首页 > 最新文献

Physiology最新文献

英文 中文
Charting the Molecular Terrain of Exercise: The Power of Multi-Omic Mapping. 绘制运动分子地形图:多分子图谱的力量
IF 5.3 2区 医学 Q1 PHYSIOLOGY Pub Date : 2024-08-13 DOI: 10.1152/physiol.00024.2024
Daniel H Katz, Malene E Lindholm, Euan A Ashley

Physical activity plays a fundamental role in human health and disease. Exercise has been shown to improve a wide variety of disease states, and the scientific community is committed to understanding the precise molecular mechanisms that underlie the exquisite benefits. This review provides an overview of molecular responses to acute exercise and chronic training, particularly energy mobilization and generation, structural adaptation, inflammation, and immune regulation. Further it offers a detailed discussion on known molecular signals and systemic regulators activated during various forms of exercise and their role in orchestrating health benefits. Critically, the increasing use of multi-omic technologies is explored with an emphasis on how multi-omic and multi-tissue studies contribute to a more profound understanding of exercise biology. These data inform anticipated future advancement in the field and highlight the prospect of integrating exercise with pharmacology for personalized disease prevention and treatment.

体育锻炼对人类健康和疾病起着至关重要的作用。运动已被证明能改善多种疾病状态,科学界正致力于了解其精妙益处的确切分子机制。本综述概述了急性运动和慢性训练的分子反应,特别是能量动员和生成、结构适应、炎症和免疫调节。此外,它还详细讨论了在各种形式的运动中激活的已知分子信号和系统调节因子,以及它们在协调健康益处方面的作用。重要的是,该书探讨了多基因组技术的日益广泛应用,重点是多基因组和多组织研究如何有助于更深入地了解运动生物学。这些数据为该领域未来的发展提供了预期信息,并强调了将运动与药理学结合起来进行个性化疾病预防和治疗的前景。
{"title":"Charting the Molecular Terrain of Exercise: The Power of Multi-Omic Mapping.","authors":"Daniel H Katz, Malene E Lindholm, Euan A Ashley","doi":"10.1152/physiol.00024.2024","DOIUrl":"https://doi.org/10.1152/physiol.00024.2024","url":null,"abstract":"<p><p>Physical activity plays a fundamental role in human health and disease. Exercise has been shown to improve a wide variety of disease states, and the scientific community is committed to understanding the precise molecular mechanisms that underlie the exquisite benefits. This review provides an overview of molecular responses to acute exercise and chronic training, particularly energy mobilization and generation, structural adaptation, inflammation, and immune regulation. Further it offers a detailed discussion on known molecular signals and systemic regulators activated during various forms of exercise and their role in orchestrating health benefits. Critically, the increasing use of multi-omic technologies is explored with an emphasis on how multi-omic and multi-tissue studies contribute to a more profound understanding of exercise biology. These data inform anticipated future advancement in the field and highlight the prospect of integrating exercise with pharmacology for personalized disease prevention and treatment.</p>","PeriodicalId":49694,"journal":{"name":"Physiology","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141972188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanical remodeling of nuclear biomolecular condensates. 核生物分子凝聚体的机械重塑。
IF 5.3 2区 医学 Q1 PHYSIOLOGY Pub Date : 2024-08-07 DOI: 10.1152/physiol.00027.2024
Giulia Soggia, Yasmin ElMaghloob, Annie-Kermen Boromangnaeva, Adel Al Jord

Organism health relies on cell proliferation, migration, and differentiation. These universal processes depend on cytoplasmic reorganization driven notably by the cytoskeleton and its force-generating motors. Their activity generates forces that mechanically agitate the cell nucleus and its interior. New evidence from reproductive cell biology revealed that these cytoskeletal forces can be tuned to remodel nuclear membrane-less compartments, known as biomolecular condensates, and regulate their RNA processing function for the success of subsequent cell division that is critical for fertility. Both cytoskeletal and nuclear condensate reorganization are common to numerous physiological and pathological contexts, raising the possibility that mechanical remodeling of nuclear condensates may be a much broader mechanism regulating their function. Here, we review this newfound mechanism of condensate remodeling and venture into contexts of health and disease where it may be relevant, with a focus on reproduction, cancer, and premature aging.

