prognostic biomarker and therapeutic target for GC.</p>","PeriodicalId":49326,"journal":{"name":"Analytical Cellular Pathology","volume":"2023 ","pages":"5617875"},"PeriodicalIF":3.2,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10072965/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9264102","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Despite the widespread introduction of primary and secondary preventative measures, death rates for cervical cancer are still significantly high among females, especially in developing countries. Pap cytology and human papillomavirus-based screening often lead to unnecessary additional testing. The aim of this study is to analyze diagnostic accuracy of p16INK4a/Ki-67 dual immunostaining (DS) in cervical smear for identifying high-grade cervical intraepithelial neoplasia (CIN2+).
Materials and methods: We studied the diagnostic performance of p16INK4a/Ki-67 DS in cervical smear of those women, who enrolled in cervical cancer screening due to abnormal previous screening results and compared it with Pap test results in identifying CIN2+. The reference standard was histopathology results. p16INK4a/Ki-67 DS and Pap test results for 162 women and histopathology results for 29 women were available, respectively.
Results: In our study, sensitivity, specificity, positive predictive value, and negative predictive value of p16INK4a/Ki-67 DS, irrespective of the morphology of stained cells to detect CIN2+ were 100%, 89%, 85%, and 100% (p < 0.01), respectively. The diagnostic accuracy of p16INK4a/Ki-67 DS is superior to that of existing cervical screening tests in the detection of CIN2+.
Conclusion: The findings of cervical cancer screening based on Pap cytology highlight the importance of assessing the cost-effectiveness of integrating p16INK4a/Ki-67 biomarkers in cervical cancer cytology. Furthermore, these findings emphasize the need to enhance support for preventive programs for cervical cancer in Georgia.
{"title":"Diagnostic Accuracy of p16<sup>INK4a</sup>/Ki-67 Dual Immunostaining for Detection of High-Grade Cervical Intraepithelial Neoplasia in Women Involved in Cervical Cancer Screening in Georgia.","authors":"Sopio Kakaliashvili-Dzagnidze, Omar Khardzeishvili, Sergo Tabagari","doi":"10.1155/2023/7988323","DOIUrl":"https://doi.org/10.1155/2023/7988323","url":null,"abstract":"<p><strong>Background: </strong>Despite the widespread introduction of primary and secondary preventative measures, death rates for cervical cancer are still significantly high among females, especially in developing countries. Pap cytology and human papillomavirus-based screening often lead to unnecessary additional testing. The aim of this study is to analyze diagnostic accuracy of p16<sup>INK4a</sup>/Ki-67 dual immunostaining (DS) in cervical smear for identifying high-grade cervical intraepithelial neoplasia (CIN2+).</p><p><strong>Materials and methods: </strong>We studied the diagnostic performance of p16<sup>INK4a</sup>/Ki-67 DS in cervical smear of those women, who enrolled in cervical cancer screening due to abnormal previous screening results and compared it with Pap test results in identifying CIN2+. The reference standard was histopathology results. p16<sup>INK4a</sup>/Ki-67 DS and Pap test results for 162 women and histopathology results for 29 women were available, respectively.</p><p><strong>Results: </strong>In our study, sensitivity, specificity, positive predictive value, and negative predictive value of p16<sup>INK4a</sup>/Ki-67 DS, irrespective of the morphology of stained cells to detect CIN2+ were 100%, 89%, 85%, and 100% (<i>p</i> < 0.01), respectively. The diagnostic accuracy of p16<sup>INK4a</sup>/Ki-67 DS is superior to that of existing cervical screening tests in the detection of CIN2+.</p><p><strong>Conclusion: </strong>The findings of cervical cancer screening based on Pap cytology highlight the importance of assessing the cost-effectiveness of integrating p16<sup>INK4a</sup>/Ki-67 biomarkers in cervical cancer cytology. Furthermore, these findings emphasize the need to enhance support for preventive programs for cervical cancer in Georgia.</p>","PeriodicalId":49326,"journal":{"name":"Analytical Cellular Pathology","volume":"2023 ","pages":"7988323"},"PeriodicalIF":3.2,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10260307/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9666251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Methods: The serum selenium level was determined in 45 patients with HBV-positive HCC (HBV+-HCC group), 45 patients with chronic hepatitis B virus infection (CHB group), and 45 healthy cases (HC group). The sodium selenite (Na2SeO3)-treated HepG2.2.15 cells were used to observe the regulatory role of selenium on HBV replication. D-GalN/erastin-added HL7702 was used to determine the regulatory roles of Na2SeO3 on hepatotoxicity or hepatocyte ferroptosis. The wild-type (WT) C57BL/6 mice and HBx-Tg mice were received lipopolysaccharide (LPS)/D-GalN, together with or without Na2SeO3 administration for indicated period. Following euthanasia, the blood and liver tissue samples were collected, and specific markers were evaluated subsequently.
