Pub Date : 2025-08-22DOI: 10.1016/j.wavemoti.2025.103624
Majid Madadi , Mustafa Inc
We derive and characterize general rogue wave solutions (RWSs) of the (3+1)-dimensional Painlevé-type (P-type) integrable nonlinear evolution equation using the Hirota bilinear method in conjunction with the Kadomtsev–Petviashvili hierarchy reduction method (KPHRM). These solutions arise from intricate nonlinear interactions and exhibit diverse dynamical patterns, such as bright and dark triangular, pentagonal, and other structures, governed by key free parameters and the signs of system coefficients. Additionally, we address new nonlinear soliton solutions using the KPHRM in a determinantal framework. To further generalize the model, we incorporate spatiotemporal coefficients, which introduce additional nonlinear modulation. Using the Wronskian approach, another determinant-based technique, we construct -soliton solutions for the variable-coefficient equation and analyze their nonlinear dynamics, demonstrating how parameter variation influences wave evolution and interactions.
{"title":"Determinantal solutions to the (3+1)-dimensional Painlevé-type evolution equation: Higher-order rogue and soliton waves","authors":"Majid Madadi , Mustafa Inc","doi":"10.1016/j.wavemoti.2025.103624","DOIUrl":"10.1016/j.wavemoti.2025.103624","url":null,"abstract":"<div><div>We derive and characterize general rogue wave solutions (RWSs) of the (3+1)-dimensional Painlevé-type (P-type) integrable nonlinear evolution equation using the Hirota bilinear method in conjunction with the Kadomtsev–Petviashvili hierarchy reduction method (KPHRM). These solutions arise from intricate nonlinear interactions and exhibit diverse dynamical patterns, such as bright and dark triangular, pentagonal, and other structures, governed by key free parameters and the signs of system coefficients. Additionally, we address new nonlinear soliton solutions using the KPHRM in a determinantal framework. To further generalize the model, we incorporate spatiotemporal coefficients, which introduce additional nonlinear modulation. Using the Wronskian approach, another determinant-based technique, we construct <span><math><mi>N</mi></math></span>-soliton solutions for the variable-coefficient equation and analyze their nonlinear dynamics, demonstrating how parameter variation influences wave evolution and interactions.</div></div>","PeriodicalId":49367,"journal":{"name":"Wave Motion","volume":"139 ","pages":"Article 103624"},"PeriodicalIF":2.5,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144904573","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-08-21DOI: 10.1016/j.wavemoti.2025.103620
M.O. Sales , L.D. da Silva , M.S.S. Junior , F.A.B.F. de Moura
In this study, we investigate the propagation of shear vibrations in a rectangular system where disorder is introduced through the compressibility term, exhibiting Lorentzian spatial correlations. Our primary objective is to understand how these correlations influence the behavior and velocity of harmonic mode packets as they travel through the system. To achieve this, we employ a finite difference formalism to accurately capture the wave dynamics. Furthermore, we analyze how the spectral composition of the incident pulse affects wave propagation, shedding light on the interplay between disorder correlations and wave transport. By systematically exploring these factors, we aim to deepen our understanding of the fundamental mechanisms governing shear vibration propagation in disordered media.
