首页 > 最新文献

Surveys in Geophysics最新文献

英文 中文
Electromagnetic Subsurface Imaging in the Presence of Metallic Structures: A Review of Numerical Strategies 存在金属结构时的电磁地表下成像:数值策略综述
IF 4.9 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-08-28 DOI: 10.1007/s10712-024-09855-7
Octavio Castillo-Reyes, Pilar Queralt, Perla Piñas-Varas, Juanjo Ledo, Otilio Rojas

Electromagnetic (EM) imaging aims to produce large-scale, high-resolution soil conductivity maps that provide essential information for Earth subsurface exploration. To rigorously generate EM subsurface models, one must address both the forward problem and the inverse problem. From these subsurface resistivity maps, also referred to as volumes of resistivity distribution, it is possible to extract useful information (lithology, temperature, porosity, permeability, among others) to improve our knowledge about geo-resources on which modern society depends (e.g., energy, groundwater, and raw materials, among others). However, this ability to detect electrical resistivity contrasts also makes EM imaging techniques sensitive to metallic structures whose EM footprint often exceeds their diminutive stature compared to surrounding materials. Depending on target applications, this behavior can be advantageous or disadvantageous. In this work, we review EM modeling and inverse solutions in the presence of metallic structures, emphasizing how these structures affect EM data acquisition and interpretation. By addressing the challenges posed by metallic structures, our aim is to enhance the accuracy and reliability of subsurface EM characterization, ultimately leading to improved management of geo-resources and environmental monitoring. Here, we consider the latter through the lens of a triple helix approach: physics behind metallic structures in EM modeling and imaging, development of computational tools (conventional strategies and artificial intelligence schemes), and configurations and applications. The literature review shows that, despite recent scientific advancements, EM imaging techniques are still being developed, as are software-based data processing and interpretation tools. Such progress must address geological complexities and metallic casing measurements integrity in increasing detail setups. We hope this review will provide inspiration for researchers to study the fascinating EM problem, as well as establishing a robust technological ecosystem to those interested in studying EM fields affected by metallic artifacts.

电磁(EM)成像旨在生成大尺度、高分辨率的土壤电导率图,为地球地下勘探提供重要信息。要严格生成电磁地下模型,必须同时解决正向问题和反向问题。从这些次表层电阻率图(也称为电阻率分布图)中可以提取有用的信息(岩性、温度、孔隙度、渗透性等),从而提高我们对现代社会所依赖的地质资源(如能源、地下水和原材料等)的认识。然而,这种检测电阻率对比的能力也使电磁成像技术对金属结构非常敏感,因为与周围材料相比,金属结构的电磁足迹往往超过其微小的体积。根据目标应用的不同,这种行为可能是有利的,也可能是不利的。在这项工作中,我们回顾了存在金属结构时的电磁建模和逆解,强调了这些结构如何影响电磁数据的采集和解读。通过应对金属结构带来的挑战,我们的目标是提高地下电磁特征描述的准确性和可靠性,最终改善地质资源管理和环境监测。在此,我们通过三螺旋方法来考虑后者:电磁建模和成像中金属结构背后的物理学、计算工具的开发(传统策略和人工智能方案)以及配置和应用。文献综述表明,尽管最近取得了科学进步,但电磁成像技术仍在不断发展,基于软件的数据处理和解释工具也是如此。这种进步必须解决地质复杂性和金属套管测量完整性的问题,并不断增加细节设置。我们希望这篇综述能为研究人员研究引人入胜的电磁问题提供灵感,并为有兴趣研究受金属工件影响的电磁场的人员建立一个强大的技术生态系统。
{"title":"Electromagnetic Subsurface Imaging in the Presence of Metallic Structures: A Review of Numerical Strategies","authors":"Octavio Castillo-Reyes,&nbsp;Pilar Queralt,&nbsp;Perla Piñas-Varas,&nbsp;Juanjo Ledo,&nbsp;Otilio Rojas","doi":"10.1007/s10712-024-09855-7","DOIUrl":"10.1007/s10712-024-09855-7","url":null,"abstract":"<div><p>Electromagnetic (EM) imaging aims to produce large-scale, high-resolution soil conductivity maps that provide essential information for Earth subsurface exploration. To rigorously generate EM subsurface models, one must address both the forward problem and the inverse problem. From these subsurface resistivity maps, also referred to as volumes of resistivity distribution, it is possible to extract useful information (lithology, temperature, porosity, permeability, among others) to improve our knowledge about geo-resources on which modern society depends (e.g., energy, groundwater, and raw materials, among others). However, this ability to detect electrical resistivity contrasts also makes EM imaging techniques sensitive to metallic structures whose EM footprint often exceeds their diminutive stature compared to surrounding materials. Depending on target applications, this behavior can be advantageous or disadvantageous. In this work, we review EM modeling and inverse solutions in the presence of metallic structures, emphasizing how these structures affect EM data acquisition and interpretation. By addressing the challenges posed by metallic structures, our aim is to enhance the accuracy and reliability of subsurface EM characterization, ultimately leading to improved management of geo-resources and environmental monitoring. Here, we consider the latter through the lens of a triple helix approach: physics behind metallic structures in EM modeling and imaging, development of computational tools (conventional strategies and artificial intelligence schemes), and configurations and applications. The literature review shows that, despite recent scientific advancements, EM imaging techniques are still being developed, as are software-based data processing and interpretation tools. Such progress must address geological complexities and metallic casing measurements integrity in increasing detail setups. We hope this review will provide inspiration for researchers to study the fascinating EM problem, as well as establishing a robust technological ecosystem to those interested in studying EM fields affected by metallic artifacts.</p></div>","PeriodicalId":49458,"journal":{"name":"Surveys in Geophysics","volume":"45 5","pages":"1627 - 1661"},"PeriodicalIF":4.9,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10712-024-09855-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142090217","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Understanding the Adjoint Method in Seismology: Theory and Implementation in the Time Domain 了解地震学中的邻接法:时域理论与实施
IF 4.9 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-08-23 DOI: 10.1007/s10712-024-09847-7
Rafael Abreu

