首页 > 最新文献

Physiology最新文献

英文 中文
Regulation of stem cell function by NAD.
IF 5.3 2区 医学 Q1 PHYSIOLOGY Pub Date : 2025-02-05 DOI: 10.1152/physiol.00052.2024
Yufan Feng, Huixian Qiu, Danica Chen
{"title":"Regulation of stem cell function by NAD<sup />.","authors":"Yufan Feng, Huixian Qiu, Danica Chen","doi":"10.1152/physiol.00052.2024","DOIUrl":"https://doi.org/10.1152/physiol.00052.2024","url":null,"abstract":"","PeriodicalId":49694,"journal":{"name":"Physiology","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143191068","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Integrative Physiology of Hormone Signaling: Insights from Insect models.
IF 5.3 2区 医学 Q1 PHYSIOLOGY Pub Date : 2025-01-31 DOI: 10.1152/physiol.00030.2024
Takashi Koyama, Usama Saeed, Kim Rewitz, Kenneth V Halberg

Hormones orchestrate virtually all physiological processes in animals, and enable them to adjust internal responses to meet diverse physiological demands. Studies in both vertebrates and insects have uncovered many novel hormones and dissected the physiological mechanisms they regulate, demonstrating a remarkable conservation in endocrine signaling across the tree of life. In this review, we focus on recent advances in insect research, which have provided a more integrative view of the conserved interorgan communication networks that control physiology These new insights have been driven by experimental advantages inherent to insects, which over the past decades have aligned with new technologies and sophisticated genetic tools, to transform insect genetic models into a powerful testbed for posing new questions and exploring longstanding issues in endocrine research. Here, we illustrate how insect studies have addressed classic questions in three main areas-hormonal control of growth and development, neuroendocrine regulation of ion and water balance, and hormonal regulation of behavior and metabolism- and how these discoveries have illuminated our fundamental understanding of endocrine signaling in animals. The application of integrative physiology in insect systems to questions in endocrinology and physiology is expanding, and is poised to be a crucible of discovery, revealing fundamental mechanisms of hormonal regulation that underlie animal adaptations to their environments.

{"title":"The Integrative Physiology of Hormone Signaling: Insights from Insect models.","authors":"Takashi Koyama, Usama Saeed, Kim Rewitz, Kenneth V Halberg","doi":"10.1152/physiol.00030.2024","DOIUrl":"https://doi.org/10.1152/physiol.00030.2024","url":null,"abstract":"<p><p>Hormones orchestrate virtually all physiological processes in animals, and enable them to adjust internal responses to meet diverse physiological demands. Studies in both vertebrates and insects have uncovered many novel hormones and dissected the physiological mechanisms they regulate, demonstrating a remarkable conservation in endocrine signaling across the tree of life. In this review, we focus on recent advances in insect research, which have provided a more integrative view of the conserved interorgan communication networks that control physiology These new insights have been driven by experimental advantages inherent to insects, which over the past decades have aligned with new technologies and sophisticated genetic tools, to transform insect genetic models into a powerful testbed for posing new questions and exploring longstanding issues in endocrine research. Here, we illustrate how insect studies have addressed classic questions in three main areas-hormonal control of growth and development, neuroendocrine regulation of ion and water balance, and hormonal regulation of behavior and metabolism- and how these discoveries have illuminated our fundamental understanding of endocrine signaling in animals. The application of integrative physiology in insect systems to questions in endocrinology and physiology is expanding, and is poised to be a crucible of discovery, revealing fundamental mechanisms of hormonal regulation that underlie animal adaptations to their environments.</p>","PeriodicalId":49694,"journal":{"name":"Physiology","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143069018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Immune Aging and Its Implication for Age-Related Disease Progression.
IF 5.3 2区 医学 Q1 PHYSIOLOGY Pub Date : 2025-01-31 DOI: 10.1152/physiol.00051.2024
Yuki Sato