{"title":"Investigation of shear wave propagation in two-dimensional systems with Lorentzian-correlated disorder","authors":"M.O. Sales , L.D. da Silva , M.S.S. Junior , F.A.B.F. de Moura","doi":"10.1016/j.wavemoti.2025.103620","DOIUrl":"10.1016/j.wavemoti.2025.103620","url":null,"abstract":"<div><div>In this study, we investigate the propagation of shear vibrations in a rectangular system where disorder is introduced through the compressibility term, exhibiting Lorentzian spatial correlations. Our primary objective is to understand how these correlations influence the behavior and velocity of harmonic mode packets as they travel through the system. To achieve this, we employ a finite difference formalism to accurately capture the wave dynamics. Furthermore, we analyze how the spectral composition of the incident pulse affects wave propagation, shedding light on the interplay between disorder correlations and wave transport. By systematically exploring these factors, we aim to deepen our understanding of the fundamental mechanisms governing shear vibration propagation in disordered media.</div></div>","PeriodicalId":49367,"journal":{"name":"Wave Motion","volume":"139 ","pages":"Article 103620"},"PeriodicalIF":2.5,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144886484","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-08-19DOI: 10.1016/j.wavemoti.2025.103623
Yanan Wang , Minghe Zhang
We construct novel non-autonomous positons, breather-positons, and breather molecules for the variable-coefficient Kundu-nonlinear Schrödinger equation —a key model for pulse propagation in optical fibers. Through degenerate Darboux transformation, we reveal intricate dynamics previously unattainable. For non-autonomous positon solution, generalized asymptotic analysis method yields exact expressions of asymptotic solitons with logarithmic trajectories. Arising from the different non-autonomous breather-positon, we give the non-autonomous rogue wave generation process and other results. For the non-autonomous breather molecule, the related dynamic behaviors under the periodic, exponential and hyperbolic function parameters are explored by the characteristic line analysis. This work provides a unified framework for investigating degenerate complex waves in inhomogeneous optical media.
{"title":"Non-autonomous positon and breather molecule for the variable-coefficient Kundu-nonlinear Schrödinger equation","authors":"Yanan Wang , Minghe Zhang","doi":"10.1016/j.wavemoti.2025.103623","DOIUrl":"10.1016/j.wavemoti.2025.103623","url":null,"abstract":"<div><div>We construct novel non-autonomous positons, breather-positons, and breather molecules for the variable-coefficient Kundu-nonlinear Schrödinger equation —a key model for pulse propagation in optical fibers. Through degenerate Darboux transformation, we reveal intricate dynamics previously unattainable. For non-autonomous positon solution, generalized asymptotic analysis method yields exact expressions of asymptotic solitons with logarithmic trajectories. Arising from the different non-autonomous breather-positon, we give the non-autonomous rogue wave generation process and other results. For the non-autonomous breather molecule, the related dynamic behaviors under the periodic, exponential and hyperbolic function parameters are explored by the characteristic line analysis. This work provides a unified framework for investigating degenerate complex waves in inhomogeneous optical media.</div></div>","PeriodicalId":49367,"journal":{"name":"Wave Motion","volume":"139 ","pages":"Article 103623"},"PeriodicalIF":2.5,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144890671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-08-19DOI: 10.1016/j.wavemoti.2025.103621
Jay Gopalakrishnan, Michael Neunteufel
This paper studies guided transverse scalar modes propagating through helically coiled waveguides. Modeling the modes as solutions of the Helmholtz equation within the three-dimensional (3D) waveguide geometry, a propagation ansatz transforms the mode-finding problem into a 3D quadratic eigenproblem. Through an untwisting map, the problem is shown to be equivalent to a 3D quadratic eigenproblem on a straightened configuration. Next, exploiting the constant torsion and curvature of the Frenet frame of a circular helix, the 3D eigenproblem is further reduced to a two-dimensional (2D) eigenproblem on the waveguide cross section. All three eigenproblems are numerically treated. As expected, significant computational savings are realized in the 2D model. A few nontrivial numerical techniques are needed to make the computation of modes within the 3D geometry feasible. They are presented along with a procedure to effectively filter out unwanted non-propagating eigenfunctions. Computational results show that the geometric effect of coiling is to shift the localization of guided modes away from the coiling center. The variations in modes as coiling pitch is changed are reported considering the example of a coiled optical fiber.