The adjoint method is a popular method used for seismic (full-waveform) inversion today. The method is considered to give more realistic and detailed images of the interior of the Earth by the use of more realistic physics. It relies on the definition of an adjoint wavefield (hence its name) that is the time-reversed synthetics that satisfy the original equations of motion. The physical justification of the nature of the adjoint wavefield is, however, commonly done by brute force with ad hoc assumptions and/or relying on the existence of Green’s functions, the representation theorem and/or the Born approximation. Using variational principles only, and without these mentioned assumptions and/or additional mathematical tools, we show that the time-reversed adjoint wavefield should be defined as a premise that leads to the correct adjoint equations. This allows us to clarify mathematical inconsistencies found in previous seminal works when dealing with viscoelastic attenuation and/or odd-order derivative terms in the equation of motion. We then discuss some methodologies for the numerical implementation of the method in the time domain and to present a variational formulation for the construction of different misfit functions. We here define a new misfit travel-time function that allows us to find consensus for the longstanding debate on the zero sensitivity along the ray path that cross-correlation travel-time measurements show. In fact, we prove that the zero sensitivity along the ray path appears as a consequence of the assumption on the similarity between data and synthetics required to perform cross-correlation travel-time measurements. When no assumption between data and synthetics is preconceived, travel-time Fréchet kernels show an extremum along the ray path as one intuitively would expect.

邻接法是当今用于地震(全波形)反演的一种流行方法。该方法被认为通过使用更真实的物理学原理,可提供更真实、更详细的地球内部图像。它依赖于邻接波场(因此而得名)的定义,即满足原始运动方程的时间反演合成。然而,对邻接波场性质的物理论证通常是通过临时假设和/或依靠格林函数的存在、表示定理和/或玻恩近似来完成的。我们仅使用变分原理,而无需上述假设和/或额外的数学工具,就能证明时间反转的邻接波场应被定义为导致正确邻接方程的前提。这使我们能够澄清以前的开创性著作在处理运动方程中的粘弹性衰减和/或奇数阶导数项时发现的数学不一致性。然后,我们讨论了在时域中数值实施该方法的一些方法,并提出了构建不同误拟合函数的变分公式。在此,我们定义了一种新的误拟合旅行时间函数,使我们能够就长期以来关于交叉相关旅行时间测量所显示的沿射线路径零灵敏度的争论达成共识。事实上,我们证明了沿射线路径的零灵敏度是进行交叉相关旅行时间测量所需的数据与合成物相似性假设的结果。如果不预先假设数据和合成物之间的相似性,那么旅行时间弗雷谢特核就会像人们直观预期的那样,在射线路径上出现一个极值。
{"title":"Understanding the Adjoint Method in Seismology: Theory and Implementation in the Time Domain","authors":"Rafael Abreu","doi":"10.1007/s10712-024-09847-7","DOIUrl":"10.1007/s10712-024-09847-7","url":null,"abstract":"<div><p>The adjoint method is a popular method used for seismic (full-waveform) inversion today. The method is considered to give more realistic and detailed images of the interior of the Earth by the use of more realistic physics. It relies on the definition of an adjoint wavefield (hence its name) that is the time-reversed synthetics that satisfy the original equations of motion. The physical justification of the nature of the adjoint wavefield is, however, commonly done by brute force with ad hoc assumptions and/or relying on the existence of Green’s functions, the representation theorem and/or the Born approximation. Using variational principles only, and without these mentioned assumptions and/or additional mathematical tools, we show that the time-reversed adjoint wavefield should be defined as a premise that leads to the correct adjoint equations. This allows us to clarify mathematical inconsistencies found in previous seminal works when dealing with viscoelastic attenuation and/or odd-order derivative terms in the equation of motion. We then discuss some methodologies for the numerical implementation of the method in the time domain and to present a variational formulation for the construction of different misfit functions. We here define a new misfit travel-time function that allows us to find consensus for the longstanding debate on the zero sensitivity along the ray path that cross-correlation travel-time measurements show. In fact, we prove that the zero sensitivity along the ray path appears as a consequence of the assumption on the similarity between data and synthetics required to perform cross-correlation travel-time measurements. When no assumption between data and synthetics is preconceived, travel-time Fréchet kernels show an extremum along the ray path as one intuitively would expect.</p></div>","PeriodicalId":49458,"journal":{"name":"Surveys in Geophysics","volume":"45 5","pages":"1363 - 1434"},"PeriodicalIF":4.9,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142042403","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Review on Intelligent Recognition with Logging Data: Tasks, Current Status and Challenges 日志数据智能识别综述:任务、现状与挑战
IF 4.9 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-08-14 DOI: 10.1007/s10712-024-09853-9
Xinyi Zhu, Hongbing Zhang, Quan Ren, Lingyuan Zhang, Guojiao Huang, Zuoping Shang, Jiangbing Sun

Geophysical logging series are valuable geological data that record the physical and chemical information of borehole walls and in-situ formations, and are widely used by geologists for interpreting geological problems due to their continuity, high resolution, and ease of access. Recently, machine learning methods are gradually bringing data science and geoscience closer together, and Intelligent Recognition using Logging Data (IRLD) is increasingly becoming an important interpretation task. However, due to the specificity of geological information, relatively low data quality makes the direct application of machine learning models to IRLD often not optimal. And to the best of our knowledge, IRLDs are not highly generalizable and technical surveys are still lacking. Therefore, this paper presents a comprehensive review of IRLD. Specifically, after systematically reviewing geophysical well logging and machine learning techniques, the main applications and general processes for the cross-discipline task of IRLD are summarized. More importantly, the key challenges of IRLD in the four stages of data acquisition, feature engineering, model building, and practical application are discussed in this review. The potential risks of these challenges are visualized by using real logging data from a study area in the South China Sea and the example of a lithology identification task. For these challenges, we give the current state-of-the-art methods and feasible strategies in conjunction with published research. This comprehensive review is expected to provide insights for practitioners to construct more robust models and achieve more effective application results in IRLD.