As life expectancy increases globally, the prevalence and severity of age-related disease has risen, significantly impacting patients' quality of life and increasing dependency on the health care system. Age-related diseases share several pathological commonalities, and emerging evidence suggests that targeting these biological processes ameliorate multiple age-related diseases. Immune aging plays a critical role in the pathogenesis of age-related diseases, given its involvement not only in controlling infection and cancer but also in facilitating tissue homeostasis and repair. Aging causes compositional and functional changes in both innate and adaptive immune cells, thereby significantly contributing to the pathogenesis of age-related disease and systemic low-grade inflammation, termed as "inflammaging." This review article aims to describe the current understanding of immune aging and its impact on age-related diseases with particular emphasis on kidney and autoimmune disease. Additionally, this review highlights tertiary lymphoid structures (TLS) as a hallmark of immune aging, exploring their roles in inflammation, tissue damage and potential therapeutic targeting.

{"title":"Immune Aging and Its Implication for Age-Related Disease Progression.","authors":"Yuki Sato","doi":"10.1152/physiol.00051.2024","DOIUrl":"https://doi.org/10.1152/physiol.00051.2024","url":null,"abstract":"<p><p>As life expectancy increases globally, the prevalence and severity of age-related disease has risen, significantly impacting patients' quality of life and increasing dependency on the health care system. Age-related diseases share several pathological commonalities, and emerging evidence suggests that targeting these biological processes ameliorate multiple age-related diseases. Immune aging plays a critical role in the pathogenesis of age-related diseases, given its involvement not only in controlling infection and cancer but also in facilitating tissue homeostasis and repair. Aging causes compositional and functional changes in both innate and adaptive immune cells, thereby significantly contributing to the pathogenesis of age-related disease and systemic low-grade inflammation, termed as \"inflammaging.\" This review article aims to describe the current understanding of immune aging and its impact on age-related diseases with particular emphasis on kidney and autoimmune disease. Additionally, this review highlights tertiary lymphoid structures (TLS) as a hallmark of immune aging, exploring their roles in inflammation, tissue damage and potential therapeutic targeting.</p>","PeriodicalId":49694,"journal":{"name":"Physiology","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143069012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Beyond ATP: Metabolite Networks as Regulators of Physiological and Pathological Erythroid Differentiation. 超越 ATP:作为红细胞分化调节器的代谢物网络
IF 5.3 2区 医学 Q1 PHYSIOLOGY Pub Date : 2025-01-01 Epub Date: 2024-09-03 DOI: 10.1152/physiol.00035.2024
Axel Joly, Arthur Schott, Ira Phadke, Pedro Gonzalez-Menendez, Sandrina Kinet, Naomi Taylor

Hematopoietic stem cells (HSCs) possess the capacity for self-renewal and the sustained production of all mature blood cell lineages. It has been well established that a metabolic rewiring controls the switch of HSCs from a self-renewal state to a more differentiated state, but it is only recently that we have appreciated the importance of metabolic pathways in regulating the commitment of progenitors to distinct hematopoietic lineages. In the context of erythroid differentiation, an extensive network of metabolites, including amino acids, sugars, nucleotides, fatty acids, vitamins, and iron, is required for red blood cell (RBC) maturation. In this review, we highlight the multifaceted roles via which metabolites regulate physiological erythropoiesis as well as the effects of metabolic perturbations on erythroid lineage commitment and differentiation. Of note, the erythroid differentiation process is associated with an exceptional breadth of solute carrier (SLC) metabolite transporter upregulation. Finally, we discuss how recent research, revealing the critical impact of metabolic reprogramming in diseases of disordered and ineffective erythropoiesis, has created opportunities for the development of novel metabolic-centered therapeutic strategies.

