首页 > 最新文献

Surveys in Geophysics最新文献

英文 中文
Guest Editorial: Special Issue on the 25th Electromagnetic Induction Workshop, Çeşme, Turkey 嘉宾评论:第25届电磁感应研讨会特刊,Çeşme,土耳其
IF 4.9 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2023-11-30 DOI: 10.1007/s10712-023-09817-5
Ahmet T. Başokur, Anne Neska
{"title":"Guest Editorial: Special Issue on the 25th Electromagnetic Induction Workshop, Çeşme, Turkey","authors":"Ahmet T. Başokur, Anne Neska","doi":"10.1007/s10712-023-09817-5","DOIUrl":"10.1007/s10712-023-09817-5","url":null,"abstract":"","PeriodicalId":49458,"journal":{"name":"Surveys in Geophysics","volume":"45 1","pages":"183 - 185"},"PeriodicalIF":4.9,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138468764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advancements in Controlled Source Electromagnetic Methods for Prospecting Unconventional Hydrocarbon Resources in China 中国非常规油气资源可控源电磁法勘探进展
IF 4.9 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2023-11-22 DOI: 10.1007/s10712-023-09808-6
Liangjun Yan

Globally, unconventional hydrocarbons, known for the symbiosis of their hydrocarbon source and reservoir, pose significant seismic exploration challenges due to their confined target regions, extensive burial depth, minimal acoustic impedance variation, marked heterogeneity, and strong anisotropy. Over the past decade, electromagnetic (EM) exploration has evolved markedly, improving resolution and reliability, thus becoming indispensable in unconventional hydrocarbon exploration. Focusing on China's application of the controlled source electromagnetic method (CSEM), this review examines the geological and electrical attributes of these reservoirs, notably the low resistivity, high polarization and strong electrical anisotropy of shale gas reservoirs. Despite the demonstrated positive correlation between induced polarization (IP) parameters and reservoir parameters, current methodologies emphasize the IP effect, inadvertently neglecting electrical anisotropy, which affects data precision. Moreover, single-source CSEM methodologies limit the observational components, acquisition density, and exploration area, impacting the accuracy and efficacy of data interpretation. Recently developed CSEM techniques in China, namely wide-frequency electromagnetic method (WFEM), time–frequency electromagnetic method (TFEM), long offset transient electromagnetic method (LOTEM), and wireless electromagnetic method (WEM), harness high-power pseudo-random binary sequence (PRBS) waveforms, reference observation and processing technology, hybrid inversion, and enhancing operational efficiency and adaptability despite the pressing need for multi-functional software for data acquisition. Case studies detail these methods' applications in shale gas sweet spot detection and continuous hydraulic fracturing monitoring, highlighting the immense potential of EM methods in unconventional hydrocarbon sweet spot detection and total organic content (TOC) predication. However, challenges persist in suppressing EM noise, streamlining 3D inversion processes, and improving the detection and evaluation of sweet spots.