生物体的健康依赖于细胞的增殖、迁移和分化。这些普遍过程依赖于细胞质的重组,主要由细胞骨架及其产生力的马达驱动。它们的活动产生的力能机械地搅动细胞核及其内部。生殖细胞生物学的新证据显示,这些细胞骨架力可以被调整,以重塑无核膜的隔室(即生物分子凝聚体),并调节它们的 RNA 处理功能,从而使对生育至关重要的后续细胞分裂取得成功。细胞骨架和核凝聚物的重组在许多生理和病理情况下都很常见,这使得核凝聚物的机械重塑可能成为调节其功能的一种更广泛的机制。在此,我们回顾了这一新发现的凝集素重塑机制,并大胆探讨了与之相关的健康和疾病背景,重点关注生殖、癌症和早衰。
{"title":"Mechanical remodeling of nuclear biomolecular condensates.","authors":"Giulia Soggia, Yasmin ElMaghloob, Annie-Kermen Boromangnaeva, Adel Al Jord","doi":"10.1152/physiol.00027.2024","DOIUrl":"10.1152/physiol.00027.2024","url":null,"abstract":"<p><p>Organism health relies on cell proliferation, migration, and differentiation. These universal processes depend on cytoplasmic reorganization driven notably by the cytoskeleton and its force-generating motors. Their activity generates forces that mechanically agitate the cell nucleus and its interior. New evidence from reproductive cell biology revealed that these cytoskeletal forces can be tuned to remodel nuclear membrane-less compartments, known as biomolecular condensates, and regulate their RNA processing function for the success of subsequent cell division that is critical for fertility. Both cytoskeletal and nuclear condensate reorganization are common to numerous physiological and pathological contexts, raising the possibility that mechanical remodeling of nuclear condensates may be a much broader mechanism regulating their function. Here, we review this newfound mechanism of condensate remodeling and venture into contexts of health and disease where it may be relevant, with a focus on reproduction, cancer, and premature aging.</p>","PeriodicalId":49694,"journal":{"name":"Physiology","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141898669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Predictors of Inflammation-Mediated Preterm Birth. 炎症引发早产的预测因素
IF 5.3 2区 医学 Q1 PHYSIOLOGY Pub Date : 2024-08-06 DOI: 10.1152/physiol.00022.2024
Hanah M Georges, Errol R Norwitz, Vikki M Abrahams

Preterm birth remains a worldwide health concern due to ongoing challenges in prediction and prevention. Current predictors are limited by poor performance, need for invasive sampling, and an inability to identify patients in a timely fashion to allow for effective intervention. The multiple etiologies of preterm birth often have an inflammatory component. Thus, a deeper understanding of the inflammatory mechanisms involved in preterm birth may provide opportunities to identify new predictors of preterm birth. This review will discuss the multiple etiologies of preterm birth, their links to inflammation, current predictors available, and new directions for the field.

由于在预测和预防方面一直存在挑战,早产仍然是全球关注的健康问题。目前的预测指标性能不佳,需要进行侵入性采样,而且无法及时发现患者以进行有效干预。早产的多种病因通常都有炎症因素。因此,深入了解早产所涉及的炎症机制可为确定新的早产预测指标提供机会。本综述将讨论早产的多种病因、它们与炎症的联系、目前可用的预测指标以及该领域的新方向。
{"title":"Predictors of Inflammation-Mediated Preterm Birth.","authors":"Hanah M Georges, Errol R Norwitz, Vikki M Abrahams","doi":"10.1152/physiol.00022.2024","DOIUrl":"10.1152/physiol.00022.2024","url":null,"abstract":"<p><p>Preterm birth remains a worldwide health concern due to ongoing challenges in prediction and prevention. Current predictors are limited by poor performance, need for invasive sampling, and an inability to identify patients in a timely fashion to allow for effective intervention. The multiple etiologies of preterm birth often have an inflammatory component. Thus, a deeper understanding of the inflammatory mechanisms involved in preterm birth may provide opportunities to identify new predictors of preterm birth. This review will discuss the multiple etiologies of preterm birth, their links to inflammation, current predictors available, and new directions for the field.</p>","PeriodicalId":49694,"journal":{"name":"Physiology","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141898670","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Low-grade Chronic Inflammation: A Shared Mechanism for Chronic Diseases. 低度慢性炎症:慢性疾病的共同机制。
IF 5.3 2区 医学 Q1 PHYSIOLOGY Pub Date : 2024-07-30 DOI: 10.1152/physiol.00021.2024
Mariana Cifuentes, Hugo E Verdejo, Pablo F Castro, Alejandro H Corvalan, Catterina Ferreccio, Andrew F G Quest, Marcelo J Kogan, Sergio Lavandero

