首页 > 最新文献

Physiology最新文献

英文 中文
Mechanisms of Pathogen and Pesticide Resistance in Honey Bees. 蜜蜂对病原体和杀虫剂的抗药性机制。
IF 5.3 2区 医学 Q1 PHYSIOLOGY Pub Date : 2024-07-01 Epub Date: 2024-02-27 DOI: 10.1152/physiol.00033.2023
Leonard J Foster, Nadejda Tsvetkov, Alison McAfee

Bees are the most important insect pollinators of the crops humans grow, and Apis mellifera, the Western honey bee, is the most commonly managed species for this purpose. In addition to providing agricultural services, the complex biology of honey bees has been the subject of scientific study since the 18th century, and the intricate behaviors of honey bees and ants, fellow hymenopterans, inspired much sociobiological inquest. Unfortunately, honey bees are constantly exposed to parasites, pathogens, and xenobiotics, all of which pose threats to their health. Despite our curiosity about and dependence on honey bees, defining the molecular mechanisms underlying their interactions with biotic and abiotic stressors has been challenging. The very aspects of their physiology and behavior that make them so important to agriculture also make them challenging to study, relative to canonical model organisms. However, because we rely on A. mellifera so much for pollination, we must continue our efforts to understand what ails them. Here, we review major advancements in our knowledge of honey bee physiology, focusing on immunity and detoxification, and highlight some challenges that remain.

蜜蜂是人类种植农作物最重要的授粉昆虫,而西方蜜蜂(Apis mellifera)是人类最常管理的授粉昆虫。除了提供农业服务外,蜜蜂复杂的生物学特性自 18 世纪以来一直是科学研究的主题,蜜蜂和蚂蚁--同属膜翅目昆虫--错综复杂的行为激发了许多社会生物学探索。不幸的是,蜜蜂经常受到寄生虫、病原体和异种生物的侵害,所有这些都对它们的健康构成威胁。尽管我们对蜜蜂充满好奇和依赖,但确定蜜蜂与生物和非生物压力源相互作用的分子机制却一直充满挑战。蜜蜂的生理和行为对农业如此重要,这也使它们的研究相对于典型模式生物而言具有挑战性。但是,由于我们非常依赖 A. mellifera 进行授粉,我们必须继续努力了解它们的病因。在此,我们将回顾蜜蜂生理学知识的主要进展,重点关注免疫和解毒,并强调仍然存在的一些挑战。
{"title":"Mechanisms of Pathogen and Pesticide Resistance in Honey Bees.","authors":"Leonard J Foster, Nadejda Tsvetkov, Alison McAfee","doi":"10.1152/physiol.00033.2023","DOIUrl":"10.1152/physiol.00033.2023","url":null,"abstract":"<p><p>Bees are the most important insect pollinators of the crops humans grow, and <i>Apis mellifera</i>, the Western honey bee, is the most commonly managed species for this purpose. In addition to providing agricultural services, the complex biology of honey bees has been the subject of scientific study since the 18th century, and the intricate behaviors of honey bees and ants, fellow hymenopterans, inspired much sociobiological inquest. Unfortunately, honey bees are constantly exposed to parasites, pathogens, and xenobiotics, all of which pose threats to their health. Despite our curiosity about and dependence on honey bees, defining the molecular mechanisms underlying their interactions with biotic and abiotic stressors has been challenging. The very aspects of their physiology and behavior that make them so important to agriculture also make them challenging to study, relative to canonical model organisms. However, because we rely on <i>A. mellifera</i> so much for pollination, we must continue our efforts to understand what ails them. Here, we review major advancements in our knowledge of honey bee physiology, focusing on immunity and detoxification, and highlight some challenges that remain.</p>","PeriodicalId":49694,"journal":{"name":"Physiology","volume":" ","pages":"0"},"PeriodicalIF":5.3,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11368521/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139974216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pulmonary Vascular Dysfunctions in Cystic Fibrosis. 囊性纤维化的肺血管功能障碍。
IF 5.3 2区 医学 Q1 PHYSIOLOGY Pub Date : 2024-07-01 Epub Date: 2024-03-19 DOI: 10.1152/physiol.00024.2023
Jean-Pierre Amoakon, Goutham Mylavarapu, Raouf S Amin, Anjaparavanda P Naren