在全球范围内,非常规油气以其烃源和储层共生而闻名,由于其目标区域有限、埋藏深度广、声阻抗变化小、非均质性明显、各向异性强等特点,给地震勘探带来了巨大挑战。在过去的十年中,电磁(EM)勘探有了显著的发展,提高了分辨率和可靠性,因此在非常规油气勘探中不可或缺。本文以可控源电磁法(CSEM)在中国的应用为重点,分析了页岩气储层的地质和电性属性,特别是页岩气储层的低电阻率、高极化和强电性各向异性特征。尽管诱导极化(IP)参数与储层参数之间存在正相关关系,但目前的方法强调的是IP效应,而忽略了影响数据精度的电性各向异性。此外,单源CSEM方法限制了观测成分、采集密度和勘探面积,影响了数据解释的准确性和有效性。国内近年来发展起来的CSEM技术,即宽频电磁法(WFEM)、时频电磁法(TFEM)、长偏移瞬变电磁法(LOTEM)和无线电磁法(WEM),利用大功率伪随机二值序列(PRBS)波形、参考观测和处理技术、混合反演、提高操作效率和适应性,尽管迫切需要多功能的数据采集软件。案例研究详细介绍了这些方法在页岩气甜点检测和连续水力压裂监测中的应用,强调了EM方法在非常规油气甜点检测和总有机含量(TOC)预测方面的巨大潜力。然而,在抑制电磁噪声、简化三维反演过程以及改进甜点的检测和评估方面仍然存在挑战。
{"title":"Advancements in Controlled Source Electromagnetic Methods for Prospecting Unconventional Hydrocarbon Resources in China","authors":"Liangjun Yan","doi":"10.1007/s10712-023-09808-6","DOIUrl":"10.1007/s10712-023-09808-6","url":null,"abstract":"<div><p>Globally, unconventional hydrocarbons, known for the symbiosis of their hydrocarbon source and reservoir, pose significant seismic exploration challenges due to their confined target regions, extensive burial depth, minimal acoustic impedance variation, marked heterogeneity, and strong anisotropy. Over the past decade, electromagnetic (EM) exploration has evolved markedly, improving resolution and reliability, thus becoming indispensable in unconventional hydrocarbon exploration. Focusing on China's application of the controlled source electromagnetic method (CSEM), this review examines the geological and electrical attributes of these reservoirs, notably the low resistivity, high polarization and strong electrical anisotropy of shale gas reservoirs. Despite the demonstrated positive correlation between induced polarization (IP) parameters and reservoir parameters, current methodologies emphasize the IP effect, inadvertently neglecting electrical anisotropy, which affects data precision. Moreover, single-source CSEM methodologies limit the observational components, acquisition density, and exploration area, impacting the accuracy and efficacy of data interpretation. Recently developed CSEM techniques in China, namely wide-frequency electromagnetic method (WFEM), time–frequency electromagnetic method (TFEM), long offset transient electromagnetic method (LOTEM), and wireless electromagnetic method (WEM), harness high-power pseudo-random binary sequence (PRBS) waveforms, reference observation and processing technology, hybrid inversion, and enhancing operational efficiency and adaptability despite the pressing need for multi-functional software for data acquisition. Case studies detail these methods' applications in shale gas sweet spot detection and continuous hydraulic fracturing monitoring, highlighting the immense potential of EM methods in unconventional hydrocarbon sweet spot detection and total organic content (TOC) predication. However, challenges persist in suppressing EM noise, streamlining 3D inversion processes, and improving the detection and evaluation of sweet spots.</p></div>","PeriodicalId":49458,"journal":{"name":"Surveys in Geophysics","volume":"45 1","pages":"239 - 276"},"PeriodicalIF":4.9,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10712-023-09808-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138293591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction: Ocean Biology Studied from Space 更正:从太空研究海洋生物学
IF 4.9 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2023-11-21 DOI: 10.1007/s10712-023-09815-7
Shubha Sathyendranath, Robert J. W. Brewin, Stefano Ciavatta, Tom Jackson, Gemma Kulk, Bror Jönsson, Victor Martinez Vicente, Trevor Platt
{"title":"Correction: Ocean Biology Studied from Space","authors":"Shubha Sathyendranath,&nbsp;Robert J. W. Brewin,&nbsp;Stefano Ciavatta,&nbsp;Tom Jackson,&nbsp;Gemma Kulk,&nbsp;Bror Jönsson,&nbsp;Victor Martinez Vicente,&nbsp;Trevor Platt","doi":"10.1007/s10712-023-09815-7","DOIUrl":"10.1007/s10712-023-09815-7","url":null,"abstract":"","PeriodicalId":49458,"journal":{"name":"Surveys in Geophysics","volume":"45 2","pages":"603 - 604"},"PeriodicalIF":4.9,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10712-023-09815-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142412889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterizing Shallow/Near-Surface Structures from Surface Waves in Deep Seismic Reflection Data 根据深层地震反射数据中的表面波确定浅层/近地表结构的特征
IF 4.9 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2023-11-11 DOI: 10.1007/s10712-023-09809-5
Wenbin Guo, Zhengbo Li, Shuai Zhao, Sheng Dong, Rongyi Qian, Xiaofei Chen

Deep seismic reflection (DSR) profiling is an effective technique for mapping subsurface structures. Generally, reflections in DSR data are used to constrain underground structures at the crustal scale. In addition to reflections, surface waves in DSR data can be used to investigate shallow/near-surface structures. In this study, we extracted multimodal dispersion curves and estimated their uncertainties from the DSR data in the Beijing Plain, North China, using the frequency-Bessel transform method. Compared to other surface wave surveys conducted in this area, the dispersion curves obtained from DSR data have a unique frequency band, which enables an accurate image of the structure to a depth of 200 m. The 2-D shear wave velocity model obtained by surface wave inversion is consistent with the borehole data and existing shallow/near-surface geophysical studies, which can effectively resolve the faults in the study area. Given the extensive deployment of DSR surveys worldwide and the potential of DSR surface wave analysis, we believe that the development of DSR surface wave analysis could be highly beneficial.

