首页 > 最新文献

Physiology最新文献

英文 中文
Uterus Transplantation: the Translational Evolution of a Clinical Breakthrough. 子宫移植:临床突破的转化演变。
IF 5.3 2区 医学 Q1 PHYSIOLOGY Pub Date : 2024-11-01 Epub Date: 2024-07-02 DOI: 10.1152/physiol.00011.2024
Mats Brännström, Eli Y Adashi, Joseph H Wu, Panagiotis Tsiartas, Catherine Racowsky

Women suffering from absolute uterine factor infertility (AUFI), due to either lack of a uterus or one unable to sustain neonatal viability, presented as one of the last frontiers in conquering infertility. Following systematic animal research for over a decade, uterus transplantation was tested as a treatment for AUFI in 2012, which culminated in the first human live birth in 2014. The development of uterus transplantation from mouse to human has followed both the Moore criteria for introduction of a surgical innovation and the IDEAL concept for evaluation of a novel major surgical procedure. In this article we review the important preclinical animal and human studies that paved the way for the successful introduction of human uterus transplantation a decade ago. We discuss this in the context of the Moore criteria and describe the different procedures of preparation, surgeries, postoperative monitoring, and use of assisted reproduction in human uterus transplantation. We review the worldwide activities and associated results in the context of the IDEAL concept for evaluation of surgical innovation and appraise the ethical considerations relevant to uterus transplantation. We conclude that rigorous application of the Moore criteria and strict alignment with the IDEAL concept have resulted in the establishment of uterus transplantation as a novel, safe, and effective infertility therapy that is now being used worldwide for the treatment of women suffering from AUFI.

绝对子宫因素不孕症(AUFI)是由于缺乏子宫或子宫无法维持新生儿存活能力而导致的妇女不孕症,是征服不孕症的最后前沿之一。经过十多年的系统动物研究,2012 年,子宫移植作为一种治疗 AUFI 的方法进行了试验,并于 2014 年实现了首例人类活产。子宫移植从小鼠到人类的发展过程遵循了引进外科创新的摩尔标准和评估新型主要外科手术的 IDEAL 概念。在本文中,我们回顾了为十年前成功引入人类子宫移植铺平道路的重要临床前动物和人体研究。我们根据摩尔标准对此进行了讨论,并介绍了人类子宫移植手术的准备、手术、术后监测和辅助生殖的使用等不同程序。我们以评估手术创新的 IDEAL 概念为背景,回顾了全球范围内的活动和相关成果,并评估了与子宫移植相关的伦理因素。我们的结论是,对摩尔标准的严格应用和对 IDEAL 概念的严格遵守已使子宫移植成为一种新型、安全和有效的不孕不育疗法,目前已在全球范围内用于治疗患有 AUFI 的妇女。
{"title":"Uterus Transplantation: the Translational Evolution of a Clinical Breakthrough.","authors":"Mats Brännström, Eli Y Adashi, Joseph H Wu, Panagiotis Tsiartas, Catherine Racowsky","doi":"10.1152/physiol.00011.2024","DOIUrl":"10.1152/physiol.00011.2024","url":null,"abstract":"<p><p>Women suffering from absolute uterine factor infertility (AUFI), due to either lack of a uterus or one unable to sustain neonatal viability, presented as one of the last frontiers in conquering infertility. Following systematic animal research for over a decade, uterus transplantation was tested as a treatment for AUFI in 2012, which culminated in the first human live birth in 2014. The development of uterus transplantation from mouse to human has followed both the Moore criteria for introduction of a surgical innovation and the IDEAL concept for evaluation of a novel major surgical procedure. In this article we review the important preclinical animal and human studies that paved the way for the successful introduction of human uterus transplantation a decade ago. We discuss this in the context of the Moore criteria and describe the different procedures of preparation, surgeries, postoperative monitoring, and use of assisted reproduction in human uterus transplantation. We review the worldwide activities and associated results in the context of the IDEAL concept for evaluation of surgical innovation and appraise the ethical considerations relevant to uterus transplantation. We conclude that rigorous application of the Moore criteria and strict alignment with the IDEAL concept have resulted in the establishment of uterus transplantation as a novel, safe, and effective infertility therapy that is now being used worldwide for the treatment of women suffering from AUFI.</p>","PeriodicalId":49694,"journal":{"name":"Physiology","volume":" ","pages":"0"},"PeriodicalIF":5.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141494046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Histone Deacetylases in Metabolism: The Known and the Unexplored. 代谢中的组蛋白去乙酰化酶:已知与未知。
IF 5.3 2区 医学 Q1 PHYSIOLOGY Pub Date : 2024-10-29 DOI: 10.1152/physiol.00044.2024
Somaya Y Ibrahim, Jayden Carter, Rushita A Bagchi