Cystic fibrosis (CF) is an inherited disorder caused by a deleterious mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Given that the CFTR protein is a chloride channel expressed on a variety of cells throughout the human body, mutations in this gene impact several organs, particularly the lungs. For this very reason, research regarding CF disease and CFTR function has historically focused on the lung airway epithelium. Nevertheless, it was discovered more than two decades ago that CFTR is also expressed and functional on endothelial cells. Despite the great strides that have been made in understanding the role of CFTR in the airway epithelium, the role of CFTR in the endothelium remains unclear. Considering that the airway epithelium and endothelium work in tandem to allow gas exchange, it becomes very crucial to understand how a defective CFTR protein can impact the pulmonary vasculature and overall lung function. Fortunately, more recent research has been dedicated to elucidating the role of CFTR in the endothelium. As a result, several vascular dysfunctions associated with CF disease have come to light. Here, we summarize the current knowledge on pulmonary vascular dysfunctions in CF and discuss applicable therapies.

囊性纤维化(CF)是一种遗传性疾病,由囊性纤维化跨膜传导调节器(CFTR)基因的有害突变引起。CFTR 蛋白是一种氯离子通道,在人体内多种细胞中均有表达,因此该基因突变会影响多个器官,尤其是肺部。正因为如此,有关 CF 疾病和 CFTR 功能的研究历来侧重于肺部气道上皮细胞。然而,二十多年前,人们发现 CFTR 在内皮细胞上也有表达和功能。尽管人们在了解 CFTR 在气道上皮细胞中的作用方面取得了长足进步,但 CFTR 在内皮细胞中的作用仍不清楚。考虑到气道上皮细胞和内皮细胞协同工作以实现气体交换,了解 CFTR 蛋白缺陷如何影响肺血管和整体肺功能就变得非常重要。幸运的是,最近有更多的研究致力于阐明 CFTR 在内皮中的作用。因此,与 CF 疾病相关的几种血管功能障碍已经显现出来。在此,我们总结了目前有关 CF 肺血管功能障碍的知识,并讨论了适用的疗法。
{"title":"Pulmonary Vascular Dysfunctions in Cystic Fibrosis.","authors":"Jean-Pierre Amoakon, Goutham Mylavarapu, Raouf S Amin, Anjaparavanda P Naren","doi":"10.1152/physiol.00024.2023","DOIUrl":"10.1152/physiol.00024.2023","url":null,"abstract":"<p><p>Cystic fibrosis (CF) is an inherited disorder caused by a deleterious mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Given that the CFTR protein is a chloride channel expressed on a variety of cells throughout the human body, mutations in this gene impact several organs, particularly the lungs. For this very reason, research regarding CF disease and CFTR function has historically focused on the lung airway epithelium. Nevertheless, it was discovered more than two decades ago that CFTR is also expressed and functional on endothelial cells. Despite the great strides that have been made in understanding the role of CFTR in the airway epithelium, the role of CFTR in the endothelium remains unclear. Considering that the airway epithelium and endothelium work in tandem to allow gas exchange, it becomes very crucial to understand how a defective CFTR protein can impact the pulmonary vasculature and overall lung function. Fortunately, more recent research has been dedicated to elucidating the role of CFTR in the endothelium. As a result, several vascular dysfunctions associated with CF disease have come to light. Here, we summarize the current knowledge on pulmonary vascular dysfunctions in CF and discuss applicable therapies.</p>","PeriodicalId":49694,"journal":{"name":"Physiology","volume":" ","pages":"0"},"PeriodicalIF":5.3,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11368519/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140159380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Burning Question: How Does Our Brain Process Positive and Negative Cues Associated with Thermosensation? 我们的大脑如何处理积极和消极的热感线索?
IF 5.3 2区 医学 Q1 PHYSIOLOGY Pub Date : 2024-07-01 Epub Date: 2024-03-27 DOI: 10.1152/physiol.00034.2023
Jose G Grajales-Reyes, Bandy Chen, David Meseguer, Marc Schneeberger