深层地震反射(DSR)剖面测量是绘制地下结构图的有效技术。一般来说,深层地震反射数据中的反射波用于确定地壳尺度的地下结构。除反射波外,DSR 数据中的面波也可用于研究浅层/近地表结构。在本研究中,我们利用频率-贝塞尔变换方法,从华北北京平原的 DSR 数据中提取了多模态频散曲线,并估算了其不确定性。与在该地区开展的其他面波勘探相比,DSR 数据得到的频散曲线具有独特的频带,能够准确地对 200 米深度内的构造进行成像;面波反演得到的二维剪切波速度模型与钻孔数据和现有的浅表/近地表地球物理研究结果一致,能够有效地解析研究区域内的断层。鉴于 DSR 勘测在全球的广泛部署以及 DSR 面波分析的潜力,我们相信 DSR 面波分析的发展将大有裨益。
{"title":"Characterizing Shallow/Near-Surface Structures from Surface Waves in Deep Seismic Reflection Data","authors":"Wenbin Guo,&nbsp;Zhengbo Li,&nbsp;Shuai Zhao,&nbsp;Sheng Dong,&nbsp;Rongyi Qian,&nbsp;Xiaofei Chen","doi":"10.1007/s10712-023-09809-5","DOIUrl":"10.1007/s10712-023-09809-5","url":null,"abstract":"<div><p>Deep seismic reflection (DSR) profiling is an effective technique for mapping subsurface structures. Generally, reflections in DSR data are used to constrain underground structures at the crustal scale. In addition to reflections, surface waves in DSR data can be used to investigate shallow/near-surface structures. In this study, we extracted multimodal dispersion curves and estimated their uncertainties from the DSR data in the Beijing Plain, North China, using the frequency-Bessel transform method. Compared to other surface wave surveys conducted in this area, the dispersion curves obtained from DSR data have a unique frequency band, which enables an accurate image of the structure to a depth of 200 m. The 2-D shear wave velocity model obtained by surface wave inversion is consistent with the borehole data and existing shallow/near-surface geophysical studies, which can effectively resolve the faults in the study area. Given the extensive deployment of DSR surveys worldwide and the potential of DSR surface wave analysis, we believe that the development of DSR surface wave analysis could be highly beneficial.</p></div>","PeriodicalId":49458,"journal":{"name":"Surveys in Geophysics","volume":"45 2","pages":"409 - 427"},"PeriodicalIF":4.9,"publicationDate":"2023-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135041650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Global Crust and Mantle Gravity Disturbances and Their Implications on Mantle Structure and Dynamics 全球地壳和地幔重力扰动及其对地幔结构和动力学的影响
IF 4.9 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2023-11-04 DOI: 10.1007/s10712-023-09810-y
Bo Chen, Mikhail K. Kaban, Guangdong Zhao, Jinsong Du, Dawei Gao

The gravity anomalies reflect density perturbations at different depths, which control the physical state and dynamics of the lithosphere and sub-lithospheric mantle. However, the gravity effect of the crust masks the mantle signals. In this study, we develop two frameworks (correction with density contrasts and actual densities) to calculate the gravity anomalies generated by the layered crust. We apply the proposed approaches to evaluate the global mantle gravity disturbances based on the new crustal models. Consistent patterns and an increasing linear trend of the mantle gravity disturbances with lithospheric thickness and Vs velocities at 150 km depth are obtained. Our results indicate denser lithospheric roots in most cratons and lighter materials in the oceanic mantle. Furthermore, our gravity map corresponds well to regional geological features, providing new insights into mantle structure and dynamics. Specifically, (1) reduced anomalies associated with the Superior and Rae cratons indicate more depleted roots compared with other cratons of North America. (2) Negative anomalies along the Cordillera (western North America) suggest mass deficits owing to the buoyant hot mantle. (3) Positive anomalies in the Baltic, East European, and Siberian cratons support thick, dense lithosphere with significant density heterogeneities, which could result from thermo-chemical modifications of the cratonic roots. (4) Pronounced positive anomalies correspond to stable blocks, e.g., Arabian Platform, Indian Craton, and Tarim basin, indicating a thick, dense lithosphere. (5) Low anomalies in the active tectonic units and back-arc basins suggest local mantle upwellings. (6) The cold subducting/detached plates may result in the high anomalies observed in the Zagros and Tibet.