Histone deacetylases (HDACs) are enzymes that catalyze the removal of acetyl groups from key lysine residues on histone and non-histone proteins and thereby regulate gene transcription. They have been implicated in several biological processes in both healthy and pathologic settings. This review discusses the role of HDACs in multiple metabolically active tissues and highlights their contribution to the pathogenesis of tissue-specific maladaptation and diseases. We also summarize the current knowledge gaps and potential ways to address them in future studies.

组蛋白去乙酰化酶(HDACs)是一种催化去除组蛋白和非组蛋白上关键赖氨酸残基上乙酰基从而调节基因转录的酶。它们与健康和病理环境中的多个生物过程都有关联。本综述讨论了 HDACs 在多种代谢活跃组织中的作用,并强调了它们对组织特异性适应不良和疾病发病机制的贡献。我们还总结了目前的知识空白以及在未来研究中解决这些问题的潜在方法。
{"title":"Histone Deacetylases in Metabolism: The Known and the Unexplored.","authors":"Somaya Y Ibrahim, Jayden Carter, Rushita A Bagchi","doi":"10.1152/physiol.00044.2024","DOIUrl":"https://doi.org/10.1152/physiol.00044.2024","url":null,"abstract":"<p><p>Histone deacetylases (HDACs) are enzymes that catalyze the removal of acetyl groups from key lysine residues on histone and non-histone proteins and thereby regulate gene transcription. They have been implicated in several biological processes in both healthy and pathologic settings. This review discusses the role of HDACs in multiple metabolically active tissues and highlights their contribution to the pathogenesis of tissue-specific maladaptation and diseases. We also summarize the current knowledge gaps and potential ways to address them in future studies.</p>","PeriodicalId":49694,"journal":{"name":"Physiology","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142523487","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mitochondrial Calcium Regulation of Cardiac Metabolism in Health and Disease. 线粒体钙对健康和疾病中心脏代谢的调节。
IF 5.3 2区 医学 Q1 PHYSIOLOGY Pub Date : 2024-09-01 Epub Date: 2024-05-07 DOI: 10.1152/physiol.00014.2024
Enrique Balderas, Sandra H J Lee, Neeraj K Rai, David M Mollinedo, Hannah E Duron, Dipayan Chaudhuri

Oxidative phosphorylation is regulated by mitochondrial calcium (Ca2+) in health and disease. In physiological states, Ca2+ enters via the mitochondrial Ca2+ uniporter and rapidly enhances NADH and ATP production. However, maintaining Ca2+ homeostasis is critical: insufficient Ca2+ impairs stress adaptation, and Ca2+ overload can trigger cell death. In this review, we delve into recent insights further defining the relationship between mitochondrial Ca2+ dynamics and oxidative phosphorylation. Our focus is on how such regulation affects cardiac function in health and disease, including heart failure, ischemia-reperfusion, arrhythmias, catecholaminergic polymorphic ventricular tachycardia, mitochondrial cardiomyopathies, Barth syndrome, and Friedreich's ataxia. Several themes emerge from recent data. First, mitochondrial Ca2+ regulation is critical for fuel substrate selection, metabolite import, and matching of ATP supply to demand. Second, mitochondrial Ca2+ regulates both the production and response to reactive oxygen species (ROS), and the balance between its pro- and antioxidant effects is key to how it contributes to physiological and pathological states. Third, Ca2+ exerts localized effects on the electron transport chain (ETC), not through traditional allosteric mechanisms but rather indirectly. These effects hinge on specific transporters, such as the uniporter or the Na+/Ca2+ exchanger, and may not be noticeable acutely, contributing differently to phenotypes depending on whether Ca2+ transporters are acutely or chronically modified. Perturbations in these novel relationships during disease states may either serve as compensatory mechanisms or exacerbate impairments in oxidative phosphorylation. Consequently, targeting mitochondrial Ca2+ holds promise as a therapeutic strategy for a variety of cardiac diseases characterized by contractile failure or arrhythmias.