Whether it is the dramatic suffocating sensation from a heat wave in the summer or the positive reinforcement arising from a hot drink on a cold day; we can certainly agree that our thermal environment underlies our daily rhythms of sensation. Extensive research has focused on deciphering the central circuits responsible for conveying the impact of thermogenesis on mammalian behavior. Here, we revise the recent literature responsible for defining the behavioral correlates that arise from thermogenic fluctuations in mammals. We transition from the physiological significance of thermosensation to the circuitry responsible for the autonomic or behavioral responses associated with it. Subsequently, we delve into the positive and negative valence encoded by thermoregulatory processes. Importantly, we emphasize the crucial junctures where reward, pain, and thermoregulation intersect, unveiling a complex interplay within these neural circuits. Finally, we briefly outline fundamental questions that are pending to be addressed in the field. Fully deciphering the thermoregulatory circuitry in mammals will have far-reaching medical implications. For instance, it may lead to the identification of novel targets to overcome thermal pain or allow the maintenance of our core temperature in prolonged surgeries.

无论是夏季热浪带来的令人窒息的剧烈感觉,还是寒冷天气中一杯热饮带来的积极强化作用,我们肯定都同意,热环境是我们日常感觉节奏的基础。大量研究都集中在破译负责传递产热对哺乳动物行为影响的中枢回路上。在此,我们将对近期负责定义哺乳动物产热波动所产生的行为相关性的文献进行修订。我们从热感觉的生理意义过渡到负责与之相关的自律神经或行为反应的电路。随后,我们深入探讨了体温调节过程所编码的积极和消极情绪。重要的是,我们强调了奖赏、疼痛和体温调节相互交叉的关键节点,揭示了这些神经回路内部复杂的相互作用。最后,我们简要概述了该领域有待解决的基本问题。完全破解哺乳动物的体温调节回路将产生深远的医学影响。例如,它可能导致确定克服热痛的新目标,或允许在长时间手术中保持我们的核心温度。
{"title":"Burning Question: How Does Our Brain Process Positive and Negative Cues Associated with Thermosensation?","authors":"Jose G Grajales-Reyes, Bandy Chen, David Meseguer, Marc Schneeberger","doi":"10.1152/physiol.00034.2023","DOIUrl":"10.1152/physiol.00034.2023","url":null,"abstract":"<p><p>Whether it is the dramatic suffocating sensation from a heat wave in the summer or the positive reinforcement arising from a hot drink on a cold day; we can certainly agree that our thermal environment underlies our daily rhythms of sensation. Extensive research has focused on deciphering the central circuits responsible for conveying the impact of thermogenesis on mammalian behavior. Here, we revise the recent literature responsible for defining the behavioral correlates that arise from thermogenic fluctuations in mammals. We transition from the physiological significance of thermosensation to the circuitry responsible for the autonomic or behavioral responses associated with it. Subsequently, we delve into the positive and negative valence encoded by thermoregulatory processes. Importantly, we emphasize the crucial junctures where reward, pain, and thermoregulation intersect, unveiling a complex interplay within these neural circuits. Finally, we briefly outline fundamental questions that are pending to be addressed in the field. Fully deciphering the thermoregulatory circuitry in mammals will have far-reaching medical implications. For instance, it may lead to the identification of novel targets to overcome thermal pain or allow the maintenance of our core temperature in prolonged surgeries.</p>","PeriodicalId":49694,"journal":{"name":"Physiology","volume":" ","pages":"0"},"PeriodicalIF":5.3,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11368520/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140295108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synergism Between Hypothalamic Astrocytes and Neurons in Metabolic Control. 下丘脑星形胶质细胞和神经元在新陈代谢控制中的协同作用
IF 5.3 2区 医学 Q1 PHYSIOLOGY Pub Date : 2024-07-01 Epub Date: 2024-03-26 DOI: 10.1152/physiol.00009.2024
Laura M Frago, Alfonso Gómez-Romero, Roberto Collado-Pérez, Jesús Argente, Julie A Chowen