重力异常反映了不同深度的密度扰动,这些扰动控制着岩石圈和亚岩石圈地幔的物理状态和动力学。然而,地壳的重力效应掩盖了地幔信号。在这项研究中,我们开发了两个框架(密度对比校正和实际密度校正)来计算层状地壳产生的重力异常。基于新的地壳模型,我们将所提出的方法应用于评估全球地幔重力扰动。获得了地幔重力扰动随岩石圈厚度和150km深度Vs速度的一致模式和增加的线性趋势。我们的结果表明,大多数克拉通中的岩石圈根密度更大,海洋地幔中的物质更轻。此外,我们的重力图与区域地质特征非常吻合,为地幔结构和动力学提供了新的见解。具体而言,(1)与北美其他克拉通相比,与Superior和Rae克拉通相关的异常减少表明根系更加枯竭。(2) 科迪勒拉(北美洲西部)沿岸的负异常表明,由于浮力热地幔,质量不足。(3) 波罗的海、东欧和西伯利亚克拉通的正异常支持具有显著密度不均匀性的厚而致密的岩石圈,这可能是由于克拉通根部的热化学变化造成的。(4) 明显的正异常对应于稳定的地块,如阿拉伯地台、印度克拉通和塔里木盆地,表明岩石圈厚而致密。(5) 活动构造单元和弧后盆地的低异常表明局部地幔上升。(6) 冷俯冲/分离板块可能导致在扎格罗斯和西藏观测到的高异常。
{"title":"The Global Crust and Mantle Gravity Disturbances and Their Implications on Mantle Structure and Dynamics","authors":"Bo Chen,&nbsp;Mikhail K. Kaban,&nbsp;Guangdong Zhao,&nbsp;Jinsong Du,&nbsp;Dawei Gao","doi":"10.1007/s10712-023-09810-y","DOIUrl":"10.1007/s10712-023-09810-y","url":null,"abstract":"<div><p>The gravity anomalies reflect density perturbations at different depths, which control the physical state and dynamics of the lithosphere and sub-lithospheric mantle. However, the gravity effect of the crust masks the mantle signals. In this study, we develop two frameworks (correction with density contrasts and actual densities) to calculate the gravity anomalies generated by the layered crust. We apply the proposed approaches to evaluate the global mantle gravity disturbances based on the new crustal models. Consistent patterns and an increasing linear trend of the mantle gravity disturbances with lithospheric thickness and Vs velocities at 150 km depth are obtained. Our results indicate denser lithospheric roots in most cratons and lighter materials in the oceanic mantle. Furthermore, our gravity map corresponds well to regional geological features, providing new insights into mantle structure and dynamics. Specifically, (1) reduced anomalies associated with the Superior and Rae cratons indicate more depleted roots compared with other cratons of North America. (2) Negative anomalies along the Cordillera (western North America) suggest mass deficits owing to the buoyant hot mantle. (3) Positive anomalies in the Baltic, East European, and Siberian cratons support thick, dense lithosphere with significant density heterogeneities, which could result from thermo-chemical modifications of the cratonic roots. (4) Pronounced positive anomalies correspond to stable blocks, e.g., Arabian Platform, Indian Craton, and Tarim basin, indicating a thick, dense lithosphere. (5) Low anomalies in the active tectonic units and back-arc basins suggest local mantle upwellings. (6) The cold subducting/detached plates may result in the high anomalies observed in the Zagros and Tibet.</p></div>","PeriodicalId":49458,"journal":{"name":"Surveys in Geophysics","volume":"45 2","pages":"349 - 382"},"PeriodicalIF":4.9,"publicationDate":"2023-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71491837","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ocean Biology Studied from Space 从太空研究海洋生物学
2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2023-09-11 DOI: 10.1007/s10712-023-09805-9
Shubha Sathyendranath, Robert J. W. Brewin, Stefano Ciavatta, Tom Jackson, Gemma Kulk, Bror Jönsson, Victor Martinez Vicente, Trevor Platt