在健康和疾病状态下,氧化磷酸化受线粒体钙(Ca2+)的调节。在生理状态下,Ca2+ 通过线粒体 Ca2+ 单通道进入线粒体,并迅速增强 NADH 和 ATP 的生成。然而,维持 Ca2+ 的平衡至关重要:Ca2+ 不足会影响应激适应,而 Ca2+ 过载则会引发细胞死亡。在这篇综述中,我们将深入探讨进一步明确线粒体 Ca2+ 动态与氧化磷酸化之间关系的最新见解。我们的重点是这种调节如何影响健康和疾病中的心脏功能,包括心力衰竭、缺血再灌注、心律失常、儿茶酚胺能多形性室性心动过速、线粒体心肌病、巴特综合征和弗里德里希共济失调。最近的数据提出了几个主题。首先,线粒体 Ca2+ 调节对燃料底物选择、代谢产物输入和 ATP 供需匹配至关重要。其次,线粒体 Ca2+ 调节活性氧(ROS)的产生和反应,其促氧化作用和抗氧化作用之间的平衡是线粒体 Ca2+ 如何促进生理和病理状态的关键。第三,Ca2+ 对电子传递链(ETC)产生局部效应,但不是通过传统的异构机制,而是间接的。这些影响取决于特定的转运体,如单向转运体或 Na+-Ca2+ 交换体,而且在急性期可能并不明显,表型的形成取决于 Ca2+ 转运体是急性改变还是慢性改变。在疾病状态下,这些新型关系的紊乱可能会成为一种补偿机制,也可能会加剧氧化磷酸化的损伤。因此,以线粒体 Ca2+ 为靶点有望成为以收缩功能衰竭或心律失常为特征的多种心脏疾病的治疗策略。
{"title":"Mitochondrial Calcium Regulation of Cardiac Metabolism in Health and Disease.","authors":"Enrique Balderas, Sandra H J Lee, Neeraj K Rai, David M Mollinedo, Hannah E Duron, Dipayan Chaudhuri","doi":"10.1152/physiol.00014.2024","DOIUrl":"10.1152/physiol.00014.2024","url":null,"abstract":"<p><p>Oxidative phosphorylation is regulated by mitochondrial calcium (Ca<sup>2+</sup>) in health and disease. In physiological states, Ca<sup>2+</sup> enters via the mitochondrial Ca<sup>2+</sup> uniporter and rapidly enhances NADH and ATP production. However, maintaining Ca<sup>2+</sup> homeostasis is critical: insufficient Ca<sup>2+</sup> impairs stress adaptation, and Ca<sup>2+</sup> overload can trigger cell death. In this review, we delve into recent insights further defining the relationship between mitochondrial Ca<sup>2+</sup> dynamics and oxidative phosphorylation. Our focus is on how such regulation affects cardiac function in health and disease, including heart failure, ischemia-reperfusion, arrhythmias, catecholaminergic polymorphic ventricular tachycardia, mitochondrial cardiomyopathies, Barth syndrome, and Friedreich's ataxia. Several themes emerge from recent data. First, mitochondrial Ca<sup>2+</sup> regulation is critical for fuel substrate selection, metabolite import, and matching of ATP supply to demand. Second, mitochondrial Ca<sup>2+</sup> regulates both the production and response to reactive oxygen species (ROS), and the balance between its pro- and antioxidant effects is key to how it contributes to physiological and pathological states. Third, Ca<sup>2+</sup> exerts localized effects on the electron transport chain (ETC), not through traditional allosteric mechanisms but rather indirectly. These effects hinge on specific transporters, such as the uniporter or the Na<sup>+</sup>/Ca<sup>2+</sup> exchanger, and may not be noticeable acutely, contributing differently to phenotypes depending on whether Ca<sup>2+</sup> transporters are acutely or chronically modified. Perturbations in these novel relationships during disease states may either serve as compensatory mechanisms or exacerbate impairments in oxidative phosphorylation. Consequently, targeting mitochondrial Ca<sup>2+</sup> holds promise as a therapeutic strategy for a variety of cardiac diseases characterized by contractile failure or arrhythmias.</p>","PeriodicalId":49694,"journal":{"name":"Physiology","volume":" ","pages":"0"},"PeriodicalIF":5.3,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11460536/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140853338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nrf2-Keap1 in Cardiovascular Disease: Which Is the Cart and Which the Horse? 心血管疾病中的 Nrf2-Keap1:哪个是车,哪个是马?
IF 5.3 2区 医学 Q1 PHYSIOLOGY Pub Date : 2024-09-01 Epub Date: 2024-04-30 DOI: 10.1152/physiol.00015.2024
Neha Dhyani, Changhai Tian, Lie Gao, Tara L Rudebush, Irving H Zucker