Astrocytes are no longer considered as passive support cells. In the hypothalamus, these glial cells actively participate in the control of appetite, energy expenditure, and the processes leading to obesity and its secondary complications. Here we briefly review studies supporting this conclusion and the advances made in understanding the underlying mechanisms.

星形胶质细胞不再被视为被动的支持细胞。在下丘脑中,这些胶质细胞积极参与控制食欲、能量消耗和导致肥胖及其继发性并发症的过程。在此,我们简要回顾了支持这一结论的研究以及在了解其潜在机制方面取得的进展。
{"title":"Synergism Between Hypothalamic Astrocytes and Neurons in Metabolic Control.","authors":"Laura M Frago, Alfonso Gómez-Romero, Roberto Collado-Pérez, Jesús Argente, Julie A Chowen","doi":"10.1152/physiol.00009.2024","DOIUrl":"10.1152/physiol.00009.2024","url":null,"abstract":"<p><p>Astrocytes are no longer considered as passive support cells. In the hypothalamus, these glial cells actively participate in the control of appetite, energy expenditure, and the processes leading to obesity and its secondary complications. Here we briefly review studies supporting this conclusion and the advances made in understanding the underlying mechanisms.</p>","PeriodicalId":49694,"journal":{"name":"Physiology","volume":" ","pages":"0"},"PeriodicalIF":5.3,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140289384","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pharmacological Advances in Incretin-Based Polyagonism: What We Know and What We Don't. 基于胰岛素的多拮抗剂的药理研究进展--我们知道什么,我们不知道什么t.
IF 5.3 2区 医学 Q1 PHYSIOLOGY Pub Date : 2024-05-01 Epub Date: 2024-02-14 DOI: 10.1152/physiol.00032.2023
Aaron Novikoff, Timo D Müller

The prevalence of obesity continues to rise in both adolescents and adults, in parallel obesity is strongly associated with the increased incidence of type 2 diabetes, heart failure, certain types of cancer, and all-cause mortality. In relation to obesity, many pharmacological approaches of the past have tried and failed to combat the rising obesity epidemic, particularly due to insufficient efficacy or unacceptable side effects. However, while the history of antiobesity medication is plagued by failures and disappointments, we have witnessed over the last 10 years substantial progress, particularly in regard to biochemically optimized agonists at the receptor for glucagon-like peptide-1 (GLP-1R) and unimolecular coagonists at the receptors for GLP-1 and the glucose-dependent insulinotropic polypeptide (GIP). Although the GIP receptor:GLP-1R coagonists are being heralded as premier pharmacological tools for the treatment of obesity and diabetes, uncertainty remains as to why these drugs testify superiority over best-in-class GLP-1R monoagonists. Particularly with regard to GIP, there remains great uncertainty if and how GIP acts on systems metabolism and if the GIP system should be activated or inhibited to improve metabolic outcome in adjunct to GLP-1R agonism. In this review, we summarize recent advances in GLP-1- and GIP-based pharmacology and discuss recent findings and open questions related to how the GIP system affects systemic energy and glucose metabolism.