Inflammation is an important physiological response of the organism to restore homeostasis upon pathogenic or damaging stimuli. However, persistence of the harmful trigger, or a deficient resolution of the process can evolve into a state of low-grade, chronic inflammation. This condition is strongly associated to the development of several increasingly prevalent and serious chronic conditions such as obesity, cancer and cardiovascular diseases, elevating overall morbidity and mortality worldwide. The current pandemic of chronic diseases underscores the need to address chronic inflammation, its pathogenic mechanisms and potential preventive measures to limit its current widespread impact. The present review discusses the current knowledge and research gaps regarding the association between low-grade chronic inflammation and chronic diseases, focusing on obesity, cardiovascular diseases, digestive diseases and cancer. We examine the state-of-the-art in selected aspects of the topic, and propose future directions and approaches for the field.

炎症是机体在受到致病性或破坏性刺激时恢复平衡的一种重要生理反应。然而,有害诱因的持续存在,或这一过程的解决不力,会演变成一种低水平的慢性炎症状态。这种状态与肥胖症、癌症和心血管疾病等几种日益普遍和严重的慢性疾病的发生密切相关,导致全球总体发病率和死亡率上升。目前慢性疾病的流行凸显了解决慢性炎症、其致病机制和潜在预防措施的必要性,以限制其目前的广泛影响。本综述以肥胖、心血管疾病、消化系统疾病和癌症为重点,讨论了有关低度慢性炎症与慢性疾病之间关系的现有知识和研究缺口。我们探讨了该主题某些方面的最新进展,并提出了该领域的未来发展方向和方法。
{"title":"Low-grade Chronic Inflammation: A Shared Mechanism for Chronic Diseases.","authors":"Mariana Cifuentes, Hugo E Verdejo, Pablo F Castro, Alejandro H Corvalan, Catterina Ferreccio, Andrew F G Quest, Marcelo J Kogan, Sergio Lavandero","doi":"10.1152/physiol.00021.2024","DOIUrl":"https://doi.org/10.1152/physiol.00021.2024","url":null,"abstract":"<p><p>Inflammation is an important physiological response of the organism to restore homeostasis upon pathogenic or damaging stimuli. However, persistence of the harmful trigger, or a deficient resolution of the process can evolve into a state of low-grade, chronic inflammation. This condition is strongly associated to the development of several increasingly prevalent and serious chronic conditions such as obesity, cancer and cardiovascular diseases, elevating overall morbidity and mortality worldwide. The current pandemic of chronic diseases underscores the need to address chronic inflammation, its pathogenic mechanisms and potential preventive measures to limit its current widespread impact. The present review discusses the current knowledge and research gaps regarding the association between low-grade chronic inflammation and chronic diseases, focusing on obesity, cardiovascular diseases, digestive diseases and cancer. We examine the state-of-the-art in selected aspects of the topic, and propose future directions and approaches for the field.</p>","PeriodicalId":49694,"journal":{"name":"Physiology","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141793887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cell Membrane Tension Gradients, Membrane Flows, and Cellular Processes. 细胞膜张力梯度、膜流和细胞过程。
IF 5.3 2区 医学 Q1 PHYSIOLOGY Pub Date : 2024-07-01 Epub Date: 2024-03-19 DOI: 10.1152/physiol.00007.2024
Qi Yan, Carolina Gomis Perez, Erdem Karatekin

Cell membrane tension affects and is affected by many fundamental cellular processes, yet it is poorly understood. Recent experiments show that membrane tension can propagate at vastly different speeds in different cell types, reflecting physiological adaptations. Here we briefly review the current knowledge about membrane tension gradients, membrane flows, and their physiological context.