{"title":"Guided modes of helical waveguides","authors":"Jay Gopalakrishnan, Michael Neunteufel","doi":"10.1016/j.wavemoti.2025.103621","DOIUrl":"10.1016/j.wavemoti.2025.103621","url":null,"abstract":"<div><div>This paper studies guided transverse scalar modes propagating through helically coiled waveguides. Modeling the modes as solutions of the Helmholtz equation within the three-dimensional (3D) waveguide geometry, a propagation ansatz transforms the mode-finding problem into a 3D quadratic eigenproblem. Through an untwisting map, the problem is shown to be equivalent to a 3D quadratic eigenproblem on a straightened configuration. Next, exploiting the constant torsion and curvature of the Frenet frame of a circular helix, the 3D eigenproblem is further reduced to a two-dimensional (2D) eigenproblem on the waveguide cross section. All three eigenproblems are numerically treated. As expected, significant computational savings are realized in the 2D model. A few nontrivial numerical techniques are needed to make the computation of modes within the 3D geometry feasible. They are presented along with a procedure to effectively filter out unwanted non-propagating eigenfunctions. Computational results show that the geometric effect of coiling is to shift the localization of guided modes away from the coiling center. The variations in modes as coiling pitch is changed are reported considering the example of a coiled optical fiber.</div></div>","PeriodicalId":49367,"journal":{"name":"Wave Motion","volume":"139 ","pages":"Article 103621"},"PeriodicalIF":2.5,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144896325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-08-18DOI: 10.1016/j.wavemoti.2025.103625
Selina Hossain , Koushik Nandi , Soumen De
The present work investigates the generation and propagation of wave motion produced by initial disturbances in a finite-depth ocean with an elastic bottom, influenced by a constant magnetic field acting in the normal direction of wave propagation. The objective is to derive an analytical solution to the Cauchy–Poisson problem for an ocean over an elastic bottom, modeled as an elastic solid medium, in presence of a uniform magnetic field. The fluid is assumed to be incompressible and is bounded above by a free surface and below by a homogeneous magnetoelastic half-space. By applying linear theory of water waves and linear elasticity theory for solids, the physical problem is formulated as an initial boundary value problem. The Laplace–Fourier integral transform method is employed to obtain analytical expressions for the free surface elevation and the vertical displacement of the seabed in the form of multiple infinite integrals. The method of steepest descent approximation is then applied to evaluate these integrals asymptotically. The results, illustrated through figures, highlight the effects of various key physical parameters on wave behavior. The dispersion relation governing the wave motion is also derived and analyzed. The findings reveal that the magnetic field significantly alters wave characteristics and mitigates wave impact. Additionally, variations in pressure and shear wave velocities are found to have a notable influence on wave propagation. Validation is carried out by comparing the results with existing literature for the special case of a rigid seabed.
{"title":"Cauchy–Poisson problem in a homogeneous liquid layer over a magnetoelastic half-space","authors":"Selina Hossain , Koushik Nandi , Soumen De","doi":"10.1016/j.wavemoti.2025.103625","DOIUrl":"10.1016/j.wavemoti.2025.103625","url":null,"abstract":"<div><div>The present work investigates the generation and propagation of wave motion produced by initial disturbances in a finite-depth ocean with an elastic bottom, influenced by a constant magnetic field acting in the normal direction of wave propagation. The objective is to derive an analytical solution to the Cauchy–Poisson problem for an ocean over an elastic bottom, modeled as an elastic solid medium, in presence of a uniform magnetic field. The fluid is assumed to be incompressible and is bounded above by a free surface and below by a homogeneous magnetoelastic half-space. By applying linear theory of water waves and linear elasticity theory for solids, the physical problem is formulated as an initial boundary value problem. The Laplace–Fourier integral transform method is employed to obtain analytical expressions for the free surface elevation and the vertical displacement of the seabed in the form of multiple infinite integrals. The method of steepest descent approximation is then applied to evaluate these integrals asymptotically. The results, illustrated through figures, highlight the effects of various key physical parameters on wave behavior. The dispersion relation governing the wave motion is also derived and analyzed. The findings reveal that the magnetic field significantly alters wave characteristics and mitigates wave impact. Additionally, variations in pressure and shear wave velocities are found to have a notable influence on wave propagation. Validation is carried out by comparing the results with existing literature for the special case of a rigid seabed.