High levels of oxidant stress in the form of reactive oxidant species are prevalent in the circulation and tissues in various types of cardiovascular disease including heart failure, hypertension, peripheral arterial disease, and stroke. Here we review the role of nuclear factor erythroid 2-related factor 2 (Nrf2), an important and widespread antioxidant and anti-inflammatory transcription factor that may contribute to the pathogenesis and maintenance of cardiovascular diseases. We review studies showing that downregulation of Nrf2 exacerbates heart failure, hypertension, and autonomic function. Finally, we discuss the potential for using Nrf2 modulation as a therapeutic strategy for cardiovascular diseases and autonomic dysfunction.

在各种类型的心血管疾病(包括心力衰竭、高血压、外周动脉疾病和中风)中,血液循环和组织中普遍存在以活性氧化物(ROS)形式存在的高水平氧化应激。核因子红细胞 2 相关因子 2(Nrf2)是一种重要而广泛的抗氧化和抗炎转录因子,可能有助于心血管疾病的发病和维持。我们回顾的研究表明,Nrf2 的下调会加剧心力衰竭、高血压和自律神经功能。最后,我们讨论了使用 Nrf2 调节作为心血管疾病和自主神经功能障碍治疗策略的潜力。
{"title":"Nrf2-Keap1 in Cardiovascular Disease: Which Is the Cart and Which the Horse?","authors":"Neha Dhyani, Changhai Tian, Lie Gao, Tara L Rudebush, Irving H Zucker","doi":"10.1152/physiol.00015.2024","DOIUrl":"10.1152/physiol.00015.2024","url":null,"abstract":"<p><p>High levels of oxidant stress in the form of reactive oxidant species are prevalent in the circulation and tissues in various types of cardiovascular disease including heart failure, hypertension, peripheral arterial disease, and stroke. Here we review the role of nuclear factor erythroid 2-related factor 2 (Nrf2), an important and widespread antioxidant and anti-inflammatory transcription factor that may contribute to the pathogenesis and maintenance of cardiovascular diseases. We review studies showing that downregulation of Nrf2 exacerbates heart failure, hypertension, and autonomic function. Finally, we discuss the potential for using Nrf2 modulation as a therapeutic strategy for cardiovascular diseases and autonomic dysfunction.</p>","PeriodicalId":49694,"journal":{"name":"Physiology","volume":" ","pages":"0"},"PeriodicalIF":5.3,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11460534/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140873182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New Insights into IGF-1 Signaling in the Heart. IGF-1 信号在心脏中的新发现。
IF 5.3 2区 医学 Q1 PHYSIOLOGY Pub Date : 2024-09-01 Epub Date: 2024-05-07 DOI: 10.1152/physiol.00003.2024
Wang-Soo Lee, E Dale Abel, Jaetaek Kim

Insulin-like growth factor-1 (IGF-1) signaling has multiple physiological roles in cellular growth, metabolism, and aging. Myocardial hypertrophy, cell death, senescence, fibrosis, and electrical remodeling are hallmarks of various heart diseases and contribute to the progression of heart failure. This review highlights the critical role of IGF-1 and its cognate receptor in cardiac hypertrophy, aging, and remodeling.

胰岛素样生长因子(IGF)-1 信号在细胞生长、新陈代谢和衰老过程中发挥着多种生理作用。心肌肥厚、细胞死亡、衰老、纤维化和电重塑是各种心脏病的标志,也是心力衰竭的诱因。本综述强调了 IGF-1 及其同源受体在心肌肥厚、衰老和重塑中的关键作用。
{"title":"New Insights into IGF-1 Signaling in the Heart.","authors":"Wang-Soo Lee, E Dale Abel, Jaetaek Kim","doi":"10.1152/physiol.00003.2024","DOIUrl":"10.1152/physiol.00003.2024","url":null,"abstract":"<p><p>Insulin-like growth factor-1 (IGF-1) signaling has multiple physiological roles in cellular growth, metabolism, and aging. Myocardial hypertrophy, cell death, senescence, fibrosis, and electrical remodeling are hallmarks of various heart diseases and contribute to the progression of heart failure. This review highlights the critical role of IGF-1 and its cognate receptor in cardiac hypertrophy, aging, and remodeling.</p>","PeriodicalId":49694,"journal":{"name":"Physiology","volume":" ","pages":"0"},"PeriodicalIF":5.3,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140870959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ECM Microenvironment in Vascular Homeostasis: New Targets for Atherosclerosis. 血管稳态中的 ECM 微环境:动脉粥样硬化的新目标。
IF 5.3 2区 医学 Q1 PHYSIOLOGY Pub Date : 2024-09-01 DOI: 10.1152/physiol.00028.2023
Lu Zhang, Qianqian Feng, Wei Kong