细胞膜张力影响着许多基本的细胞过程,也受这些过程的影响,但人们对它的了解却很少。最近的实验表明,膜张力在不同类型细胞中的传播速度大不相同,这反映了生理适应性。在此,我们简要回顾了目前有关膜张力梯度、膜流及其生理背景的知识。
{"title":"Cell Membrane Tension Gradients, Membrane Flows, and Cellular Processes.","authors":"Qi Yan, Carolina Gomis Perez, Erdem Karatekin","doi":"10.1152/physiol.00007.2024","DOIUrl":"10.1152/physiol.00007.2024","url":null,"abstract":"<p><p>Cell membrane tension affects and is affected by many fundamental cellular processes, yet it is poorly understood. Recent experiments show that membrane tension can propagate at vastly different speeds in different cell types, reflecting physiological adaptations. Here we briefly review the current knowledge about membrane tension gradients, membrane flows, and their physiological context.</p>","PeriodicalId":49694,"journal":{"name":"Physiology","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11368524/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140159379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Physiology in Perspective. 透视生理学
IF 5.3 2区 医学 Q1 PHYSIOLOGY Pub Date : 2024-07-01 DOI: 10.1152/physiol.00025.2024
Nikki Forrester
{"title":"Physiology in Perspective.","authors":"Nikki Forrester","doi":"10.1152/physiol.00025.2024","DOIUrl":"10.1152/physiol.00025.2024","url":null,"abstract":"","PeriodicalId":49694,"journal":{"name":"Physiology","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141176781","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanisms of Pathogen and Pesticide Resistance in Honey Bees. 蜜蜂对病原体和杀虫剂的抗药性机制。
IF 5.3 2区 医学 Q1 PHYSIOLOGY Pub Date : 2024-07-01 Epub Date: 2024-02-27 DOI: 10.1152/physiol.00033.2023
Leonard J Foster, Nadejda Tsvetkov, Alison McAfee

Bees are the most important insect pollinators of the crops humans grow, and Apis mellifera, the Western honey bee, is the most commonly managed species for this purpose. In addition to providing agricultural services, the complex biology of honey bees has been the subject of scientific study since the 18th century, and the intricate behaviors of honey bees and ants, fellow hymenopterans, inspired much sociobiological inquest. Unfortunately, honey bees are constantly exposed to parasites, pathogens, and xenobiotics, all of which pose threats to their health. Despite our curiosity about and dependence on honey bees, defining the molecular mechanisms underlying their interactions with biotic and abiotic stressors has been challenging. The very aspects of their physiology and behavior that make them so important to agriculture also make them challenging to study, relative to canonical model organisms. However, because we rely on A. mellifera so much for pollination, we must continue our efforts to understand what ails them. Here, we review major advancements in our knowledge of honey bee physiology, focusing on immunity and detoxification, and highlight some challenges that remain.

蜜蜂是人类种植农作物最重要的授粉昆虫,而西方蜜蜂(Apis mellifera)是人类最常管理的授粉昆虫。除了提供农业服务外,蜜蜂复杂的生物学特性自 18 世纪以来一直是科学研究的主题,蜜蜂和蚂蚁--同属膜翅目昆虫--错综复杂的行为激发了许多社会生物学探索。不幸的是,蜜蜂经常受到寄生虫、病原体和异种生物的侵害,所有这些都对它们的健康构成威胁。尽管我们对蜜蜂充满好奇和依赖,但确定蜜蜂与生物和非生物压力源相互作用的分子机制却一直充满挑战。蜜蜂的生理和行为对农业如此重要,这也使它们的研究相对于典型模式生物而言具有挑战性。但是,由于我们非常依赖 A. mellifera 进行授粉,我们必须继续努力了解它们的病因。在此,我们将回顾蜜蜂生理学知识的主要进展,重点关注免疫和解毒,并强调仍然存在的一些挑战。
{"title":"Mechanisms of Pathogen and Pesticide Resistance in Honey Bees.","authors":"Leonard J Foster, Nadejda Tsvetkov, Alison McAfee","doi":"10.1152/physiol.00033.2023","DOIUrl":"10.1152/physiol.00033.2023","url":null,"abstract":"<p><p>Bees are the most important insect pollinators of the crops humans grow, and <i>Apis mellifera</i>, the Western honey bee, is the most commonly managed species for this purpose. In addition to providing agricultural services, the complex biology of honey bees has been the subject of scientific study since the 18th century, and the intricate behaviors of honey bees and ants, fellow hymenopterans, inspired much sociobiological inquest. Unfortunately, honey bees are constantly exposed to parasites, pathogens, and xenobiotics, all of which pose threats to their health. Despite our curiosity about and dependence on honey bees, defining the molecular mechanisms underlying their interactions with biotic and abiotic stressors has been challenging. The very aspects of their physiology and behavior that make them so important to agriculture also make them challenging to study, relative to canonical model organisms. However, because we rely on <i>A. mellifera</i> so much for pollination, we must continue our efforts to understand what ails them. Here, we review major advancements in our knowledge of honey bee physiology, focusing on immunity and detoxification, and highlight some challenges that remain.</p>","PeriodicalId":49694,"journal":{"name":"Physiology","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11368521/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139974216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pulmonary Vascular Dysfunctions in Cystic Fibrosis. 囊性纤维化的肺血管功能障碍。
IF 5.3 2区 医学 Q1 PHYSIOLOGY Pub Date : 2024-07-01 Epub Date: 2024-03-19 DOI: 10.1152/physiol.00024.2023
Jean-Pierre Amoakon, Goutham Mylavarapu, Raouf S Amin, Anjaparavanda P Naren