地球物理测井系列是记录井壁和原位地层物理和化学信息的宝贵地质数据,因其连续性强、分辨率高、易于获取等特点,被地质学家广泛用于解释地质问题。近来,机器学习方法逐渐拉近了数据科学与地球科学的距离,利用测井数据进行智能识别(IRLD)日益成为一项重要的解释任务。然而,由于地质信息的特殊性,相对较低的数据质量使得将机器学习模型直接应用于 IRLD 往往并不理想。而且据我们所知,IRLD 的通用性不高,仍然缺乏技术调查。因此,本文对 IRLD 进行了全面回顾。具体而言,在系统回顾地球物理测井和机器学习技术之后,总结了 IRLD 这一跨学科任务的主要应用和一般流程。更重要的是,本综述讨论了 IRLD 在数据采集、特征工程、模型构建和实际应用四个阶段面临的主要挑战。通过南海研究区的真实测井数据和岩性识别任务实例,直观地说明了这些挑战的潜在风险。针对这些挑战,我们结合已发表的研究成果,给出了当前最先进的方法和可行的策略。这一全面综述有望为实践者构建更强大的模型和在 IRLD 中取得更有效的应用成果提供启示。
{"title":"A Review on Intelligent Recognition with Logging Data: Tasks, Current Status and Challenges","authors":"Xinyi Zhu,&nbsp;Hongbing Zhang,&nbsp;Quan Ren,&nbsp;Lingyuan Zhang,&nbsp;Guojiao Huang,&nbsp;Zuoping Shang,&nbsp;Jiangbing Sun","doi":"10.1007/s10712-024-09853-9","DOIUrl":"10.1007/s10712-024-09853-9","url":null,"abstract":"<div><p>Geophysical logging series are valuable geological data that record the physical and chemical information of borehole walls and in-situ formations, and are widely used by geologists for interpreting geological problems due to their continuity, high resolution, and ease of access. Recently, machine learning methods are gradually bringing data science and geoscience closer together, and Intelligent Recognition using Logging Data (IRLD) is increasingly becoming an important interpretation task. However, due to the specificity of geological information, relatively low data quality makes the direct application of machine learning models to IRLD often not optimal. And to the best of our knowledge, IRLDs are not highly generalizable and technical surveys are still lacking. Therefore, this paper presents a comprehensive review of IRLD. Specifically, after systematically reviewing geophysical well logging and machine learning techniques, the main applications and general processes for the cross-discipline task of IRLD are summarized. More importantly, the key challenges of IRLD in the four stages of data acquisition, feature engineering, model building, and practical application are discussed in this review. The potential risks of these challenges are visualized by using real logging data from a study area in the South China Sea and the example of a lithology identification task. For these challenges, we give the current state-of-the-art methods and feasible strategies in conjunction with published research. This comprehensive review is expected to provide insights for practitioners to construct more robust models and achieve more effective application results in IRLD.</p></div>","PeriodicalId":49458,"journal":{"name":"Surveys in Geophysics","volume":"45 5","pages":"1493 - 1526"},"PeriodicalIF":4.9,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141986606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Decadal Variations in Equatorial Ellipticity and Principal Axis of the Earth from Satellite Laser Ranging/GRACE 从卫星激光测距/GRACE 看地球赤道椭圆度和主轴的十年变化
IF 4.9 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-08-03 DOI: 10.1007/s10712-024-09852-w
Minkang Cheng

The Earth exhibits an equatorial flattening specified by the ellipticity and the east longitude (or orientation) of the equatorial major axis, which is uniquely determined by the degree 2 and order 2 gravitational coefficients, C22 and S22. The 31-year SLR (satellite laser ranging) and 22-year GRACE/GRACE-FO (gravity recovery and climate experiment) data are analyzed to study the climate-related secular and 5.7 years to decadal variations in C22 and S22, in turn, the drift and decadal variation in the Earth’s equatorial ellipticity and orientation of the principal axis of the least moment of inertia. The effects of the surface floating mass changes (including atmosphere, ocean and surface water redistribution and the melting of the mountain and polar glaciers) and the interior fluid convective (Earth’s core flows) were evaluated. Results reveal that the equatorial ellipticity of the Earth is linearly increasing along with a remarkable decadal variation and the Earth’s equator is flattening by ~ 0.16 mm/yr.

地球呈现出一种赤道扁平化现象,由赤道主轴的椭圆度和东经(或方位)决定,而赤道主轴的椭圆度和东经(或方位)则由度数 2 和阶数 2 重力系数 C22 和 S22 唯一决定。通过分析 31 年的卫星激光测距(SLR)和 22 年的重力恢复和气候实验(GRACE/GRACE-FO)数据,研究了与气候相关的 C22 和 S22 的世代变化和 5.7 年至十年的变化,进而研究了地球赤道椭圆度和最小惯性矩主轴方向的漂移和十年变化。对地表浮动质量变化(包括大气、海洋和地表水的重新分布以及高山和极地冰川的融化)和内部流体对流(地核流动)的影响进行了评估。结果显示,地球赤道椭圆度呈线性上升趋势,并有显著的十年变化,地球赤道以 ~ 0.16 毫米/年的速度变平。
{"title":"Decadal Variations in Equatorial Ellipticity and Principal Axis of the Earth from Satellite Laser Ranging/GRACE","authors":"Minkang Cheng","doi":"10.1007/s10712-024-09852-w","DOIUrl":"10.1007/s10712-024-09852-w","url":null,"abstract":"<div><p>The Earth exhibits an equatorial flattening specified by the ellipticity and the east longitude (or orientation) of the equatorial major axis, which is uniquely determined by the degree 2 and order 2 gravitational coefficients, <i>C</i><sub>22</sub> and <i>S</i><sub>22</sub>. The 31-year SLR (satellite laser ranging) and 22-year GRACE/GRACE-FO (gravity recovery and climate experiment) data are analyzed to study the climate-related secular and 5.7 years to decadal variations in <i>C</i><sub>22</sub> and <i>S</i><sub>22</sub>, in turn, the drift and decadal variation in the Earth’s equatorial ellipticity and orientation of the principal axis of the least moment of inertia. The effects of the surface floating mass changes (including atmosphere, ocean and surface water redistribution and the melting of the mountain and polar glaciers) and the interior fluid convective (Earth’s core flows) were evaluated. Results reveal that the equatorial ellipticity of the Earth is linearly increasing along with a remarkable decadal variation and the Earth’s equator is flattening by ~ 0.16 mm/yr.</p></div>","PeriodicalId":49458,"journal":{"name":"Surveys in Geophysics","volume":"45 5","pages":"1601 - 1626"},"PeriodicalIF":4.9,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141880215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Trends and Variability in Earth’s Energy Imbalance and Ocean Heat Uptake Since 2005 2005 年以来地球能量失衡和海洋吸热的趋势与变化
IF 4.9 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-07-29 DOI: 10.1007/s10712-024-09849-5
Maria Z. Hakuba, Sébastien Fourest, Tim Boyer, Benoit Meyssignac, James A. Carton, Gaël Forget, Lijing Cheng, Donata Giglio, Gregory C. Johnson, Seiji Kato, Rachel E. Killick, Nicolas Kolodziejczyk, Mikael Kuusela, Felix Landerer, William Llovel, Ricardo Locarnini, Norman Loeb, John M. Lyman, Alexey Mishonov, Peter Pilewskie, James Reagan, Andrea Storto, Thea Sukianto, Karina von Schuckmann