造血干细胞(HSCs)具有自我更新和持续产生所有成熟血细胞系的能力。造血干细胞从自我更新状态向分化状态的转换是由新陈代谢线路控制的,这一点已得到公认,但直到最近,我们才认识到新陈代谢途径在调节祖细胞向不同造血系的承诺方面的重要性。在红细胞分化的过程中,红细胞(RBC)的成熟需要大量的代谢物,包括氨基酸、糖类、核苷酸、脂肪酸、维生素和铁。在这篇综述中,我们将重点介绍代谢物调节生理性红细胞生成的多方面作用,以及代谢紊乱对红细胞系的承诺和分化的影响。值得注意的是,红细胞分化过程与 SLC 代谢物转运体的广泛上调有关。最后,我们将讨论最近的研究如何揭示代谢重编程在红细胞生成障碍和无效疾病中的关键影响,从而为开发以代谢为中心的新型治疗策略创造机会。
{"title":"Beyond ATP: Metabolite Networks as Regulators of Physiological and Pathological Erythroid Differentiation.","authors":"Axel Joly, Arthur Schott, Ira Phadke, Pedro Gonzalez-Menendez, Sandrina Kinet, Naomi Taylor","doi":"10.1152/physiol.00035.2024","DOIUrl":"10.1152/physiol.00035.2024","url":null,"abstract":"<p><p>Hematopoietic stem cells (HSCs) possess the capacity for self-renewal and the sustained production of all mature blood cell lineages. It has been well established that a metabolic rewiring controls the switch of HSCs from a self-renewal state to a more differentiated state, but it is only recently that we have appreciated the importance of metabolic pathways in regulating the commitment of progenitors to distinct hematopoietic lineages. In the context of erythroid differentiation, an extensive network of metabolites, including amino acids, sugars, nucleotides, fatty acids, vitamins, and iron, is required for red blood cell (RBC) maturation. In this review, we highlight the multifaceted roles via which metabolites regulate physiological erythropoiesis as well as the effects of metabolic perturbations on erythroid lineage commitment and differentiation. Of note, the erythroid differentiation process is associated with an exceptional breadth of solute carrier (SLC) metabolite transporter upregulation. Finally, we discuss how recent research, revealing the critical impact of metabolic reprogramming in diseases of disordered and ineffective erythropoiesis, has created opportunities for the development of novel metabolic-centered therapeutic strategies.</p>","PeriodicalId":49694,"journal":{"name":"Physiology","volume":" ","pages":"0"},"PeriodicalIF":5.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142120981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanical Remodeling of Nuclear Biomolecular Condensates. 核生物分子凝聚体的机械重塑。
IF 5.3 2区 医学 Q1 PHYSIOLOGY Pub Date : 2025-01-01 Epub Date: 2024-08-07 DOI: 10.1152/physiol.00027.2024
Giulia Soggia, Yasmin ElMaghloob, Annie-Kermen Boromangnaeva, Adel Al Jord

Organism health relies on cell proliferation, migration, and differentiation. These universal processes depend on cytoplasmic reorganization driven notably by the cytoskeleton and its force-generating motors. Their activity generates forces that mechanically agitate the cell nucleus and its interior. New evidence from reproductive cell biology revealed that these cytoskeletal forces can be tuned to remodel nuclear membraneless compartments, known as biomolecular condensates, and regulate their RNA processing function for the success of subsequent cell division that is critical for fertility. Both cytoskeletal and nuclear condensate reorganization are common to numerous physiological and pathological contexts, raising the possibility that mechanical remodeling of nuclear condensates may be a much broader mechanism regulating their function. Here, we review this newfound mechanism of condensate remodeling and venture into the contexts of health and disease where it may be relevant, with a focus on reproduction, cancer, and premature aging.