Abstract Visible spectral radiometric measurements from space, commonly referred to as ocean-colour measurements, provide a rich stream of information on ocean biota as well as on biological and ecosystem processes. The strength of the ocean-colour technology for observing marine life lies in its global reach, combined with its ability to sample the field at a variety of spatial and temporal scales that match the scales of the processes themselves. Another advantage lies in the growing length of the time series of ocean-colour-derived products, enabiling investigations into any long-term changes, if present. This paper presents an overview of the principles and applications of ocean-colour data. The concentration of chlorophyll-a, the major pigment present in phytoplankton–single-celled, free-floating plants that are present in the sunlit layers of the ocean–was the first, and remains the most common, biological variable derived from ocean-colour data. Over the years, the list of ocean-colour products have grown to encompass many measures of the marine ecosystem and its functions, including primary production, phenology and ecosystem structure. Applications that exploit the data are many and varied, and include ecosystem-based fisheries management, biogeochemical cycles in the ocean, ecosystem health and climate change. An integrated approach, incorporating other modes of ocean observations and models with satellite observations, is needed to investigate the mysteries of the marine ecosystem.
空间可见光谱辐射测量,通常被称为海洋颜色测量,提供了关于海洋生物群以及生物和生态系统过程的丰富信息流。海洋色彩技术用于观察海洋生物的优势在于其全球覆盖范围,并能够在与过程本身的尺度相匹配的各种空间和时间尺度上对该领域进行采样。另一个优势在于,海洋色衍生产品的时间序列越来越长,如果存在的话,可以对任何长期变化进行调查。本文综述了海洋色彩数据的原理和应用。浮游植物是存在于海洋阳光照射层中的单细胞、自由漂浮的植物,它是浮游植物中主要的色素。叶绿素-a的浓度是第一个,也是最常见的,从海洋颜色数据中得出的生物变量。多年来,海洋颜色产品的清单已经发展到涵盖海洋生态系统及其功能的许多指标,包括初级生产、物候和生态系统结构。利用这些数据的应用多种多样,包括基于生态系统的渔业管理、海洋生物地球化学循环、生态系统健康和气候变化。需要一种综合方法,将其他海洋观测模式和模式与卫星观测结合起来,以调查海洋生态系统的奥秘。
{"title":"Ocean Biology Studied from Space","authors":"Shubha Sathyendranath, Robert J. W. Brewin, Stefano Ciavatta, Tom Jackson, Gemma Kulk, Bror Jönsson, Victor Martinez Vicente, Trevor Platt","doi":"10.1007/s10712-023-09805-9","DOIUrl":"https://doi.org/10.1007/s10712-023-09805-9","url":null,"abstract":"Abstract Visible spectral radiometric measurements from space, commonly referred to as ocean-colour measurements, provide a rich stream of information on ocean biota as well as on biological and ecosystem processes. The strength of the ocean-colour technology for observing marine life lies in its global reach, combined with its ability to sample the field at a variety of spatial and temporal scales that match the scales of the processes themselves. Another advantage lies in the growing length of the time series of ocean-colour-derived products, enabiling investigations into any long-term changes, if present. This paper presents an overview of the principles and applications of ocean-colour data. The concentration of chlorophyll-a, the major pigment present in phytoplankton–single-celled, free-floating plants that are present in the sunlit layers of the ocean–was the first, and remains the most common, biological variable derived from ocean-colour data. Over the years, the list of ocean-colour products have grown to encompass many measures of the marine ecosystem and its functions, including primary production, phenology and ecosystem structure. Applications that exploit the data are many and varied, and include ecosystem-based fisheries management, biogeochemical cycles in the ocean, ecosystem health and