Results: The serum selenium level was downregulated in patients with HBV-positive HCC (HBV+-HCC group) (57.2 ± 22.5 μg/L vs. 91.8 ± 43.9 μg/L, P < 0.001), and its higher level could provide a better prognosis in these patients. The treatment using Na2SeO3, a selenium donor, at high concentration (5 μM), suppressed the HBV replication by about 50% in HepG2.2.15 cells (P < 0.001), through promoting apoptotic cell death and inhibiting cellular inhibitor of apoptosis proteins (cIAPs). In addition, low-dose (500 nM) Na2SeO3 could almost totally reversed the hepatotoxicity induced by hepatitis B virus X protein (HBx) (P < 0.001), which were the main causes of HCC in patients. Studies at the cellular levels showed that low-dose Na2SeO3 inhibited the HBx-related hepatotoxicity by blocking ferroptosis, and glutathione peroxidase 4 (GPX4) mediated this regulatory role. Mice model results confirmed that the treatment with Na2SeO3 could mitigated LPS/D-GalN-induced hepatic injury through ferroptosis pathways.
Conclusion: Selenium regulated the dual cell death in different HCC stages via different signaling pathways, which could partly explain the anti-HBV and anti-HCC properties of selenium.
方法:测定45例HBV阳性HCC患者(HBV+-HCC组)、45例慢性乙型肝炎病毒感染患者(CHB组)和45例健康患者(HC组)血清硒水平。采用亚硒酸钠(Na2SeO3)处理HepG2.2.15细胞,观察硒对HBV复制的调控作用。采用添加D-GalN/erastin的HL7702来测定Na2SeO3对肝毒性或肝细胞铁凋亡的调节作用。野生型(WT) C57BL/6小鼠和HBx-Tg小鼠分别接受脂多糖(LPS)/D-GalN,同时或不同时给予Na2SeO3。安乐死后,采集血液和肝脏组织样本,随后评估特定标志物。结果:HBV阳性HCC患者(HBV+-HCC组)血清硒水平下调(57.2±22.5 μg/L vs. 91.8±43.9 μg/L, P < 0.001),血清硒水平升高可改善预后。高浓度(5 μM)硒供体Na2SeO3通过促进细胞凋亡和抑制细胞凋亡抑制蛋白(cIAPs),抑制HepG2.2.15细胞中HBV复制约50% (P < 0.001)。此外,低剂量(500 nM) Na2SeO3几乎可以完全逆转乙型肝炎病毒X蛋白(HBx)引起的肝毒性(P < 0.001),这是患者HCC的主要原因。细胞水平的研究表明,低剂量Na2SeO3通过阻断铁凋亡抑制hbx相关的肝毒性,而谷胱甘肽过氧化物酶4 (GPX4)介导了这一调节作用。小鼠模型结果证实,Na2SeO3可通过脂多糖/ d - galn诱导的铁下垂途径减轻肝损伤。结论:硒通过不同的信号通路调控肝癌不同分期双细胞死亡,这可以部分解释硒抗hbv和抗HCC的作用。
{"title":"Selenium Donor Inhibited Hepatitis B Virus Associated Hepatotoxicity via the Apoptosis and Ferroptosis Pathways.","authors":"Jingdong Shi, Zhen Liu, Weina Li, Di Wang","doi":"10.1155/2023/6681065","DOIUrl":"https://doi.org/10.1155/2023/6681065","url":null,"abstract":"<p><strong>Methods: </strong>The serum selenium level was determined in 45 patients with HBV-positive HCC (HBV<sup>+</sup>-HCC group), 45 patients with chronic hepatitis B virus infection (CHB group), and 45 healthy cases (HC group). The sodium selenite (Na<sub>2</sub>SeO<sub>3</sub>)-treated HepG2.2.15 cells were used to observe the regulatory role of selenium on HBV replication. D-GalN/erastin-added HL7702 was used to determine the regulatory roles of Na<sub>2</sub>SeO<sub>3</sub> on hepatotoxicity or hepatocyte ferroptosis. The wild-type (WT) C57BL/6 mice and HBx-Tg mice were received lipopolysaccharide (LPS)/D-GalN, together with or without Na<sub>2</sub>SeO<sub>3</sub> administration for indicated period. Following euthanasia, the blood and liver tissue samples were collected, and specific markers were evaluated subsequently.</p><p><strong>Results: </strong>The serum selenium level was downregulated in patients with HBV-positive HCC (HBV<sup>+</sup>-HCC group) (57.2 ± 22.5 <i>μ</i>g/L vs. 91.8 ± 43.9 <i>μ</i>g/L, <i>P</i> < 0.001), and its higher level could provide a better prognosis in these patients. The treatment using Na<sub>2</sub>SeO<sub>3</sub>, a selenium donor, at high concentration (5 <i>μ</i>M), suppressed the HBV replication by about 50% in HepG2.2.15 cells (<i>P</i> < 0.001), through promoting apoptotic cell death and inhibiting cellular inhibitor of apoptosis proteins (cIAPs). In addition, low-dose (500 nM) Na<sub>2</sub>SeO<sub>3</sub> could almost totally reversed the hepatotoxicity induced by hepatitis B virus X protein (HBx) (<i>P</i> < 0.001), which were the main causes of HCC in patients. Studies at the cellular levels showed that low-dose Na<sub>2</sub>SeO<sub>3</sub> inhibited the HBx-related hepatotoxicity by blocking ferroptosis, and glutathione peroxidase 4 (GPX4) mediated this regulatory role. Mice model results confirmed that the treatment with Na<sub>2</sub>SeO<sub>3</sub> could mitigated LPS/D-GalN-induced hepatic injury through ferroptosis pathways.