Cystic fibrosis (CF) is an inherited disorder caused by a deleterious mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Given that the CFTR protein is a chloride channel expressed on a variety of cells throughout the human body, mutations in this gene impact several organs, particularly the lungs. For this very reason, research regarding CF disease and CFTR function has historically focused on the lung airway epithelium. Nevertheless, it was discovered more than two decades ago that CFTR is also expressed and functional on endothelial cells. Despite the great strides that have been made in understanding the role of CFTR in the airway epithelium, the role of CFTR in the endothelium remains unclear. Considering that the airway epithelium and endothelium work in tandem to allow gas exchange, it becomes very crucial to understand how a defective CFTR protein can impact the pulmonary vasculature and overall lung function. Fortunately, more recent research has been dedicated to elucidating the role of CFTR in the endothelium. As a result, several vascular dysfunctions associated with CF disease have come to light. Here, we summarize the current knowledge on pulmonary vascular dysfunctions in CF and discuss applicable therapies.

囊性纤维化(CF)是一种遗传性疾病,由囊性纤维化跨膜传导调节器(CFTR)基因的有害突变引起。CFTR 蛋白是一种氯离子通道,在人体内多种细胞中均有表达,因此该基因突变会影响多个器官,尤其是肺部。正因为如此,有关 CF 疾病和 CFTR 功能的研究历来侧重于肺部气道上皮细胞。然而,二十多年前,人们发现 CFTR 在内皮细胞上也有表达和功能。尽管人们在了解 CFTR 在气道上皮细胞中的作用方面取得了长足进步,但 CFTR 在内皮细胞中的作用仍不清楚。考虑到气道上皮细胞和内皮细胞协同工作以实现气体交换,了解 CFTR 蛋白缺陷如何影响肺血管和整体肺功能就变得非常重要。幸运的是,最近有更多的研究致力于阐明 CFTR 在内皮中的作用。因此,与 CF 疾病相关的几种血管功能障碍已经显现出来。在此,我们总结了目前有关 CF 肺血管功能障碍的知识,并讨论了适用的疗法。
{"title":"Pulmonary Vascular Dysfunctions in Cystic Fibrosis.","authors":"Jean-Pierre Amoakon, Goutham Mylavarapu, Raouf S Amin, Anjaparavanda P Naren","doi":"10.1152/physiol.00024.2023","DOIUrl":"10.1152/physiol.00024.2023","url":null,"abstract":"<p><p>Cystic fibrosis (CF) is an inherited disorder caused by a deleterious mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Given that the CFTR protein is a chloride channel expressed on a variety of cells throughout the human body, mutations in this gene impact several organs, particularly the lungs. For this very reason, research regarding CF disease and CFTR function has historically focused on the lung airway epithelium. Nevertheless, it was discovered more than two decades ago that CFTR is also expressed and functional on endothelial cells. Despite the great strides that have been made in understanding the role of CFTR in the airway epithelium, the role of CFTR in the endothelium remains unclear. Considering that the airway epithelium and endothelium work in tandem to allow gas exchange, it becomes very crucial to understand how a defective CFTR protein can impact the pulmonary vasculature and overall lung function. Fortunately, more recent research has been dedicated to elucidating the role of CFTR in the endothelium. As a result, several vascular dysfunctions associated with CF disease have come to light. Here, we summarize the current knowledge on pulmonary vascular dysfunctions in CF and discuss applicable therapies.</p>","PeriodicalId":49694,"journal":{"name":"Physiology","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11368519/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140159380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Burning Question: How Does Our Brain Process Positive and Negative Cues Associated with Thermosensation? 我们的大脑如何处理积极和消极的热感线索?
IF 5.3 2区 医学 Q1 PHYSIOLOGY Pub Date : 2024-07-01 Epub Date: 2024-03-27 DOI: 10.1152/physiol.00034.2023
Jose G Grajales-Reyes, Bandy Chen, David Meseguer, Marc Schneeberger