Earth’s energy imbalance (EEI) is a fundamental metric of global Earth system change, quantifying the cumulative impact of natural and anthropogenic radiative forcings and feedback. To date, the most precise measurements of EEI change are obtained through radiometric observations at the top of the atmosphere (TOA), while the quantification of EEI absolute magnitude is facilitated through heat inventory analysis, where ~ 90% of heat uptake manifests as an increase in ocean heat content (OHC). Various international groups provide OHC datasets derived from in situ and satellite observations, as well as from reanalyses ingesting many available observations. The WCRP formed the GEWEX-EEI Assessment Working Group to better understand discrepancies, uncertainties and reconcile current knowledge of EEI magnitude, variability and trends. Here, 21 OHC datasets and ocean heat uptake (OHU) rates are intercompared, providing OHU estimates ranging between 0.40 ± 0.12 and 0.96 ± 0.08 W m−2 (2005–2019), a spread that is slightly reduced when unequal ocean sampling is accounted for, and that is largely attributable to differing source data, mapping methods and quality control procedures. The rate of increase in OHU varies substantially between − 0.03 ± 0.13 (reanalysis product) and 1.1 ± 0.6 W m−2 dec−1 (satellite product). Products that either more regularly observe (satellites) or fill in situ data-sparse regions based on additional physical knowledge (some reanalysis and hybrid products) tend to track radiometric EEI variability better than purely in situ-based OHC products. This paper also examines zonal trends in TOA radiative fluxes and the impact of data gaps on trend estimates. The GEWEX-EEI community aims to refine their assessment studies, to forge a path toward best practices, e.g., in uncertainty quantification, and to formulate recommendations for future activities.

地球能量失衡(EEI)是衡量全球地球系统变化的一个基本指标,它量化了自然和人为辐射作用力和反馈的累积影响。迄今为止,EEI 变化的最精确测量是通过大气顶部(TOA)的辐射观测获得的,而 EEI 绝对值的量化则是通过热量清单分析来实现的,其中约 90% 的热量吸收表现为海洋热含量(OHC)的增加。各种国际团体提供的海洋热含量数据集来自现场观测和卫星观测,以及吸收了许多现有观测数据的再分析。世界气候研究计划成立了 GEWEX-EEI 评估工作组,以更好地了解差异和不确定性,并协调目前对 EEI 幅 度、变异性和趋势的了解。在这里,对 21 个海洋温度数据集和海洋热吸收率(OHU)进行了相互比较,得出的 OHU 估计值介于 0.40 ± 0.12 和 0.96 ± 0.08 W m-2 之间(2005-2019 年)。OHU的增加率在- 0.03 ± 0.13(再分析产品)和1.1 ± 0.6 W m-2 dec-1(卫星产品)之间有很大差异。更定期观测(卫星)或基于额外物理知识填补原地数据稀缺区域的产品(一些再分析和混合产品)往往比纯粹基于原地的 OHC 产品更好地跟踪辐射测量的 EEI 变率。本文还研究了 TOA 辐射通量的分区趋势以及数据缺口对趋势估计的影响。GEWEX-EEI 社区的目标是完善其评估研究,开辟一条通往最佳实践(如不确定性量化)的道路,并为未来的活动提出建议。
{"title":"Trends and Variability in Earth’s Energy Imbalance and Ocean Heat Uptake Since 2005","authors":"Maria Z. Hakuba,&nbsp;Sébastien Fourest,&nbsp;Tim Boyer,&nbsp;Benoit Meyssignac,&nbsp;James A. Carton,&nbsp;Gaël Forget,&nbsp;Lijing Cheng,&nbsp;Donata Giglio,&nbsp;Gregory C. Johnson,&nbsp;Seiji Kato,&nbsp;Rachel E. Killick,&nbsp;Nicolas Kolodziejczyk,&nbsp;Mikael Kuusela,&nbsp;Felix Landerer,&nbsp;William Llovel,&nbsp;Ricardo Locarnini,&nbsp;Norman Loeb,&nbsp;John M. Lyman,&nbsp;Alexey Mishonov,&nbsp;Peter Pilewskie,&nbsp;James Reagan,&nbsp;Andrea Storto,&nbsp;Thea Sukianto,&nbsp;Karina von Schuckmann","doi":"10.1007/s10712-024-09849-5","DOIUrl":"10.1007/s10712-024-09849-5","url":null,"abstract":"<div><p>Earth’s energy imbalance (EEI) is a fundamental metric of global Earth system change, quantifying the cumulative impact of natural and anthropogenic radiative forcings and feedback. To date, the most precise measurements of EEI change are obtained through radiometric observations at the top of the atmosphere (TOA), while the quantification of EEI absolute magnitude is facilitated through heat inventory analysis, where ~ 90% of heat uptake manifests as an increase in ocean heat content (OHC). Various international groups provide OHC datasets derived from in situ and satellite observations, as well as from reanalyses ingesting many available observations. The WCRP formed the GEWEX-EEI Assessment Working Group to better understand discrepancies, uncertainties and reconcile current knowledge of EEI magnitude, variability and trends. Here, 21 OHC datasets and ocean heat uptake (OHU) rates are intercompared, providing OHU estimates ranging between 0.40 ± 0.12 and 0.96 ± 0.08 W m<sup>−2</sup> (2005–2019), a spread that is slightly reduced when unequal ocean sampling is accounted for, and that is largely attributable to differing source data, mapping methods and quality control procedures. The rate of increase in OHU varies substantially between − 0.03 ± 0.13 (reanalysis product) and 1.1 ± 0.6 W m<sup>−2</sup> dec<sup>−1</sup> (satellite product). Products that either more regularly observe (satellites) or fill in situ data-sparse regions based on additional physical knowledge (some reanalysis and hybrid products) tend to track radiometric EEI variability better than purely in situ-based OHC products. This paper also examines zonal trends in TOA radiative fluxes and the impact of data gaps on trend estimates. The GEWEX-EEI community aims to refine their assessment studies, to forge a path toward best practices, e.g., in uncertainty quantification, and to formulate recommendations for future activities.</p></div>","PeriodicalId":49458,"journal":{"name":"Surveys in Geophysics","volume":"45 6","pages":"1721 - 1756"},"PeriodicalIF":4.9,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10712-024-09849-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141790957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Low-Rank Approximation Reconstruction of Five-Dimensional Seismic Data 五维地震数据的低库近似重构
IF 4.9 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-07-27 DOI: 10.1007/s10712-024-09848-6
Gui Chen, Yang Liu, Mi Zhang, Yuhang Sun, Haoran Zhang