</div></div>","PeriodicalId":49367,"journal":{"name":"Wave Motion","volume":"139 ","pages":"Article 103625"},"PeriodicalIF":2.5,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144867159","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-08-16DOI: 10.1016/j.wavemoti.2025.103628
Ayush Thakur , Nur M.M. Kalimullah , Amit Shelke , Budhaditya Hazra , Tribikram Kundu
The measurement of elastic constants often shows randomness, which consequently affects the propagation of P- and S-waves in a solid material. In the theory of wave propagation, longitudinal and transverse waves are characterised using P-and-S wavenumbers ( and ), which can be modelled as a random variable to simulate random ultrasonic fields. In this research work, an efficient and accurate solution technique to model random wave propagation due to random wavenumbers using Distributed point source method (DPSM) is developed. DPSM is a semi-analytical method that requires Green’s function (GF) solution for producing ultrasonic fields in homogeneous or heterogeneous solids and near the fluid-solid interface. The generation of ultrasonic fields at higher frequencies and in complex structures requires a large number of distributed point sources, thereby leading to the computation of a greater number of GFs. Therefore, the numerical calculation of random wavefields increases the computational complexity. An analytical model to approximate first-order and second-order moments of the displacement GF solutions for isotropic solid corresponding to randomly distributed P- and S-wavenumbers is proposed. The statistical moments (mean and variance) of ultrasonic fields (stresses and displacement fields) near the fluid-solid interface and in the solid half-space are calculated using the proposed theoretical model. The efficacy and accuracy of the proposed model for normally distributed wavenumbers are illustrated through two numerical analyses. Initially, the mean ultrasonic fields such as displacement and stress fields are evaluated using both the proposed analytical model and Monte Carlo (MC) simulation for 1 MHz excitation frequency. Mean and standard deviations of the total scattered wavefields are computed near the interface and along the solid medium. Further, to check the robustness of the proposed analytical model ultrasonic fields for 2.25 MHz excitation frequency are computed for the same problem configuration and the mean fields are compared with the MC simulation. The computed mean displacement GF solutions and ultrasonic fields using the proposed model for normally distributed wavenumbers match precisely with the MC simulation. Further, the standard deviation of the ultrasonic fields for normally distributed wavenumbers is estimated for different transducer frequencies.
{"title":"Ultrasonic field estimation for random P -and S-wavenumbers in isotropic solids using DPSM","authors":"Ayush Thakur , Nur M.M. Kalimullah , Amit Shelke , Budhaditya Hazra , Tribikram Kundu","doi":"10.1016/j.wavemoti.2025.103628","DOIUrl":"10.1016/j.wavemoti.2025.103628","url":null,"abstract":"<div><div>The measurement of elastic constants often shows randomness, which consequently affects the propagation of P- and S-waves in a solid material. In the theory of wave propagation, longitudinal and transverse waves are characterised using P-and-S wavenumbers (<span><math><msub><mi>k</mi><mi>p</mi></msub></math></span> and <span><math><msub><mi>k</mi><mi>s</mi></msub></math></span>), which can be modelled as a random variable to simulate random ultrasonic fields. In this research work, an efficient and accurate solution technique to model random wave propagation due to random wavenumbers using Distributed point source method (DPSM) is developed. DPSM is a semi-analytical method that requires Green’s function (GF) solution for producing ultrasonic fields in homogeneous or heterogeneous solids and near the fluid-solid interface. The generation of ultrasonic fields at higher frequencies and in complex structures requires a