climate change. An integrated approach, incorporating other modes of ocean observations and models with satellite observations, is needed to investigate the mysteries of the marine ecosystem.","PeriodicalId":49458,"journal":{"name":"Surveys in Geophysics","volume":"24 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135935277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Pre-earthquake Ionospheric Anomalies and Ionospheric Storms Observed by FORMOSAT-5/AIP and GIM TEC FORMOSAT-5/AIP 和 GIM TEC 观测到的震前电离层异常和电离层风暴
IF 4.9 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2023-09-09 DOI: 10.1007/s10712-023-09807-7
J. Y. Liu, F. Y. Chang, Y. I. Chen, Loren C. Chang, Y. C. Wen, T. Y. Wu, C. K. Chao

The mission of Advanced Ionospheric Probe (AIP) onboard FORMOSAT-5 (F5) satellite is to detect pre-earthquake ionospheric anomalies (PEIAs) and observe ionospheric space weather. F5/AIP plasma quantities in the nighttime of 22:30 LT (local time) and the total electron content (TEC) of the global ionosphere map (GIM) are used to study PEIAs of an M7.3 earthquake in the Iran–Iraq border area on 12 November 2017, as well as signatures of two magnetic storms on 7 and 21–22 November 2017. Statistical analyses of the median base and one sample test are employed to find the characteristics of temporal PEIAs in GIM TEC over the Iran–Iraq area. The anomalous increases of the GIM TEC and F5/AIP ion density over the epicenter area on 3–4 November (day 9–8 before the M7.3 earthquake) agree with the temporal PEIA characteristics that the significant TEC increase frequently appears on day 14–6 before 53 M ≥ 5.5 earthquakes in the area during 1999–2016. The spatial analyses together with odds studies show that the PEIAs frequently appear specifically over the epicenter day 9–8 before the M7.3 earthquake and day 10–9 before a M6.1 earthquake on 1 December, while proponent TEC increases occur at worldwide high latitudes on the two magnetic storm days. The F5/AIP ion velocity uncovers that the PEIAs of the two earthquakes are caused by associated eastward electric fields, and the two positive storm signatures are due to the prompt penetration electric fields.

FORMOSAT-5(F5)卫星上的先进电离层探测器(AIP)的任务是探测震前电离层异常(PEIAs)和观测电离层空间天气。F5/AIP 在当地时间 22:30 LT 夜间的等离子体量和全球电离层图(GIM)的电子总含量(TEC)被用于研究 2017 年 11 月 12 日两伊边境地区 M7.3 级地震的电离层异常,以及 2017 年 11 月 7 日和 21-22 日两次磁暴的特征。采用中值基统计分析和单样本检验,发现两伊地区 GIM TEC 的时间 PEIAs 特征。11月3-4日(M7.3级地震前第9-8天)震中地区上空的GIM TEC和F5/AIP离子密度异常增加,这与1999-2016年间该地区53次M≥5.5级地震前第14-6天经常出现TEC显著增加的时间PEIA特征相吻合。空间分析和几率研究表明,PEIAs 经常出现在 M7.3 地震前的第 9-8 天和 12 月 1 日 M6.1 地震前的第 10-9 天,特别是震中上空,而在这两个磁暴日,全球高纬度地区都出现了支持性 TEC 增加。F5/AIP 离子速度发现,两次地震的 PEIAs 是由相关的向东电场引起的,而两次正向风暴特征则是由迅速穿透电场引起的。
{"title":"Pre-earthquake Ionospheric Anomalies and Ionospheric Storms Observed by FORMOSAT-5/AIP and GIM TEC","authors":"J. Y. Liu,&nbsp;F. Y. Chang,&nbsp;Y. I. Chen,&nbsp;Loren C. Chang,&nbsp;Y. C. Wen,&nbsp;T. Y. Wu,&nbsp;C. K. Chao","doi":"10.1007/s10712-023-09807-7","DOIUrl":"10.1007/s10712-023-09807-7","url":null,"abstract":"<div><p>The mission of Advanced Ionospheric Probe (AIP) onboard FORMOSAT-5 (F5) satellite is to detect pre-earthquake ionospheric anomalies (PEIAs) and observe ionospheric space weather. F5/AIP plasma quantities in the nighttime of 22:30 LT (local time) and the total electron content (TEC) of the global ionosphere map (GIM) are used to