Low-rank approximation has emerged as a promising technique for recovering five-dimensional (5D) seismic data, yet the quest for higher accuracy and stronger rank robustness remains a critical pursuit. We introduce a low-rank approximation method by leveraging the complete graph tensor network (CGTN) decomposition and the learnable transform (LT), referred to as the LRA-LTCGTN method, to simultaneously denoise and reconstruct 5D seismic data. In the LRA-LTCGTN framework, the LT is employed to project the frequency tensor of the original 5D data onto a small-scale latent space. Subsequently, the CGTN decomposition is executed on this latent space. We adopt the proximal alternating minimization algorithm to optimize each variable. Both 5D synthetic data and field data examples indicate that the LRA-LTCGTN method exhibits notable advantages and superior efficiency compared to the damped rank-reduction (DRR), parallel matrix factorization (PMF), and LRA-CGTN methods. Moreover, a sensitivity analysis underscores the remarkably stronger robustness of the LRA-LTCGTN method in terms of rank without any optimization procedure with respect to rank, compared to the LRA-CGTN method.

低秩近似已成为恢复五维(5D)地震数据的一项前景广阔的技术,但追求更高的精度和更强的秩稳健性仍是一项关键任务。我们介绍了一种利用完整图张量网络(CGTN)分解和可学习变换(LT)的低秩近似方法,称为 LRA-LTCGTN 方法,可同时对五维地震数据进行去噪和重建。在 LRA-LTCGTN 框架中,LT 被用来将原始 5D 数据的频率张量投影到一个小尺度的潜在空间。随后,在该潜空间上执行 CGTN 分解。我们采用近似交替最小化算法来优化每个变量。5D 合成数据和实地数据实例都表明,与阻尼秩还原法(DRR)、并行矩阵因式分解法(PMF)和 LRA-CGTN 方法相比,LRA-LTCGTN 方法具有显著的优势和更高的效率。此外,一项敏感性分析强调,与 LRA-CGTN 方法相比,LRA-LTCGTN 方法在秩方面具有显著更强的鲁棒性,而无需对秩进行任何优化。
{"title":"Low-Rank Approximation Reconstruction of Five-Dimensional Seismic Data","authors":"Gui Chen,&nbsp;Yang Liu,&nbsp;Mi Zhang,&nbsp;Yuhang Sun,&nbsp;Haoran Zhang","doi":"10.1007/s10712-024-09848-6","DOIUrl":"10.1007/s10712-024-09848-6","url":null,"abstract":"<div><p>Low-rank approximation has emerged as a promising technique for recovering five-dimensional (5D) seismic data, yet the quest for higher accuracy and stronger rank robustness remains a critical pursuit. We introduce a low-rank approximation method by leveraging the complete graph tensor network (CGTN) decomposition and the learnable transform (LT), referred to as the LRA-LTCGTN method, to simultaneously denoise and reconstruct 5D seismic data. In the LRA-LTCGTN framework, the LT is employed to project the frequency tensor of the original 5D data onto a small-scale latent space. Subsequently, the CGTN decomposition is executed on this latent space. We adopt the proximal alternating minimization algorithm to optimize each variable. Both 5D synthetic data and field data examples indicate that the LRA-LTCGTN method exhibits notable advantages and superior efficiency compared to the damped rank-reduction (DRR), parallel matrix factorization (PMF), and LRA-CGTN methods. Moreover, a sensitivity analysis underscores the remarkably stronger robustness of the LRA-LTCGTN method in terms of rank without any optimization procedure with respect to rank, compared to the LRA-CGTN method.</p></div>","PeriodicalId":49458,"journal":{"name":"Surveys in Geophysics","volume":"45 5","pages":"1459 - 1492"},"PeriodicalIF":4.9,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141769067","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Q: A Review 问:回顾
IF 4.9 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-07-26 DOI: 10.1007/s10712-024-09850-y
José M. Carcione, Francesco Mainardi, Ayman N. Qadrouh, Mamdoh Alajmi, Jing Ba

The quality factor Q is a dimensionless measure of the energy loss per cycle of a wave field, and a proper understanding of this factor is important in a variety of fields, from seismology, geophysical prospecting to electrical science. Here, the focus is on viscoelasticity. When interpreting experimental values, several factors must be taken into account, in particular the shape of the medium (rods, bars or unbounded media) and the fact that the measurements are made on stationary or propagating modes. From a theoretical point of view, the expressions of Q may differ due to different definitions, the spatial dimension and the inhomogeneity of the wave, i.e. the fact that the vectors of propagation (or wavenumber) and attenuation do not point in the same direction. We show the difference between temporal and spatial Q, the relationships between compressional and shear Q, the dependence on frequency, the case of poro-viscoelasticity and anisotropy, the effect of inhomogeneous waves and various loss mechanisms, and consider the analogy between elastic and electromagnetic waves. We discuss physical theories describing relaxation peaks, bounds on Q and experiments showing the behaviour of Q as a function of frequency, saturation and pore pressure. Finally, we propose an application example where Q can be used to estimate porosity and saturation.