large number of distributed point sources, thereby leading to the computation of a greater number of GFs. Therefore, the numerical calculation of random wavefields increases the computational complexity. An analytical model to approximate first-order and second-order moments of the displacement GF solutions for isotropic solid corresponding to randomly distributed P- and S-wavenumbers is proposed. The statistical moments (mean and variance) of ultrasonic fields (stresses and displacement fields) near the fluid-solid interface and in the solid half-space are calculated using the proposed theoretical model. The efficacy and accuracy of the proposed model for normally distributed wavenumbers are illustrated through two numerical analyses. Initially, the mean ultrasonic fields such as displacement and stress fields are evaluated using both the proposed analytical model and Monte Carlo (MC) simulation for 1 MHz excitation frequency. Mean and standard deviations of the total scattered wavefields are computed near the interface and along the solid medium. Further, to check the robustness of the proposed analytical model ultrasonic fields for 2.25 MHz excitation frequency are computed for the same problem configuration and the mean fields are compared with the MC simulation. The computed mean displacement GF solutions and ultrasonic fields using the proposed model for normally distributed wavenumbers match precisely with the MC simulation. Further, the standard deviation of the ultrasonic fields for normally distributed wavenumbers is estimated for different transducer frequencies.</div></div>","PeriodicalId":49367,"journal":{"name":"Wave Motion","volume":"139 ","pages":"Article 103628"},"PeriodicalIF":2.5,"publicationDate":"2025-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144896336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-08-15DOI: 10.1016/j.wavemoti.2025.103627
Jan Erik H. Weber
For inviscid periodic wave motion, we derive a novel expression in Lagrangian variables for the Stokes drift, which is valid for rotational as well as irrotational waves. The derivation confirms that the Lagrangian mean velocity can be expressed as the sum of the Eulerian mean velocity and the Stokes drift. However, from the Stokes drift part of this expression, we find that the rotational Gerstner wave has a non-zero Stokes drift. Since the Lagrangian mean velocity is zero for this particular wave, we obviously must have a non-zero Eulerian mean velocity in this case, cancelling the Stokes drift. To discuss this problem in detail, we return to the basic kinematics of periodic wave motion in fluids. We avoid time averaging and consider the classic problem of how the Lagrangian particle velocity develops in time, resulting in a Eulerian velocity (expressed in Lagrangian variables) plus the Stokes velocity. We discuss the implication for irrotational deep-water Stokes waves and rotational Gerstner waves. It is demonstrated that the Eulerian velocity, expressed in Lagrangian variables, is different for the two wave types. This explains why the Lagrangian mean velocity in the Stokes wave is equal to the Stokes drift, while it is zero for the Gerstner wave.
{"title":"Eulerian contributions to the particle velocity in Stokes and Gerstner waves","authors":"Jan Erik H. Weber","doi":"10.1016/j.wavemoti.2025.103627","DOIUrl":"10.1016/j.wavemoti.2025.103627","url":null,"abstract":"<div><div>For inviscid periodic wave motion, we derive a novel expression in Lagrangian variables for the Stokes drift, which is valid for rotational as well as irrotational waves. The derivation confirms that the Lagrangian mean velocity can be expressed as the sum of the Eulerian mean velocity and the Stokes drift. However, from the Stokes drift part of this expression, we find that the rotational Gerstner wave has a non-zero Stokes drift. Since the Lagrangian mean velocity is zero for this particular wave, we obviously must have a non-zero Eulerian mean velocity in this case, cancelling the Stokes drift. To discuss this problem in detail, we return to the basic kinematics of periodic wave motion in fluids. We avoid time averaging and consider the classic problem of how the Lagrangian particle velocity develops in time, resulting in a Eulerian velocity (expressed in Lagrangian variables) plus the Stokes velocity. We discuss the implication for irrotational deep-water Stokes waves and rotational Gerstner waves. It is demonstrated that the Eulerian velocity, expressed in Lagrangian variables, is different for the two wave types. This explains why the Lagrangian mean velocity in the Stokes wave is equal to the Stokes drift, while it is zero for the Gerstner wave.</div></div>","PeriodicalId":49367,"journal":{"name":"Wave Motion","volume":"139 ","pages":"Article 103627"},"PeriodicalIF":2.5,"publicationDate":"2025-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144867157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-08-13DOI: 10.1016/j.wavemoti.2025.103614