</p><p><strong>Conclusion: </strong>Selenium regulated the dual cell death in different HCC stages via different signaling pathways, which could partly explain the anti-HBV and anti-HCC properties of selenium.</p>","PeriodicalId":49326,"journal":{"name":"Analytical Cellular Pathology","volume":"2023 ","pages":"6681065"},"PeriodicalIF":3.2,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10482541/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10567286","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Proprotein convertase subtilisin/kexin type 9 can mediate the intracellular lysosomal degradation of the low-density lipoprotein receptor protein in hepatocytes and decrease the liver's ability to scavenge low-density lipoprotein cholesterol from circulation, resulting in high levels of cholesterol in the circulatory system. Current studies have primarily focused on the relationship between PCSK9 and blood lipid metabolism; however, the biological function of PCSK9 in hepatocytes is rarely addressed. In this study, we evaluate its effects in the human hepatoma carcinoma cell line HepG2, including proliferation, migration, and free cholesterol transport. PCSK9-D374Y is a gain-of-function mutation that does not affect proliferation but significantly suppresses the migration and cholesterol efflux capacity of these cells. The suppression of the transmembrane outflow of intracellular-free cholesterol regulates small G proteins and the suppression of extracellular signal-regulated kinase. In summary, PCSK9-D374Y affects hepatocyte features, including their migration and free cholesterol transport capabilities.
{"title":"<i>PCSK9-</i>D374Y Suppresses Hepatocyte Migration through Downregulating Free Cholesterol Efflux Rate and Activity of Extracellular Signal-Regulated Kinase.","authors":"Lei Huang, Ying Cheng, Yulian Mu, Kui Li","doi":"10.1155/2023/6985808","DOIUrl":"https://doi.org/10.1155/2023/6985808","url":null,"abstract":"<p><p>Proprotein convertase subtilisin/kexin type 9 can mediate the intracellular lysosomal degradation of the low-density lipoprotein receptor protein in hepatocytes and decrease the liver's ability to scavenge low-density lipoprotein cholesterol from circulation, resulting in high levels of cholesterol in the circulatory system. Current studies have primarily focused on the relationship between <i>PCSK9</i> and blood lipid metabolism; however, the biological function of <i>PCSK9</i> in hepatocytes is rarely addressed. In this study, we evaluate its effects in the human hepatoma carcinoma cell line HepG2, including proliferation, migration, and free cholesterol transport. <i>PCSK9-</i>D374Y is a gain-of-function mutation that does not affect proliferation but significantly suppresses the migration and cholesterol efflux capacity of these cells. The suppression of the transmembrane outflow of intracellular-free cholesterol regulates small G proteins and the suppression of extracellular signal-regulated kinase. In summary, <i>PCSK9-</i>D374Y affects hepatocyte features, including their migration and free cholesterol transport capabilities.</p>","PeriodicalId":49326,"journal":{"name":"Analytical Cellular Pathology","volume":"2023 ","pages":"6985808"},"PeriodicalIF":3.2,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9842426/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10567304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Phagocytic ability of macrophage is responsible for tuberculosis infection. Nicotine has been shown to attenuate the phagocytic ability of macrophage; however, the underlying mechanism remains unclear. Here, we demonstrated that nicotine increased the message RNA (mRNA) and protein expression of signal regulatory protein alpha (SIRPα) and enhanced the stability of SIRPα mRNA in macrophage. Nicotine decreased the expression of microRNA (miR)-296-3p, which directly targeted the 3'-untranslated region (3'-UTR) of SIRPα mRNA in macrophage. Furthermore, nicotine inhibited the phagocytic ability of macrophage by regulating the miR-296-3p-SIRPα axis. Moreover, nicotine decreased miR-296-3p expression via increasing c-Myc expression in macrophage. Together, we found that nicotine attenuate the phagocytic ability of macrophage by regulating the c-Myc-miR-296-3p-SIRPα signal.