study PEIAs of an M7.3 earthquake in the Iran–Iraq border area on 12 November 2017, as well as signatures of two magnetic storms on 7 and 21–22 November 2017. Statistical analyses of the median base and one sample test are employed to find the characteristics of temporal PEIAs in GIM TEC over the Iran–Iraq area. The anomalous increases of the GIM TEC and F5/AIP ion density over the epicenter area on 3–4 November (day 9–8 before the M7.3 earthquake) agree with the temporal PEIA characteristics that the significant TEC increase frequently appears on day 14–6 before 53 M ≥ 5.5 earthquakes in the area during 1999–2016. The spatial analyses together with odds studies show that the PEIAs frequently appear specifically over the epicenter day 9–8 before the M7.3 earthquake and day 10–9 before a M6.1 earthquake on 1 December, while proponent TEC increases occur at worldwide high latitudes on the two magnetic storm days. The F5/AIP ion velocity uncovers that the PEIAs of the two earthquakes are caused by associated eastward electric fields, and the two positive storm signatures are due to the prompt penetration electric fields.</p></div>","PeriodicalId":49458,"journal":{"name":"Surveys in Geophysics","volume":"45 2","pages":"577 - 602"},"PeriodicalIF":4.9,"publicationDate":"2023-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10712-023-09807-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136192567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Review of the Source Characteristics and Physical Mechanisms of Very Long Period (VLP) Seismic Signals at Active Volcanoes 活动火山甚长周期(VLP)地震信号的震源特征及物理机制研究进展
IF 4.9 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2023-09-05 DOI: 10.1007/s10712-023-09800-0
K. I. Konstantinou

Very Long Period (VLP) signals with periods longer than 2 s may occur during eruptive or quiet phases at volcanoes of all types (shield and stratovolcanoes with calderas, as well as other stratovolcanoes) and are inherently connected to fluid movement within the plumbing system. This is supported by observations at several volcanoes that indicate a correlation between gas emissions and VLPs, as well as deformation episodes due to melt accumulation and migration that are followed by the occurrence of VLPs. Moment tensors of VLPs are usually characterized by large volumetric components of either positive or negative sign along with possibly the presence of single forces that may result from the exchange of linear momentum between the seismic source and the Earth. VLPs may occur during a variety of volcanological processes such as caldera collapse, phreatic eruptions, vulcanian eruptions, strombolian activity, and rockfalls at lava lakes. Physical mechanisms that can generate VLPs include the inflation and deflation of magma chambers and cracks, the movement of gas slugs through conduits, and the restoration of gravitational equilibrium in the plumbing system after explosive degassing or rockfalls in lava lakes. Our understanding of VLPs is expected to greatly improve in the future by the use of new instrumentation, such as Distributed Acoustic Sensing, that will provide a much denser temporal and spatial sampling of the seismic wavefield. This vast quantity of data will then require time efficient and objective processing that can be achieved through the use of machine learning algorithms.