K.R. Arun , Rakesh Kumar , Asha Kumari Meena
A hybrid weighted essentially non-oscillatory (WENO) finite difference scheme is proposed for computing discontinuous solutions of the ten-moment Gaussian closure equations. A salient feature of the proposed scheme is the use of low-cost component-wise reconstruction of the numerical fluxes in smooth regions and non-oscillatory characteristic-wise reconstruction in the vicinity of discontinuities. A troubled-cell indicator which measures the smoothness of the solution, and built on utilising the smoothness indicators of the underlying WENO scheme, is employed to effectively switch between the two reconstructions. The resulting hybrid WENO scheme is simple and efficient, is independent of the order and type of the WENO reconstruction, and it can be used as an effective platform to construct finite difference schemes of any arbitrary high-order accuracy. For demonstration, we have considered the fifth order WENO-Z reconstruction. We have performed several 1D and 2D numerical experiments to illustrate the efficiency of the proposed hybrid algorithm and its performance compared to the standard WENO-Z scheme. Numerical case studies shows that the present algorithm achieves fifth order accuracy for smooth problems, resolves discontinuities in a non-oscillatory manner and takes 25%–50% less computational time than the WENO-Z scheme while retaining many of its advantages.
{"title":"Hybrid finite difference WENO schemes for the ten-moment Gaussian closure equations with source term","authors":"K.R. Arun , Rakesh Kumar , Asha Kumari Meena","doi":"10.1016/j.wavemoti.2025.103614","DOIUrl":"10.1016/j.wavemoti.2025.103614","url":null,"abstract":"<div><div>A hybrid weighted essentially non-oscillatory (WENO) finite difference scheme is proposed for computing discontinuous solutions of the ten-moment Gaussian closure equations. A salient feature of the proposed scheme is the use of low-cost component-wise reconstruction of the numerical fluxes in smooth regions and non-oscillatory characteristic-wise reconstruction in the vicinity of discontinuities. A troubled-cell indicator which measures the smoothness of the solution, and built on utilising the smoothness indicators of the underlying WENO scheme, is employed to effectively switch between the two reconstructions. The resulting hybrid WENO scheme is simple and efficient, is independent of the order and type of the WENO reconstruction, and it can be used as an effective platform to construct finite difference schemes of any arbitrary high-order accuracy. For demonstration, we have considered the fifth order WENO-Z reconstruction. We have performed several 1D and 2D numerical experiments to illustrate the efficiency of the proposed hybrid algorithm and its performance compared to the standard WENO-Z scheme. Numerical case studies shows that the present algorithm achieves fifth order accuracy for smooth problems, resolves discontinuities in a non-oscillatory manner and takes 25%–50% less computational time than the WENO-Z scheme while retaining many of its advantages.</div></div>","PeriodicalId":49367,"journal":{"name":"Wave Motion","volume":"139 ","pages":"Article 103614"},"PeriodicalIF":2.5,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144851977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-08-12DOI: 10.1016/j.wavemoti.2025.103619
Huanhuan Lu
This paper begins by deducing a reverse space–time nonlocal fifth-order nonlinear Schrödinger (NLS) equation, which arises from a simple yet significant symmetry reduction of the corresponding local system. Following this, the determinant form of soliton solutions is thoroughly constructed based on established Gelfand–Levitan–Marchenko(GLM) equation. As a typical application, some exact solutions are derived, including one-soliton, two-soliton, and three-soliton solutions. The dynamical properties of these solutions are further explored and visualized through graphical analysis. Moreover, the integrability of the equation is established by presenting an infinite set of conserved densities. It is particularly noteworthy that we also present the expression for the three-soliton solution, which represents an unprecedented achievement in this field.