品质因数 Q 是衡量波场每周期能量损失的无量纲指标,正确理解这一因子在地震学、地球物理勘探和电气科学等多个领域都非常重要。这里的重点是粘弹性。在解释实验值时,必须考虑几个因素,特别是介质的形状(杆、棒或无约束介质)以及测量是针对静止模式还是传播模式这一事实。从理论角度来看,由于定义不同、空间维度和波的不均匀性(即传播(或波长)和衰减的矢量并不指向同一方向),Q 值的表达式可能会有所不同。我们展示了时间 Q 值和空间 Q 值之间的区别、压缩 Q 值和剪切 Q 值之间的关系、对频率的依赖性、孔隙-粘弹性和各向异性的情况、不均匀波和各种损耗机制的影响,并考虑了弹性波和电磁波之间的类比。我们讨论了描述弛豫峰值的物理理论、Q 值的界限以及显示 Q 值作为频率、饱和度和孔隙压力函数的行为的实验。最后,我们提出了一个应用实例,Q 值可用于估算孔隙度和饱和度。
{"title":"Q: A Review","authors":"José M. Carcione,&nbsp;Francesco Mainardi,&nbsp;Ayman N. Qadrouh,&nbsp;Mamdoh Alajmi,&nbsp;Jing Ba","doi":"10.1007/s10712-024-09850-y","DOIUrl":"10.1007/s10712-024-09850-y","url":null,"abstract":"<div><p>The quality factor <i>Q</i> is a dimensionless measure of the energy loss per cycle of a wave field, and a proper understanding of this factor is important in a variety of fields, from seismology, geophysical prospecting to electrical science. Here, the focus is on viscoelasticity. When interpreting experimental values, several factors must be taken into account, in particular the shape of the medium (rods, bars or unbounded media) and the fact that the measurements are made on stationary or propagating modes. From a theoretical point of view, the expressions of <i>Q</i> may differ due to different definitions, the spatial dimension and the inhomogeneity of the wave, i.e. the fact that the vectors of propagation (or wavenumber) and attenuation do not point in the same direction. We show the difference between temporal and spatial <i>Q</i>, the relationships between compressional and shear <i>Q</i>, the dependence on frequency, the case of poro-viscoelasticity and anisotropy, the effect of inhomogeneous waves and various loss mechanisms, and consider the analogy between elastic and electromagnetic waves. We discuss physical theories describing relaxation peaks, bounds on <i>Q</i> and experiments showing the behaviour of <i>Q</i> as a function of frequency, saturation and pore pressure. Finally, we propose an application example where <i>Q</i> can be used to estimate porosity and saturation.</p></div>","PeriodicalId":49458,"journal":{"name":"Surveys in Geophysics","volume":"45 5","pages":"1435 - 1458"},"PeriodicalIF":4.9,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141768463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interpolated Fast Damped Multichannel Singular Spectrum Analysis for Deblending of Off-the-Grid Blended Data 插值式快速阻尼多通道奇异频谱分析法用于非网格混合数据的疏解
IF 4.9 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-07-09 DOI: 10.1007/s10712-024-09835-x
Zhuowei Li, Jiawen Song, Rongzhi Lin, Benfeng Wang

Blended acquisition offers significant cost and period reduction in seismic data acquisition. However, fired blended sources are usually deployed at off-the-grid (OffG) samples due to obstacle limitation and economic cost considerations. The irregular distribution of coordinates, along with the blending noise, has a detrimental effect on the performance of subsequent seismic processing and imaging. The interpolated multichannel singular spectrum analysis (I-MSSA) algorithm effectively provides on-the-grid deblended results by employing an interpolator, in conjunction with a projected gradient descent strategy. However, the deblending accuracy and computational efficiency of the I-MSSA are still a concern due to the limitations of the traditional singular value decomposition (SVD). To address these limitations, we propose an interpolated fast damped multichannel singular spectrum analysis (I-FDMSSA) rank-reduction algorithm. The proposed algorithm incorporates the damping operator, the randomized SVD (RSVD) and the fast Fourier transform (FFT) strategy. The damping operator can further attenuate the remaining noise in the estimated signal obtained from the truncated SVD, resulting in an improved deblending performance. The RSVD accelerates the rank-reduction process by shrinking the size of the Hankel matrix. To expedite the rank-reduction and anti-diagonal averaging stages without explicitly constructing large-scale block Hankel matrices, the FFT strategy is employed. By incorporating a 2D separable sinc interpolator, the I-FDMSSA enables an efficient and accurate deblending of 3D OffG blended data. The deblending performance and operational efficiency improvements of the proposed I-FDMSSA algorithm over the traditional I-MSSA algorithm are demonstrated through OffG synthetic and field blended data examples.

混合采集可显著降低地震数据采集的成本和周期。然而,由于障碍物的限制和经济成本的考虑,发射的混合震源通常部署在离网(OffG)采样点。坐标的不规则分布以及混合噪声会对后续地震处理和成像性能产生不利影响。内插多道奇异频谱分析(I-MSSA)算法通过使用内插器,结合投影梯度下降策略,有效地提供了网格上的除杂结果。然而,由于传统奇异值分解(SVD)的局限性,I-MSSA 的除谱精度和计算效率仍然令人担忧。针对这些局限性,我们提出了一种插值快速阻尼多通道奇异频谱分析(I-FDMSSA)秩还原算法。该算法结合了阻尼算子、随机 SVD (RSVD) 和快速傅立叶变换 (FFT) 策略。阻尼算子能进一步减弱截断 SVD 得到的估计信号中的剩余噪声,从而提高排阻性能。RSVD 通过缩小 Hankel 矩阵的大小来加速秩还原过程。为了在不明确构建大规模块 Hankel 矩阵的情况下加快秩还原和反对角平均阶段,我们采用了 FFT 策略。通过结合二维可分离 sinc 内插器,I-FDMSSA 能够对三维 OffG 混合数据进行高效、准确的去层。与传统的 I-MSSA 算法相比,所提出的 I-FDMSSA 算法在排错性能和运行效率方面的改进通过 OffG 合成数据和实地混合数据实例进行了演示。
{"title":"Interpolated Fast Damped Multichannel Singular Spectrum Analysis for Deblending of Off-the-Grid Blended Data","authors":"Zhuowei Li,&nbsp;Jiawen Song,&nbsp;Rongzhi Lin,&nbsp;Benfeng Wang","doi":"10.1007/s10712-024-09835-x","DOIUrl":"10.1007/s10712-024-09835-x","url":null,"abstract":"<div><p>Blended acquisition offers significant cost and period reduction in seismic data acquisition. However, fired blended sources are usually deployed at off-the-grid (OffG) samples due to obstacle limitation and economic cost considerations. The irregular distribution of coordinates, along with the blending noise, has a detrimental effect on the performance of subsequent seismic processing and imaging. The interpolated multichannel singular spectrum analysis (I-MSSA) algorithm effectively provides on-the-grid deblended results by employing an interpolator, in conjunction with a projected gradient descent strategy. However, the deblending accuracy and computational efficiency of the I-MSSA are still a concern due to the limitations of the traditional singular value decomposition (SVD). To address these limitations, we propose an interpolated fast damped multichannel singular spectrum analysis (I-FDMSSA) rank-reduction algorithm. The proposed algorithm incorporates the damping operator, the randomized SVD (RSVD) and the fast Fourier transform (FFT) strategy. The damping operator can further attenuate the remaining noise in the estimated signal obtained from the truncated SVD, resulting in an improved deblending performance. The RSVD accelerates the rank-reduction process by shrinking the size of the Hankel matrix. To expedite the rank-reduction and anti-diagonal averaging stages without explicitly constructing large-scale block Hankel matrices, the FFT strategy is employed. By incorporating a 2D separable sinc interpolator, the I-FDMSSA enables an efficient and accurate deblending of 3D OffG blended data. The deblending performance and operational efficiency improvements of the proposed I-FDMSSA algorithm over the traditional I-MSSA algorithm are demonstrated through OffG synthetic and field blended data examples.</p></div>","PeriodicalId":49458,"journal":{"name":"Surveys in Geophysics","volume":"45 4","pages":"1177 - 1204"},"PeriodicalIF":4.9,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141561243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation of Fluid Types in Shale Oil Reservoirs 页岩油藏流体类型调查
IF 4.9 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-06-22 DOI: 10.1007/s10712-024-09845-9
Xiaojiao Pang, Guiwen Wang, Lichun Kuang, Jin Lai, Nigel P. Mountney