Alterations in vascular extracellular matrix (ECM) components, interactions, and mechanical properties influence both the formation and stability of atherosclerotic plaques. This review discusses the contribution of the ECM microenvironment in vascular homeostasis and remodeling in atherosclerosis, highlighting Cartilage oligomeric matrix protein (COMP) and its degrading enzyme ADAMTS7 as examples, and proposes potential avenues for future research aimed at identifying novel therapeutic targets for atherosclerosis based on the ECM microenvironment.

血管细胞外基质(ECM)成分、相互作用和机械特性的改变会影响动脉粥样硬化斑块的形成和稳定性。本综述以软骨低聚基质蛋白(COMP)及其降解酶 ADAMTS7 为例,讨论了 ECM 微环境在动脉粥样硬化的血管稳态和重塑过程中的作用,并提出了未来研究的潜在途径,旨在根据 ECM 微环境确定动脉粥样硬化的新型治疗靶点。
{"title":"ECM Microenvironment in Vascular Homeostasis: New Targets for Atherosclerosis.","authors":"Lu Zhang, Qianqian Feng, Wei Kong","doi":"10.1152/physiol.00028.2023","DOIUrl":"10.1152/physiol.00028.2023","url":null,"abstract":"<p><p>Alterations in vascular extracellular matrix (ECM) components, interactions, and mechanical properties influence both the formation and stability of atherosclerotic plaques. This review discusses the contribution of the ECM microenvironment in vascular homeostasis and remodeling in atherosclerosis, highlighting Cartilage oligomeric matrix protein (COMP) and its degrading enzyme ADAMTS7 as examples, and proposes potential avenues for future research aimed at identifying novel therapeutic targets for atherosclerosis based on the ECM microenvironment.</p>","PeriodicalId":49694,"journal":{"name":"Physiology","volume":"39 5","pages":"0"},"PeriodicalIF":5.3,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141564993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Physiology in Perspective. 透视生理学
IF 5.3 2区 医学 Q1 PHYSIOLOGY Pub Date : 2024-09-01 DOI: 10.1152/physiol.00033.2024
Nikki Forrester
{"title":"Physiology in Perspective.","authors":"Nikki Forrester","doi":"10.1152/physiol.00033.2024","DOIUrl":"10.1152/physiol.00033.2024","url":null,"abstract":"","PeriodicalId":49694,"journal":{"name":"Physiology","volume":"39 5","pages":"246"},"PeriodicalIF":5.3,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141856974","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cell Membrane Tension Gradients, Membrane Flows, and Cellular Processes. 细胞膜张力梯度、膜流和细胞过程。
IF 5.3 2区 医学 Q1 PHYSIOLOGY Pub Date : 2024-07-01 Epub Date: 2024-03-19 DOI: 10.1152/physiol.00007.2024
Qi Yan, Carolina Gomis Perez, Erdem Karatekin

Cell membrane tension affects and is affected by many fundamental cellular processes, yet it is poorly understood. Recent experiments show that membrane tension can propagate at vastly different speeds in different cell types, reflecting physiological adaptations. Here we briefly review the current knowledge about membrane tension gradients, membrane flows, and their physiological context.