{"title":"The soliton solutions for an integrable nonlocal reverse space–time fifth-order nonlinear Schrödinger equation by the inverse scattering transform","authors":"Huanhuan Lu","doi":"10.1016/j.wavemoti.2025.103619","DOIUrl":"10.1016/j.wavemoti.2025.103619","url":null,"abstract":"<div><div>This paper begins by deducing a reverse space–time nonlocal fifth-order nonlinear Schrödinger (NLS) equation, which arises from a simple yet significant symmetry reduction of the corresponding local system. Following this, the determinant form of <span><math><mi>N</mi></math></span> soliton solutions is thoroughly constructed based on established Gelfand–Levitan–Marchenko(GLM) equation. As a typical application, some exact solutions are derived, including one-soliton, two-soliton, and three-soliton solutions. The dynamical properties of these solutions are further explored and visualized through graphical analysis. Moreover, the integrability of the equation is established by presenting an infinite set of conserved densities. It is particularly noteworthy that we also present the expression for the three-soliton solution, which represents an unprecedented achievement in this field.</div></div>","PeriodicalId":49367,"journal":{"name":"Wave Motion","volume":"139 ","pages":"Article 103619"},"PeriodicalIF":2.5,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144858286","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-08-11DOI: 10.1016/j.wavemoti.2025.103618
Zhihao Zhang , Shunhong Lin , Tiantian Li , Xiao-Dong Bai , Jie Peng
Deep learning has successfully enabled the identification of first-order rogue waves in single-component Bose–Einstein condensates. However, the prediction of rogue waves and identification of high-order rogue waves in two-component coupled Bose–Einstein condensates remain unresolved challenges. In this paper, we extend the application of deep convolutional neural network to the detection of high-order rogue waves in two-component coupled Bose–Einstein condensates by interpreting the spatiotemporal evolution of wave functions as image data. The method successfully learns the complex dynamic behaviors of rogue waves in two-component coupled Bose–Einstein condensates governed by multiple parameters. Moreover, we efficiently locate a narrow, irregular region within the three-dimensional parameter space where second-order-like rogue waves arise. Compared with the tedious iterative processes of numerical methods, this approach significantly reduces computational time—a critical advantage given that time grows exponentially with the number of control parameters. This work provides a scalable tool for exploring complex behaviors in high-dimensional parameter spaces, with potential applications in nonlinear optics, plasma physics, and ocean engineering, where the rapid prediction of extreme waves is critical.
{"title":"Detecting high-order rogue waves in two-component Bose–Einstein condensates via a convolutional neural network-based framework","authors":"Zhihao Zhang , Shunhong Lin , Tiantian Li , Xiao-Dong Bai , Jie Peng","doi":"10.1016/j.wavemoti.2025.103618","DOIUrl":"10.1016/j.wavemoti.2025.103618","url":null,"abstract":"<div><div>Deep learning has successfully enabled the identification of first-order rogue waves in single-component Bose–Einstein condensates. However, the prediction of rogue waves and identification of high-order rogue waves in two-component coupled Bose–Einstein condensates remain unresolved challenges. In this paper, we extend the application of deep convolutional neural network to the detection of high-order rogue waves in two-component coupled Bose–Einstein condensates by interpreting the spatiotemporal evolution of wave functions as image data. The method successfully learns the complex dynamic behaviors of rogue waves in two-component coupled Bose–Einstein condensates governed by multiple parameters. Moreover, we efficiently locate a narrow, irregular region within the three-dimensional parameter space where second-order-like rogue waves arise. Compared with the tedious iterative processes of numerical methods, this approach significantly reduces computational time—a critical advantage given that time grows exponentially with the number of control parameters. This work provides a scalable tool for exploring complex behaviors in high-dimensional parameter spaces, with potential applications in nonlinear optics, plasma physics, and ocean engineering, where the rapid prediction of extreme waves is critical.</div></div>","PeriodicalId":49367,"journal":{"name":"Wave Motion","volume":"139 ","pages":"Article 103618"},"PeriodicalIF":2.5,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144841861","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}