周期超过 2 秒的甚长周期(VLP)信号可能出现在各种类型的火山(盾状火山和有破火山口的层火山,以及其他层火山)的喷发或平静阶段,并且与管道系统内的流体运动有内在联系。对几座火山的观测证实了这一点,观测结果表明气体排放与 VLPs 之间存在相关性,熔体堆积和迁移导致的变形事件也与 VLPs 的出现有关。VLP 的动量张量通常具有正负符号的大体积分量,同时可能存在地震源与地球之间线性动量交换产生的单个力。VLP 可能发生在各种火山过程中,如火山口崩塌、喷发、火山喷发、血栓活动和熔岩湖的岩崩。产生VLPs的物理机制包括岩浆室和裂缝的膨胀和放气、气体蛞蝓通过导管的运动以及熔岩湖爆炸性脱气或岩崩后管道系统重力平衡的恢复。通过使用分布式声学传感等新仪器,对地震波场进行更密集的时间和空间采样,我们对 VLPs 的了解有望在未来得到极大改善。大量的数据需要高效、客观的处理,这可以通过使用机器学习算法来实现。
{"title":"A Review of the Source Characteristics and Physical Mechanisms of Very Long Period (VLP) Seismic Signals at Active Volcanoes","authors":"K. I. Konstantinou","doi":"10.1007/s10712-023-09800-0","DOIUrl":"10.1007/s10712-023-09800-0","url":null,"abstract":"<div><p>Very Long Period (VLP) signals with periods longer than 2 s may occur during eruptive or quiet phases at volcanoes of all types (shield and stratovolcanoes with calderas, as well as other stratovolcanoes) and are inherently connected to fluid movement within the plumbing system. This is supported by observations at several volcanoes that indicate a correlation between gas emissions and VLPs, as well as deformation episodes due to melt accumulation and migration that are followed by the occurrence of VLPs. Moment tensors of VLPs are usually characterized by large volumetric components of either positive or negative sign along with possibly the presence of single forces that may result from the exchange of linear momentum between the seismic source and the Earth. VLPs may occur during a variety of volcanological processes such as caldera collapse, phreatic eruptions, vulcanian eruptions, strombolian activity, and rockfalls at lava lakes. Physical mechanisms that can generate VLPs include the inflation and deflation of magma chambers and cracks, the movement of gas slugs through conduits, and the restoration of gravitational equilibrium in the plumbing system after explosive degassing or rockfalls in lava lakes. Our understanding of VLPs is expected to greatly improve in the future by the use of new instrumentation, such as Distributed Acoustic Sensing, that will provide a much denser temporal and spatial sampling of the seismic wavefield. This vast quantity of data will then require time efficient and objective processing that can be achieved through the use of machine learning algorithms.</p></div>","PeriodicalId":49458,"journal":{"name":"Surveys in Geophysics","volume":"45 1","pages":"117 - 149"},"PeriodicalIF":4.9,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10712-023-09800-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42011246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inland Surface Waters Quantity Monitored from Remote Sensing 由遥感监测的内陆地表水数量
IF 4.6 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2023-08-30 DOI: 10.1007/s10712-023-09803-x
J. Crétaux, S. Calmant, F. Papa, F. Frappart, A. Paris, M. Bergé-Nguyen
{"title":"Inland Surface Waters Quantity Monitored from Remote Sensing","authors":"J. Crétaux, S. Calmant, F. Papa, F. Frappart, A. Paris, M. Bergé-Nguyen","doi":"10.1007/s10712-023-09803-x","DOIUrl":"https://doi.org/10.1007/s10712-023-09803-x","url":null,"abstract":"","PeriodicalId":49458,"journal":{"name":"Surveys in Geophysics","volume":"44 1","pages":"1519 - 1552"},"PeriodicalIF":4.6,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47877058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Soil Moisture and Sea Surface Salinity Derived from Satellite-Borne Sensors 由卫星传感器获得的土壤湿度和海面盐度
IF 4.6 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2023-08-28 DOI: 10.1007/s10712-023-09798-5
J. Boutin, S. Yueh, R. Bindlish, S. Chan, D. Entekhabi, Y. Kerr, N. Kolodziejczyk, T. Lee, N. Reul, M. Zribi
{"title":"Soil Moisture and Sea Surface Salinity Derived from Satellite-Borne Sensors","authors":"J. Boutin, S. Yueh, R. Bindlish, S. Chan, D. Entekhabi, Y. Kerr, N. Kolodziejczyk, T. Lee, N. Reul, M. Zribi","doi":"10.1007/s10712-023-09798-5","DOIUrl":"https://doi.org/10.1007/s10712-023-09798-5","url":null,"abstract":"","PeriodicalId":49458,"journal":{"name":"Surveys in Geophysics","volume":"44 1","pages":"1449 - 1487"},"PeriodicalIF":4.6,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46271615","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Surveys in Geophysics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1