肥胖症在青少年和成年人中的发病率持续上升,与此同时,肥胖症与 2 型糖尿病(T2D)、心力衰竭、某些类型的癌症以及全因死亡率的增加密切相关。针对肥胖症,过去有许多药物治疗方法都曾尝试过,但都以失败告终,特别是由于疗效不佳或无法接受的副作用。不过,虽然抗肥胖药物的历史充满了失败和失望,但在过去 10 年里,我们看到了实质性的进展,特别是在胰高血糖素样肽-1(GLP-1)受体的生化优化激动剂以及 GLP-1 和葡萄糖依赖性促胰岛素多肽(GIP)受体的单分子协同激动剂方面。虽然 GIPR:GLP-1R 联合拮抗剂被誉为治疗肥胖症和糖尿病的主要药理工具,但这些药物为何优于同类最佳的 GLP-1R 单拮抗剂,这一点仍不确定。特别是在 GIP 方面,对于 GIP 是否以及如何作用于系统代谢,以及在 GLP-1R 激动剂的辅助下是否应该激活或抑制 GIP 系统以改善代谢结果,仍然存在很大的不确定性。在这篇综述中,我们总结了 GLP-1 和 GIP 药理学的最新进展,并讨论了与 GIP 系统如何影响全身能量和葡萄糖代谢有关的最新发现和未决问题。
{"title":"Pharmacological Advances in Incretin-Based Polyagonism: What We Know and What We Don't.","authors":"Aaron Novikoff, Timo D Müller","doi":"10.1152/physiol.00032.2023","DOIUrl":"10.1152/physiol.00032.2023","url":null,"abstract":"<p><p>The prevalence of obesity continues to rise in both adolescents and adults, in parallel obesity is strongly associated with the increased incidence of type 2 diabetes, heart failure, certain types of cancer, and all-cause mortality. In relation to obesity, many pharmacological approaches of the past have tried and failed to combat the rising obesity epidemic, particularly due to insufficient efficacy or unacceptable side effects. However, while the history of antiobesity medication is plagued by failures and disappointments, we have witnessed over the last 10 years substantial progress, particularly in regard to biochemically optimized agonists at the receptor for glucagon-like peptide-1 (GLP-1R) and unimolecular coagonists at the receptors for GLP-1 and the glucose-dependent insulinotropic polypeptide (GIP). Although the GIP receptor:GLP-1R coagonists are being heralded as premier pharmacological tools for the treatment of obesity and diabetes, uncertainty remains as to why these drugs testify superiority over best-in-class GLP-1R monoagonists. Particularly with regard to GIP, there remains great uncertainty if and how GIP acts on systems metabolism and if the GIP system should be activated or inhibited to improve metabolic outcome in adjunct to GLP-1R agonism. In this review, we summarize recent advances in GLP-1- and GIP-based pharmacology and discuss recent findings and open questions related to how the GIP system affects systemic energy and glucose metabolism.</p>","PeriodicalId":49694,"journal":{"name":"Physiology","volume":" ","pages":"142-156"},"PeriodicalIF":5.3,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11368522/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139730833","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IUPS: Physiology on a Global Scale. IUPS:全球范围的生理学。
IF 5.3 2区 医学 Q1 PHYSIOLOGY Pub Date : 2024-05-01 DOI: 10.1152/physiol.00005.2024
Susan Wray
{"title":"IUPS: Physiology on a Global Scale.","authors":"Susan Wray","doi":"10.1152/physiol.00005.2024","DOIUrl":"10.1152/physiol.00005.2024","url":null,"abstract":"","PeriodicalId":49694,"journal":{"name":"Physiology","volume":"39 3","pages":"0"},"PeriodicalIF":5.3,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140121153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Emerging Pathophysiological Roles of Ketone Bodies. 新出现的酮体的病理生理作用。
IF 5.3 2区 医学 Q1 PHYSIOLOGY Pub Date : 2024-05-01 Epub Date: 2024-01-23 DOI: 10.1152/physiol.00031.2023
Hiroaki Tsuruta, Kosuke Yamahara, Mako Yasuda-Yamahara, Shinji Kume

The discovery of insulin approximately a century ago greatly improved the management of diabetes, including many of its life-threatening acute complications like ketoacidosis. This breakthrough saved many lives and extended the healthy lifespan of many patients with diabetes. However, there is still a negative perception of ketone bodies stemming from ketoacidosis. Originally, ketone bodies were thought of as a vital source of energy during fasting and exercise. Furthermore, in recent years, research on calorie restriction and its potential impact on extending healthy lifespans, as well as studies on ketone bodies, have gradually led to a reevaluation of the significance of ketone bodies in promoting longevity. Thus, in this review, we discuss the emerging and hidden roles of ketone bodies in various organs, including the heart, kidneys, skeletal muscles, and brain, as well as their potential impact on malignancies and lifespan.