{"title":"Nicotine Suppresses Phagocytic Ability of Macrophages by Regulating the miR-296-3p-SIRP<i>α</i> Axis.","authors":"Zhen Liu, Fang Wang, Xiaowu Huang, Zhi Chen, Yicheng Zhao, Yawei Wang, Xiaobo Luo, Guanren Zhao","doi":"10.1155/2023/6306358","DOIUrl":"https://doi.org/10.1155/2023/6306358","url":null,"abstract":"<p><p>Phagocytic ability of macrophage is responsible for tuberculosis infection. Nicotine has been shown to attenuate the phagocytic ability of macrophage; however, the underlying mechanism remains unclear. Here, we demonstrated that nicotine increased the message RNA (mRNA) and protein expression of signal regulatory protein alpha (SIRP<i>α</i>) and enhanced the stability of SIRP<i>α</i> mRNA in macrophage. Nicotine decreased the expression of microRNA (miR)-296-3p, which directly targeted the 3'-untranslated region (3'-UTR) of SIRP<i>α</i> mRNA in macrophage. Furthermore, nicotine inhibited the phagocytic ability of macrophage by regulating the miR-296-3p-SIRP<i>α</i> axis. Moreover, nicotine decreased miR-296-3p expression via increasing c-Myc expression in macrophage. Together, we found that nicotine attenuate the phagocytic ability of macrophage by regulating the c-Myc-miR-296-3p-SIRP<i>α</i> signal.</p>","PeriodicalId":49326,"journal":{"name":"Analytical Cellular Pathology","volume":"2023 ","pages":"6306358"},"PeriodicalIF":3.2,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9946743/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10813394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Objective: Acute myeloid leukemia (AML) is a heterogeneous malignancy with a low long-term survival rate. The aim of this study was to investigate the effects of decitabine (DAC) treatment cell proliferation and apoptosis in AML and role of the expression of LINC00599 and, consequently, miR-135a-5p.
Materials and methods: Human promyelocytic leukemia cells (HL-60) and human acute lymphatic leukemia (CCRF-CEM) cells were treated with various concentrations of DAC. Cell proliferation in each group was detected using the cell counting kit 8. For each group, apoptosis and reactive oxygen species (ROS) levels were detected using flow cytometry. Reverse transcription polymerase chain reaction (RT-PCR) was performed to examine the expression of lncRNA LINC00599. The expression of apoptosis-related proteins was analyzed using western blotting. The regulatory relationship between miR-135a-5p and LINC00599 was verified by constructing miR-135a-5p mimics, miR-135a-5p inhibit, wild type LINC00599 3'-untranslated region (UTR), and mutant LINC00599 3'-UTR. Ki-67 expression in the tumor tissues of nude mice was detected using immunofluorescent assays.