Lacustrine shale oil resources are essential for the maintenance of energy supply. Fluid types and contents play important roles in estimating resource potential and oil recovery from organic-rich shales. Precise identification of fluid types hosted in shale oil reservoir successions that are characterized by marked lithological heterogeneity from only a single well is a significant challenge. Although previous research has proposed a large number of methods for determining both porosity and fluid saturation, many can only be applied in limited situations, and several have limited accuracy. In this study, an advanced logging technique, combinable magnetic resonance logging (CMR-NG), is used to evaluate fluid types. Two-dimensional nuclear magnetic resonance (2D-NMR) experiments on reservoir rocks subject to different conditions (as received, after being dried at 105 ℃, and kerosene imbibed) were carried out to define the fluid types and classification criteria. Then, with the corresponding Rock–Eval pyrolysis parameters and various mineral contents from X-ray diffraction, the contribution of organic matter and mineral compositions was investigated. Subsequently, the content of different fluid types is calculated by CMR-NG (combinable magnetic resonance logging, viz. 2D NMR logging). According to the fluid classification criteria under experimental conditions and the production data, the most favorable model and optimal solution for logging evaluation was selected. Finally, fluid saturations of the Cretaceous Qingshankou Formation in the Gulong Sag were calculated for a single well. Results show that six fluid types (kerogen-bitumen-group OH, irreducible oil, movable oil, clay-bound water, irreducible water, and movable water) can be recognized through the applied 2D NMR test. The kerogen-bitumen-group OH was mostly affected by pyrolysis hydrocarbon (S2) and irreducible oil by soluble hydrocarbon (S1). However, kerogen-bitumen-group OH and clay-bound water cannot be detected by CMR-NG due to the effects of underground environmental conditions on the instruments. Strata Q8–Q9 of the Qing 2 member of the cretaceous Qingshankou Formation are the most favorable layers of shale oil. This research provides insights into the factors controlling fluid types and contents; it provides guidance in the exploration and development of unconventional resources, for example, for geothermal and carbon capture, utilization, and storage reservoirs.

湖底页岩油资源对维持能源供应至关重要。流体类型和含量在估算富含有机质页岩的资源潜力和石油采收率方面发挥着重要作用。对于具有明显岩性异质性的页岩油藏层序,仅通过一口油井就能精确识别其中的流体类型是一项重大挑战。虽然以往的研究提出了大量确定孔隙度和流体饱和度的方法,但许多方法只能在有限的情况下使用,而且有几种方法的准确性有限。本研究采用了一种先进的测井技术--可组合磁共振测井(CMR-NG)来评估流体类型。对不同条件下(原状、105 ℃干燥后、煤油浸泡)的储层岩石进行了二维核磁共振(2D-NMR)实验,以确定流体类型和分类标准。然后,利用相应的 Rock-Eval 热解参数和 X 射线衍射的各种矿物含量,研究了有机物和矿物成分的贡献。随后,通过 CMR-NG(可组合磁共振测井,即二维核磁共振测井)计算出不同流体类型的含量。根据实验条件下的流体分类标准和生产数据,选出了最有利的模型和最佳测井评价方案。最后,计算了古龙沙格白垩系青山口地层单井的流体饱和度。结果表明,应用二维核磁共振测试可以识别六种流体类型(角质-沥青-OH组、不可还原油、可移动油、粘土结合水、不可还原水和可移动水)。角质-沥青基 OH 主要受热解烃(S2)的影响,而不可还原油则受可溶性烃(S1)的影响。然而,由于地下环境条件对仪器的影响,CMR-NG 无法检测到角质-沥青基 OH 和粘土结合水。白垩系青山口地层青二系 Q8-Q9 层是页岩油的最有利层位。这项研究有助于深入了解流体类型和含量的控制因素,为非常规资源的勘探和开发提供指导,例如地热和碳捕获、利用和封存储层。
{"title":"Investigation of Fluid Types in Shale Oil Reservoirs","authors":"Xiaojiao Pang,&nbsp;Guiwen Wang,&nbsp;Lichun Kuang,&nbsp;Jin Lai,&nbsp;Nigel P. Mountney","doi":"10.1007/s10712-024-09845-9","DOIUrl":"10.1007/s10712-024-09845-9","url":null,"abstract":"<div><p>Lacustrine shale oil resources are essential for the maintenance of energy supply. Fluid types and contents play important roles in estimating resource potential and oil recovery from organic-rich shales. Precise identification of fluid types hosted in shale oil reservoir successions that are characterized by marked lithological heterogeneity from only a single well is a significant challenge. Although previous research has proposed a large number of methods for determining both porosity and fluid saturation, many can only be applied in limited situations, and several have limited accuracy. In this study, an advanced logging technique, combinable magnetic resonance logging (CMR-NG), is used to evaluate fluid types. Two-dimensional nuclear magnetic resonance (2D-NMR) experiments on reservoir rocks subject to different conditions (as received, after being dried at 105 ℃, and kerosene imbibed) were carried out to define the fluid types and classification criteria. Then, with the corresponding Rock–Eval pyrolysis parameters and various mineral contents from X-ray diffraction, the contribution of organic matter and mineral compositions was investigated. Subsequently, the content of different fluid types is calculated by CMR-NG (combinable magnetic resonance logging, viz. 2D NMR logging). According to the fluid classification criteria under experimental conditions and the production data, the most favorable model and optimal solution for logging evaluation was selected. Finally, fluid saturations of the Cretaceous Qingshankou Formation in the Gulong Sag were calculated for a single well. Results show that six fluid types (kerogen-bitumen-group OH, irreducible oil, movable oil, clay-bound water, irreducible water, and movable water) can be recognized through the applied 2D NMR test. The kerogen-bitumen-group OH was mostly affected by pyrolysis hydrocarbon (S<sub>2</sub>) and irreducible oil by soluble hydrocarbon (S<sub>1</sub>). However, kerogen-bitumen-group OH and clay-bound water cannot be detected by CMR-NG due to the effects of underground environmental conditions on the instruments. Strata Q8–Q9 of the Qing 2 member of the cretaceous Qingshankou Formation are the most favorable layers of shale oil. This research provides insights into the factors controlling fluid types and contents; it provides guidance in the exploration and development of unconventional resources, for example, for geothermal and carbon capture, utilization, and storage reservoirs.</p></div>","PeriodicalId":49458,"journal":{"name":"Surveys in Geophysics","volume":"45 5","pages":"1561 - 1594"},"PeriodicalIF":4.9,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141439814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-Precision Microseismic Source Localization Using a Fusion Network Combining Convolutional Neural Network and Transformer 利用卷积神经网络与变压器相结合的融合网络进行高精度微震源定位
IF 4.9 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-06-14 DOI: 10.1007/s10712-024-09846-8
Qiang Feng, Liguo Han, Liyun Ma, Qiang Li

