The self-healing effect on the impact-resistance has been investigated for hybrid stitch toughening CFRP composites using multiscale modeling. The stitches made of the healing agent, poly ethylene-co-methacrylic acid (EMAA), facilitate the repair of delamination damages via a self-healing process. The other stitches, fabricated from carbon fiber, contribute to the enhancement of interlaminar toughness. Considering the local structural features adjacent to the stitches, an equivalent fiber-embedded laminate (EFEL) cell is established to characterize the mesoscale behavior. A modified constitutive model is developed to accurately describe the deformation modes of the EFEL cell. Subsequently, a macroscale model is constructed by directly extending the EFEL cells. The self-healing of the impact-resistance is numerically explored through multiple low-velocity impact (LVI) tests. The proposed modeling approach enables a prediction error less than 8.4% and the computation time of approximately 17.3 h (1036 min), demonstrating the high accuracy and efficiency. After the self-healing process, the peak impact forces of the LVI specimens increase, while decreases in absorbed energy are observed. Moreover, the healed specimens exhibit fewer damaged elements and a smoother damaged surface compared with the unhealed ones. It demonstrates that the EMAA healing agent possesses the capability to improve the impact-resistance of hybrid stitch toughening CFRP composites.