大约一个世纪前,胰岛素的发现大大改善了糖尿病的治疗,包括许多危及生命的急性并发症,如酮症酸中毒。这一突破挽救了许多人的生命,延长了许多糖尿病患者的健康寿命。然而,人们对酮体的负面看法仍然源于酮症酸中毒。最初,人们认为酮体是禁食和运动时的重要能量来源。此外,近年来,有关卡路里限制及其对延长健康寿命的潜在影响的研究,以及有关酮体的研究,逐渐促使人们重新评估酮体在促进长寿方面的意义。因此,在这篇综述中,我们将讨论酮体在心脏、肾脏、骨骼肌和大脑等不同器官中新出现的和隐藏的作用,以及它们对恶性肿瘤和寿命的潜在影响。
{"title":"Emerging Pathophysiological Roles of Ketone Bodies.","authors":"Hiroaki Tsuruta, Kosuke Yamahara, Mako Yasuda-Yamahara, Shinji Kume","doi":"10.1152/physiol.00031.2023","DOIUrl":"10.1152/physiol.00031.2023","url":null,"abstract":"<p><p>The discovery of insulin approximately a century ago greatly improved the management of diabetes, including many of its life-threatening acute complications like ketoacidosis. This breakthrough saved many lives and extended the healthy lifespan of many patients with diabetes. However, there is still a negative perception of ketone bodies stemming from ketoacidosis. Originally, ketone bodies were thought of as a vital source of energy during fasting and exercise. Furthermore, in recent years, research on calorie restriction and its potential impact on extending healthy lifespans, as well as studies on ketone bodies, have gradually led to a reevaluation of the significance of ketone bodies in promoting longevity. Thus, in this review, we discuss the emerging and hidden roles of ketone bodies in various organs, including the heart, kidneys, skeletal muscles, and brain, as well as their potential impact on malignancies and lifespan.</p>","PeriodicalId":49694,"journal":{"name":"Physiology","volume":" ","pages":"0"},"PeriodicalIF":5.3,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139522105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Circadian Rhythm Regulation by Pacemaker Neuron Chloride Oscillation in Flies. 苍蝇起搏神经元氯离子振荡对昼夜节律的调节
IF 5.3 2区 医学 Q1 PHYSIOLOGY Pub Date : 2024-05-01 Epub Date: 2024-02-27 DOI: 10.1152/physiol.00006.2024
Aylin R Rodan

Circadian rhythms in physiology and behavior sync organisms to external environmental cycles. Here, circadian oscillation in intracellular chloride in central pacemaker neurons of the fly, Drosophila melanogaster, is reviewed. Intracellular chloride links SLC12 cation-coupled chloride transporter function with kinase signaling and the regulation of inwardly rectifying potassium channels.

生理和行为的昼夜节律使生物与外部环境周期同步。本文综述了黑腹果蝇中枢起搏神经元细胞内氯化物的昼夜节律振荡。细胞内氯化物将 SLC12 阳离子偶联氯化物转运体的功能与激酶信号传导和内向整流钾通道的调控联系起来。
{"title":"Circadian Rhythm Regulation by Pacemaker Neuron Chloride Oscillation in Flies.","authors":"Aylin R Rodan","doi":"10.1152/physiol.00006.2024","DOIUrl":"10.1152/physiol.00006.2024","url":null,"abstract":"<p><p>Circadian rhythms in physiology and behavior sync organisms to external environmental cycles. Here, circadian oscillation in intracellular chloride in central pacemaker neurons of the fly, <i>Drosophila melanogaster</i>, is reviewed. Intracellular chloride links SLC12 cation-coupled chloride transporter function with kinase signaling and the regulation of inwardly rectifying potassium channels.</p>","PeriodicalId":49694,"journal":{"name":"Physiology","volume":" ","pages":"0"},"PeriodicalIF":5.3,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11368518/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139974215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Complementing Cell Taxonomies with a Multicellular Analysis of Tissues. 用组织的多细胞分析补充细胞分类法。
IF 5.3 2区 医学 Q1 PHYSIOLOGY Pub Date : 2024-05-01 Epub Date: 2024-02-06 DOI: 10.1152/physiol.00001.2024
Ricardo Omar Ramirez Flores, Philipp Sven Lars Schäfer, Leonie Küchenhoff, Julio Saez-Rodriguez