Results: Both DAC and LINC00599 Inhibit groups were able to significantly reduce the proliferation of HL60 and CCRF-CEM cells, increase apoptosis, upregulate the expression of Bad, cleaved caspase-3, and miR-135a-5p, downregulate the expression of Bcl-2, and elevate ROS levels in cells, with these effects being more pronounced after combined treatment with DAC and LINC00599 Inhibit. In comparison to mimic NC, the miR-135a-5p mimic group significantly decreased the relative fluorescence activity ratio of LINC00599 3'-UTR wild-type CCRF-CEM cells. The LINC00599 Inhibit and miR-135a-5p mimic groups exhibited substantially reduced proliferation of HL60 and CCRF-CEM cells, increased apoptosis, upregulated Bad, cleaved caspase-3, and miR-135a-5p expression, along with downregulated Bcl-2 and LINC00599 expression and increased ROS levels in cells; these effects were more pronounced after LINC00599 Inhibit was combined with miR-135a-5p mimics. In vivo experiments revealed that both DAC and LINC00599 Inhibit were able to considerably reduce the long diameter, short meridian, volume, and mass of tumors, increase miR-135a-5p expression, and decrease LINC00599 and ki-67 expression in tumor tissues of nude mice. This effect was more pronounced when the DAC and LINC00599 Inhibit were used in combination.
Conclusion: DAC regulates the expression of miR-135a-5p by regulating the expression of LINC00599, which in turn affects cell proliferation, apoptosis, and tumor proliferation. Our findings provide a theoretical basis for improving the clinical outcome of AML.
{"title":"Mechanism of Action of Decitabine in the Treatment of Acute Myeloid Leukemia by Regulating LINC00599.","authors":"Fan Du, Ting Jin, Li Wang","doi":"10.1155/2023/2951519","DOIUrl":"https://doi.org/10.1155/2023/2951519","url":null,"abstract":"<p><strong>Objective: </strong>Acute myeloid leukemia (AML) is a heterogeneous malignancy with a low long-term survival rate. The aim of this study was to investigate the effects of decitabine (DAC) treatment cell proliferation and apoptosis in AML and role of the expression of LINC00599 and, consequently, miR-135a-5p.</p><p><strong>Materials and methods: </strong>Human promyelocytic leukemia cells (HL-60) and human acute lymphatic leukemia (CCRF-CEM) cells were treated with various concentrations of DAC. Cell proliferation in each group was detected using the cell counting kit 8. For each group, apoptosis and reactive oxygen species (ROS) levels were detected using flow cytometry. Reverse transcription polymerase chain reaction (RT-PCR) was performed to examine the expression of lncRNA LINC00599. The expression of apoptosis-related proteins was analyzed using western blotting. The regulatory relationship between miR-135a-5p and LINC00599 was verified by constructing miR-135a-5p mimics, miR-135a-5p inhibit, wild type LINC00599 3'-untranslated region (UTR), and mutant LINC00599 3'-UTR. Ki-67 expression in the tumor tissues of nude mice was detected using immunofluorescent assays.</p><p><strong>Results: </strong>Both DAC and LINC00599 Inhibit groups were able to significantly reduce the proliferation of HL60 and CCRF-CEM cells, increase apoptosis, upregulate the expression of Bad, cleaved caspase-3, and miR-135a-5p, downregulate the expression of Bcl-2, and elevate ROS levels in cells, with these effects being more pronounced after combined treatment with DAC and LINC00599 Inhibit. In comparison to mimic NC, the miR-135a-5p mimic group significantly decreased the relative fluorescence activity ratio of LINC00599 3'-UTR wild-type CCRF-CEM cells. The LINC00599 Inhibit and miR-135a-5p mimic groups exhibited substantially reduced proliferation of HL60 and CCRF-CEM cells, increased apoptosis, upregulated Bad, cleaved caspase-3, and miR-135a-5p expression, along with downregulated Bcl-2 and LINC00599 expression and increased ROS levels in cells; these effects were more pronounced after LINC00599 Inhibit was combined with miR-135a-5p mimics. In vivo experiments revealed that both DAC and LINC00599 Inhibit were able to considerably reduce the long diameter, short meridian, volume, and mass of tumors, increase miR-135a-5p expression, and decrease LINC00599 and ki-67 expression in tumor tissues of nude mice. This effect was more pronounced when the DAC and LINC00599 Inhibit were used in combination.</p><p><strong>Conclusion: </strong>DAC regulates the expression of miR-135a-5p by regulating the expression of LINC00599, which in turn affects cell proliferation, apoptosis, and tumor proliferation. Our findings provide a theoretical basis for improving the clinical outcome of AML.</p>","PeriodicalId":49326,"journal":{"name":"Analytical Cellular Pathology","volume":"2023 ","pages":"2951519"},"PeriodicalIF":3.2,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9977558/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10854216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}