Microseismic source localization methods with deep learning can directly predict the source location from recorded microseismic data, showing remarkably high accuracy and efficiency. Two main categories of deep learning-based localization methods are coordinate prediction methods and heatmap prediction methods. Coordinate prediction methods provide only a source coordinate and generally do not provide a measure of confidence in the source location. Heatmap prediction methods require the assumption that the microseismic source is located on a grid point. Thus, they tend to provide lower resolution information and localization results may lose precision. This study reviews and compares previous methods for locating the source based on deep learning. To address the limitations of existing methods, we devise a network fusing a convolutional neural network and a Transformer to locate microseismic sources. We first introduce the multi-modal heatmap combining the Gaussian heatmap and the offset coefficient map to represent the source location. The offset coefficients are utilized to correct the source locations predicted by the Gaussian heatmap so that the source is no longer confined to the grid point. We then propose a fusion network to accurately estimate the source location. A gated multi-scale feature fusion module is developed to efficiently fuse features from different branches. Experiments on synthetic and field data demonstrate that the proposed method yields highly accurate localization results. A comprehensive comparison of coordinate prediction method and heatmap prediction methods with our proposed method demonstrates that the proposed method outperforms the other methods.

利用深度学习的微震源定位方法可以直接从记录的微震数据中预测震源位置,显示出极高的准确性和效率。基于深度学习的定位方法主要有两类,即坐标预测方法和热图预测方法。坐标预测方法只提供震源坐标,一般不提供震源位置的置信度。热图预测方法需要假设微震源位于网格点上。因此,它们往往提供较低分辨率的信息,定位结果可能会失去精确性。本研究回顾并比较了之前基于深度学习的震源定位方法。针对现有方法的局限性,我们设计了一种融合卷积神经网络和变形器的网络来定位微震源。我们首先引入多模态热图,结合高斯热图和偏移系数图来表示震源位置。偏移系数用于修正高斯热图预测的震源位置,使震源不再局限于网格点。然后,我们提出了一个融合网络,以准确估计源位置。我们开发了一个门控多尺度特征融合模块,以有效融合来自不同分支的特征。在合成数据和实地数据上的实验证明,所提出的方法能产生高度精确的定位结果。将坐标预测方法和热图预测方法与我们提出的方法进行综合比较后发现,我们提出的方法优于其他方法。
{"title":"High-Precision Microseismic Source Localization Using a Fusion Network Combining Convolutional Neural Network and Transformer","authors":"Qiang Feng,&nbsp;Liguo Han,&nbsp;Liyun Ma,&nbsp;Qiang Li","doi":"10.1007/s10712-024-09846-8","DOIUrl":"10.1007/s10712-024-09846-8","url":null,"abstract":"<div><p>Microseismic source localization methods with deep learning can directly predict the source location from recorded microseismic data, showing remarkably high accuracy and efficiency. Two main categories of deep learning-based localization methods are coordinate prediction methods and heatmap prediction methods. Coordinate prediction methods provide only a source coordinate and generally do not provide a measure of confidence in the source location. Heatmap prediction methods require the assumption that the microseismic source is located on a grid point. Thus, they tend to provide lower resolution information and localization results may lose precision. This study reviews and compares previous methods for locating the source based on deep learning. To address the limitations of existing methods, we devise a network fusing a convolutional neural network and a Transformer to locate microseismic sources. We first introduce the multi-modal heatmap combining the Gaussian heatmap and the offset coefficient map to represent the source location. The offset coefficients are utilized to correct the source locations predicted by the Gaussian heatmap so that the source is no longer confined to the grid point. We then propose a fusion network to accurately estimate the source location. A gated multi-scale feature fusion module is developed to efficiently fuse features from different branches. Experiments on synthetic and field data demonstrate that the proposed method yields highly accurate localization results. A comprehensive comparison of coordinate prediction method and heatmap prediction methods with our proposed method demonstrates that the proposed method outperforms the other methods.</p></div>","PeriodicalId":49458,"journal":{"name":"Surveys in Geophysics","volume":"45 5","pages":"1527 - 1560"},"PeriodicalIF":4.9,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141319814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Surveys in Geophysics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1