生物体的健康依赖于细胞的增殖、迁移和分化。这些普遍过程依赖于细胞质的重组,主要由细胞骨架及其产生力的马达驱动。它们的活动产生的力能机械地搅动细胞核及其内部。生殖细胞生物学的新证据显示,这些细胞骨架力可以被调整,以重塑无核膜的隔室(即生物分子凝聚体),并调节它们的 RNA 处理功能,从而使对生育至关重要的后续细胞分裂取得成功。细胞骨架和核凝聚物的重组在许多生理和病理情况下都很常见,这使得核凝聚物的机械重塑可能成为调节其功能的一种更广泛的机制。在此,我们回顾了这一新发现的凝集素重塑机制,并大胆探讨了与之相关的健康和疾病背景,重点关注生殖、癌症和早衰。
{"title":"Mechanical Remodeling of Nuclear Biomolecular Condensates.","authors":"Giulia Soggia, Yasmin ElMaghloob, Annie-Kermen Boromangnaeva, Adel Al Jord","doi":"10.1152/physiol.00027.2024","DOIUrl":"10.1152/physiol.00027.2024","url":null,"abstract":"<p><p>Organism health relies on cell proliferation, migration, and differentiation. These universal processes depend on cytoplasmic reorganization driven notably by the cytoskeleton and its force-generating motors. Their activity generates forces that mechanically agitate the cell nucleus and its interior. New evidence from reproductive cell biology revealed that these cytoskeletal forces can be tuned to remodel nuclear membraneless compartments, known as biomolecular condensates, and regulate their RNA processing function for the success of subsequent cell division that is critical for fertility. Both cytoskeletal and nuclear condensate reorganization are common to numerous physiological and pathological contexts, raising the possibility that mechanical remodeling of nuclear condensates may be a much broader mechanism regulating their function. Here, we review this newfound mechanism of condensate remodeling and venture into the contexts of health and disease where it may be relevant, with a focus on reproduction, cancer, and premature aging.</p>","PeriodicalId":49694,"journal":{"name":"Physiology","volume":" ","pages":"0"},"PeriodicalIF":5.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141898669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Predictors of Inflammation-Mediated Preterm Birth. 炎症引发早产的预测因素
IF 5.3 2区 医学 Q1 PHYSIOLOGY Pub Date : 2025-01-01 Epub Date: 2024-08-06 DOI: 10.1152/physiol.00022.2024
Hanah M Georges, Errol R Norwitz, Vikki M Abrahams

Preterm birth remains a worldwide health concern because of ongoing challenges in prediction and prevention. Current predictors are limited by poor performance, need for invasive sampling, and an inability to identify patients in a timely fashion to allow for effective intervention. The multiple etiologies of preterm birth often have an inflammatory component. Thus, a deeper understanding of the inflammatory mechanisms involved in preterm birth may provide opportunities to identify new predictors of preterm birth. This review discusses the multiple etiologies of preterm birth, their links to inflammation, current predictors available, and new directions for the field.

由于在预测和预防方面一直存在挑战,早产仍然是全球关注的健康问题。目前的预测指标性能不佳,需要进行侵入性采样,而且无法及时发现患者以进行有效干预。早产的多种病因通常都有炎症因素。因此,深入了解早产所涉及的炎症机制可为确定新的早产预测指标提供机会。本综述将讨论早产的多种病因、它们与炎症的联系、目前可用的预测指标以及该领域的新方向。
{"title":"Predictors of Inflammation-Mediated Preterm Birth.","authors":"Hanah M Georges, Errol R Norwitz, Vikki M Abrahams","doi":"10.1152/physiol.00022.2024","DOIUrl":"10.1152/physiol.00022.2024","url":null,"abstract":"<p><p>Preterm birth remains a worldwide health concern because of ongoing challenges in prediction and prevention. Current predictors are limited by poor performance, need for invasive sampling, and an inability to identify patients in a timely fashion to allow for effective intervention. The multiple etiologies of preterm birth often have an inflammatory component. Thus, a deeper understanding of the inflammatory mechanisms involved in preterm birth may provide opportunities to identify new predictors of preterm birth. This review discusses the multiple etiologies of preterm birth, their links to inflammation, current predictors available, and new directions for the field.</p>","PeriodicalId":49694,"journal":{"name":"Physiology","volume":" ","pages":"0"},"PeriodicalIF":5.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141898670","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Physiology in Perspective. 透视生理学
IF 5.3 2区 医学 Q1 PHYSIOLOGY Pub Date : 2025-01-01 Epub Date: 2024-11-28 DOI: 10.1152/physiol.00055.2024
Nikki Forrester
{"title":"Physiology in Perspective.","authors":"Nikki Forrester","doi":"10.1152/physiol.00055.2024","DOIUrl":"10.1152/physiol.00055.2024","url":null,"abstract":"","PeriodicalId":49694,"journal":{"name":"Physiology","volume":" ","pages":"2-3"},"PeriodicalIF":5.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142741163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Role of RANKL Signaling in Bone Homeostasis. rankl信号在骨平衡中的作用。
IF 5.3 2区 医学 Q1 PHYSIOLOGY Pub Date : 2025-01-01 Epub Date: 2024-09-10 DOI: 10.1152/physiol.00031.2024
Cristina Sobacchi, Ciro Menale, Laura Crisafulli, Francesca Ficara