The application of single-cell molecular profiling coupled with spatial technologies has enabled charting of cellular heterogeneity in reference tissues and in disease. This new wave of molecular data has highlighted the expected diversity of single-cell dynamics upon shared external queues and spatial organizations. However, little is known about the relationship between single-cell heterogeneity and the emergence and maintenance of robust multicellular processes in developed tissues and its role in (patho)physiology. Here, we present emerging computational modeling strategies that use increasingly available large-scale cross-condition single-cell and spatial datasets to study multicellular organization in tissues and complement cell taxonomies. This perspective should enable us to better understand how cells within tissues collectively process information and adapt synchronized responses in disease contexts and to bridge the gap between structural changes and functions in tissues.

单细胞分子图谱与空间技术的应用,使人们能够绘制参考组织和疾病中的细胞异质性图谱。这一新的分子数据浪潮凸显了单细胞动态在共享外部队列和空间组织中的预期多样性。然而,人们对单细胞异质性与发育组织中稳健多细胞过程的出现和维持之间的关系及其在(病理)生理学中的作用知之甚少。在这里,我们将介绍新兴的计算建模策略,这些策略利用越来越多的大规模跨条件单细胞和空间数据集来研究组织中的多细胞组织并补充细胞分类学。这一视角应能让我们更好地理解组织内的细胞是如何在疾病环境中集体处理信息并作出同步反应的,并缩小组织结构变化与功能之间的差距。
{"title":"Complementing Cell Taxonomies with a Multicellular Analysis of Tissues.","authors":"Ricardo Omar Ramirez Flores, Philipp Sven Lars Schäfer, Leonie Küchenhoff, Julio Saez-Rodriguez","doi":"10.1152/physiol.00001.2024","DOIUrl":"10.1152/physiol.00001.2024","url":null,"abstract":"<p><p>The application of single-cell molecular profiling coupled with spatial technologies has enabled charting of cellular heterogeneity in reference tissues and in disease. This new wave of molecular data has highlighted the expected diversity of single-cell dynamics upon shared external queues and spatial organizations. However, little is known about the relationship between single-cell heterogeneity and the emergence and maintenance of robust multicellular processes in developed tissues and its role in (patho)physiology. Here, we present emerging computational modeling strategies that use increasingly available large-scale cross-condition single-cell and spatial datasets to study multicellular organization in tissues and complement cell taxonomies. This perspective should enable us to better understand how cells within tissues collectively process information and adapt synchronized responses in disease contexts and to bridge the gap between structural changes and functions in tissues.</p>","PeriodicalId":49694,"journal":{"name":"Physiology","volume":" ","pages":"0"},"PeriodicalIF":5.3,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139693304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Physiology in Perspective. 透视生理学
IF 5.3 2区 医学 Q1 PHYSIOLOGY Pub Date : 2024-05-01 DOI: 10.1152/physiol.00016.2024
Nikki Forrester
{"title":"Physiology in Perspective.","authors":"Nikki Forrester","doi":"10.1152/physiol.00016.2024","DOIUrl":"10.1152/physiol.00016.2024","url":null,"abstract":"","PeriodicalId":49694,"journal":{"name":"Physiology","volume":"39 3","pages":"128"},"PeriodicalIF":5.3,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140319645","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Physiology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1