细胞膜张力影响着许多基本的细胞过程,也受这些过程的影响,但人们对它的了解却很少。最近的实验表明,膜张力在不同类型细胞中的传播速度大不相同,这反映了生理适应性。在此,我们简要回顾了目前有关膜张力梯度、膜流及其生理背景的知识。
{"title":"Cell Membrane Tension Gradients, Membrane Flows, and Cellular Processes.","authors":"Qi Yan, Carolina Gomis Perez, Erdem Karatekin","doi":"10.1152/physiol.00007.2024","DOIUrl":"10.1152/physiol.00007.2024","url":null,"abstract":"<p><p>Cell membrane tension affects and is affected by many fundamental cellular processes, yet it is poorly understood. Recent experiments show that membrane tension can propagate at vastly different speeds in different cell types, reflecting physiological adaptations. Here we briefly review the current knowledge about membrane tension gradients, membrane flows, and their physiological context.</p>","PeriodicalId":49694,"journal":{"name":"Physiology","volume":" ","pages":"0"},"PeriodicalIF":5.3,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11368524/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140159379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Physiology in Perspective. 透视生理学
IF 5.3 2区 医学 Q1 PHYSIOLOGY Pub Date : 2024-07-01 DOI: 10.1152/physiol.00025.2024
Nikki Forrester
{"title":"Physiology in Perspective.","authors":"Nikki Forrester","doi":"10.1152/physiol.00025.2024","DOIUrl":"10.1152/physiol.00025.2024","url":null,"abstract":"","PeriodicalId":49694,"journal":{"name":"Physiology","volume":"39 4","pages":"178"},"PeriodicalIF":5.3,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141176781","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanisms of Pathogen and Pesticide Resistance in Honey Bees. 蜜蜂对病原体和杀虫剂的抗药性机制。
IF 5.3 2区 医学 Q1 PHYSIOLOGY Pub Date : 2024-07-01 Epub Date: 2024-02-27 DOI: 10.1152/physiol.00033.2023
Leonard J Foster, Nadejda Tsvetkov, Alison McAfee

Bees are the most important insect pollinators of the crops humans grow, and Apis mellifera, the Western honey bee, is the most commonly managed species for this purpose. In addition to providing agricultural services, the complex biology of honey bees has been the subject of scientific study since the 18th century, and the intricate behaviors of honey bees and ants, fellow hymenopterans, inspired much sociobiological inquest. Unfortunately, honey bees are constantly exposed to parasites, pathogens, and xenobiotics, all of which pose threats to their health. Despite our curiosity about and dependence on honey bees, defining the molecular mechanisms underlying their interactions with biotic and abiotic stressors has been challenging. The very aspects of their physiology and behavior that make them so important to agriculture also make them challenging to study, relative to canonical model organisms. However, because we rely on A. mellifera so much for pollination, we must continue our efforts to understand what ails them. Here, we review major advancements in our knowledge of honey bee physiology, focusing on immunity and detoxification, and highlight some challenges that remain.

蜜蜂是人类种植农作物最重要的授粉昆虫,而西方蜜蜂(Apis mellifera)是人类最常管理的授粉昆虫。除了提供农业服务外,蜜蜂复杂的生物学特性自 18 世纪以来一直是科学研究的主题,蜜蜂和蚂蚁--同属膜翅目昆虫--错综复杂的行为激发了许多社会生物学探索。不幸的是,蜜蜂经常受到寄生虫、病原体和异种生物的侵害,所有这些都对它们的健康构成威胁。尽管我们对蜜蜂充满好奇和依赖,但确定蜜蜂与生物和非生物压力源相互作用的分子机制却一直充满挑战。蜜蜂的生理和行为对农业如此重要,这也使它们的研究相对于典型模式生物而言具有挑战性。但是,由于我们非常依赖 A. mellifera 进行授粉,我们必须继续努力了解它们的病因。在此,我们将回顾蜜蜂生理学知识的主要进展,重点关注免疫和解毒,并强调仍然存在的一些挑战。
{"title":"Mechanisms of Pathogen and Pesticide Resistance in Honey Bees.","authors":"Leonard J Foster, Nadejda Tsvetkov, Alison McAfee","doi":"10.1152/physiol.00033.2023","DOIUrl":"10.1152/physiol.00033.2023","url":null,"abstract":"<p><p>Bees are the most important insect pollinators of the crops humans grow, and <i>Apis mellifera</i>, the Western honey bee, is the most commonly managed species for this purpose. In addition to providing agricultural services, the complex biology of honey bees has been the subject of scientific study since the 18th century, and the intricate behaviors of honey bees and ants, fellow hymenopterans, inspired much sociobiological inquest. Unfortunately, honey bees are constantly exposed to parasites, pathogens, and xenobiotics, all of which pose threats to their health. Despite our curiosity about and dependence on honey bees, defining the molecular mechanisms underlying their interactions with biotic and abiotic stressors has been challenging. The very aspects of their physiology and behavior that make them so important to agriculture also make them challenging to study, relative to canonical model organisms. However, because we rely on <i>A. mellifera</i> so much for pollination, we must continue our efforts to understand what ails them. Here, we review major advancements in our knowledge of honey bee physiology, focusing on immunity and detoxification, and highlight some challenges that remain.</p>","PeriodicalId":49694,"journal":{"name":"Physiology","volume":" ","pages":"0"},"PeriodicalIF":5.3,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11368521/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139974216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Physiology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1