RANKL and its cognate receptor RANK are crucial regulators of bone metabolism in physiological as well as in pathological conditions. Here we go through the works that unveiled the paramount role of this signaling pathway. We focus on the RANKL cytokine, whose alterations are responsible for rare and common bone diseases. We describe recent insights on the regulation of RANKL expression, which provide new hints for the pharmacological regulation of this molecule. Based on the multiple functions exerted by RANKL (within and outside the bone tissue), we advise caution regarding the potential unintended consequences of its inhibition.

RANKL 及其同源受体 RANK 是生理和病理状态下骨代谢的关键调节因子。在此,我们将介绍揭示这一信号通路重要作用的研究成果。我们重点关注 RANKL 细胞因子,它的改变是罕见和常见骨病的罪魁祸首。我们描述了最近对 RANKL 表达调控的深入研究,这为该分子的药理调控提供了新的线索。基于 RANKL 的多种功能(在骨组织内外),我们建议谨慎对待抑制 RANKL 可能带来的意外后果。
{"title":"Role of RANKL Signaling in Bone Homeostasis.","authors":"Cristina Sobacchi, Ciro Menale, Laura Crisafulli, Francesca Ficara","doi":"10.1152/physiol.00031.2024","DOIUrl":"10.1152/physiol.00031.2024","url":null,"abstract":"<p><p>RANKL and its cognate receptor RANK are crucial regulators of bone metabolism in physiological as well as in pathological conditions. Here we go through the works that unveiled the paramount role of this signaling pathway. We focus on the RANKL cytokine, whose alterations are responsible for rare and common bone diseases. We describe recent insights on the regulation of RANKL expression, which provide new hints for the pharmacological regulation of this molecule. Based on the multiple functions exerted by RANKL (within and outside the bone tissue), we advise caution regarding the potential unintended consequences of its inhibition.</p>","PeriodicalId":49694,"journal":{"name":"Physiology","volume":" ","pages":"0"},"PeriodicalIF":5.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142299569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Factors Contributing to Heat Tolerance in Humans and Experimental Models. 导致人类和实验模型耐热性的因素。
IF 5.3 2区 医学 Q1 PHYSIOLOGY Pub Date : 2025-01-01 Epub Date: 2024-08-27 DOI: 10.1152/physiol.00028.2024
Orlando Laitano, Kentaro Oki, Nisha Charkoudian

Understanding physiological mechanisms of tolerance to heat exposure, and potential ways to improve such tolerance, is increasingly important in the context of ongoing climate change. We discuss the concept of heat tolerance in humans and experimental models (primarily rodents), including intracellular mechanisms and improvements in tolerance with heat acclimation.

在当前气候变化的背景下,了解耐受热暴露的生理机制以及提高这种耐受性的潜在方法变得越来越重要。我们将讨论人类和实验模型(主要是啮齿类动物)耐热性的概念,包括细胞内机制和耐热性的改善。
{"title":"Factors Contributing to Heat Tolerance in Humans and Experimental Models.","authors":"Orlando Laitano, Kentaro Oki, Nisha Charkoudian","doi":"10.1152/physiol.00028.2024","DOIUrl":"10.1152/physiol.00028.2024","url":null,"abstract":"<p><p>Understanding physiological mechanisms of tolerance to heat exposure, and potential ways to improve such tolerance, is increasingly important in the context of ongoing climate change. We discuss the concept of heat tolerance in humans and experimental models (primarily rodents), including intracellular mechanisms and improvements in tolerance with heat acclimation.</p>","PeriodicalId":49694,"journal":{"name":"Physiology","volume":" ","pages":"0"},"PeriodicalIF":5.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142074353","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Harnessing Deep Learning Methods for Voltage-Gated Ion Channel Drug Discovery. 利用深度学习方法发现电压门控离子通道药物。
IF 5.3 2区 医学 Q1 PHYSIOLOGY Pub Date : 2025-01-01 Epub Date: 2024-08-27 DOI: 10.1152/physiol.00029.2024
Diego Lopez-Mateos, Brandon John Harris, Adriana Hernández-González, Kush Narang, Vladimir Yarov-Yarovoy

Voltage-gated ion channels (VGICs) are pivotal in regulating electrical activity in excitable cells and are critical pharmaceutical targets for treating many diseases including cardiac arrhythmia and neuropathic pain. Despite their significance, challenges such as achieving target selectivity persist in VGIC drug development. Recent progress in deep learning, particularly diffusion models, has enabled the computational design of protein binders for any clinically relevant protein based solely on its structure. These developments coincide with a surge in experimental structural data for VGICs, providing a rich foundation for computational design efforts. This review explores the recent advancements in computational protein design using deep learning and diffusion methods, focusing on their application in designing protein binders to modulate VGIC activity. We discuss the potential use of these methods to computationally design protein binders targeting different regions of VGICs, including the pore domain, voltage-sensing domains, and interface with auxiliary subunits. We provide a comprehensive overview of the different design scenarios, discuss key structural considerations, and address the practical challenges in developing VGIC-targeting protein binders. By exploring these innovative computational methods, we aim to provide a framework for developing novel strategies that could significantly advance VGIC pharmacology and lead to the discovery of effective and safe therapeutics.

电压门控离子通道(VGIC)在调节可兴奋细胞的电活动中起着关键作用,是治疗心律失常和神经性疼痛等多种疾病的关键药物靶点。尽管其意义重大,但在 VGIC 药物开发过程中,实现目标选择性等挑战依然存在。深度学习(尤其是扩散模型)领域的最新进展使人们能够完全根据临床相关蛋白质的结构,为其计算设计蛋白质结合剂。这些进展与 VGIC 实验结构数据的激增不谋而合,为计算设计工作提供了丰富的基础。本综述探讨了利用深度学习和扩散方法进行计算蛋白质设计的最新进展,重点是这些方法在设计调节 VGIC 活性的蛋白质结合剂中的应用。我们讨论了这些方法在计算设计针对 VGIC 不同区域(包括孔结构域、电压感应结构域以及与辅助亚基的接口)的蛋白质结合剂方面的潜在用途。我们全面概述了不同的设计方案,讨论了关键的结构考虑因素,并探讨了开发 VGIC 靶向蛋白结合剂的实际挑战。通过探索这些创新的计算方法,我们旨在为开发新的策略提供一个框架,这些策略将大大推动 VGIC 药理学的发展,并促进有效、安全疗法的发现。
{"title":"Harnessing Deep Learning Methods for Voltage-Gated Ion Channel Drug Discovery.","authors":"Diego Lopez-Mateos, Brandon John Harris, Adriana Hernández-González, Kush Narang, Vladimir Yarov-Yarovoy","doi":"10.1152/physiol.00029.2024","DOIUrl":"10.1152/physiol.00029.2024","url":null,"abstract":"<p><p>Voltage-gated ion channels (VGICs) are pivotal in regulating electrical activity in excitable cells and are critical pharmaceutical targets for treating many diseases including cardiac arrhythmia and neuropathic pain. Despite their significance, challenges such as achieving target selectivity persist in VGIC drug development. Recent progress in deep learning, particularly diffusion models, has enabled the computational design of protein binders for any clinically relevant protein based solely on its structure. These developments coincide with a surge in experimental structural data for VGICs, providing a rich foundation for computational design efforts. This review explores the recent advancements in computational protein design using deep learning and diffusion methods, focusing on their application in designing protein binders to modulate VGIC activity. We discuss the potential use of these methods to computationally design protein binders targeting different regions of VGICs, including the pore domain, voltage-sensing domains, and interface with auxiliary subunits. We provide a comprehensive overview of the different design scenarios, discuss key structural considerations, and address the practical challenges in developing VGIC-targeting protein binders. By exploring these innovative computational methods, we aim to provide a framework for developing novel strategies that could significantly advance VGIC pharmacology and lead to the discovery of effective and safe therapeutics.</p>","PeriodicalId":49694,"journal":{"name":"Physiology","volume":" ","pages":"0"},"PeriodicalIF":5.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142074354","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Physiology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1