Whether it is the dramatic suffocating sensation from a heat wave in the summer or the positive reinforcement arising from a hot drink on a cold day; we can certainly agree that our thermal environment underlies our daily rhythms of sensation. Extensive research has focused on deciphering the central circuits responsible for conveying the impact of thermogenesis on mammalian behavior. Here, we revise the recent literature responsible for defining the behavioral correlates that arise from thermogenic fluctuations in mammals. We transition from the physiological significance of thermosensation to the circuitry responsible for the autonomic or behavioral responses associated with it. Subsequently, we delve into the positive and negative valence encoded by thermoregulatory processes. Importantly, we emphasize the crucial junctures where reward, pain, and thermoregulation intersect, unveiling a complex interplay within these neural circuits. Finally, we briefly outline fundamental questions that are pending to be addressed in the field. Fully deciphering the thermoregulatory circuitry in mammals will have far-reaching medical implications. For instance, it may lead to the identification of novel targets to overcome thermal pain or allow the maintenance of our core temperature in prolonged surgeries.

无论是夏季热浪带来的令人窒息的剧烈感觉,还是寒冷天气中一杯热饮带来的积极强化作用,我们肯定都同意,热环境是我们日常感觉节奏的基础。大量研究都集中在破译负责传递产热对哺乳动物行为影响的中枢回路上。在此,我们将对近期负责定义哺乳动物产热波动所产生的行为相关性的文献进行修订。我们从热感觉的生理意义过渡到负责与之相关的自律神经或行为反应的电路。随后,我们深入探讨了体温调节过程所编码的积极和消极情绪。重要的是,我们强调了奖赏、疼痛和体温调节相互交叉的关键节点,揭示了这些神经回路内部复杂的相互作用。最后,我们简要概述了该领域有待解决的基本问题。完全破解哺乳动物的体温调节回路将产生深远的医学影响。例如,它可能导致确定克服热痛的新目标,或允许在长时间手术中保持我们的核心温度。
{"title":"Burning Question: How Does Our Brain Process Positive and Negative Cues Associated with Thermosensation?","authors":"Jose G Grajales-Reyes, Bandy Chen, David Meseguer, Marc Schneeberger","doi":"10.1152/physiol.00034.2023","DOIUrl":"10.1152/physiol.00034.2023","url":null,"abstract":"<p><p>Whether it is the dramatic suffocating sensation from a heat wave in the summer or the positive reinforcement arising from a hot drink on a cold day; we can certainly agree that our thermal environment underlies our daily rhythms of sensation. Extensive research has focused on deciphering the central circuits responsible for conveying the impact of thermogenesis on mammalian behavior. Here, we revise the recent literature responsible for defining the behavioral correlates that arise from thermogenic fluctuations in mammals. We transition from the physiological significance of thermosensation to the circuitry responsible for the autonomic or behavioral responses associated with it. Subsequently, we delve into the positive and negative valence encoded by thermoregulatory processes. Importantly, we emphasize the crucial junctures where reward, pain, and thermoregulation intersect, unveiling a complex interplay within these neural circuits. Finally, we briefly outline fundamental questions that are pending to be addressed in the field. Fully deciphering the thermoregulatory circuitry in mammals will have far-reaching medical implications. For instance, it may lead to the identification of novel targets to overcome thermal pain or allow the maintenance of our core temperature in prolonged surgeries.</p>","PeriodicalId":49694,"journal":{"name":"Physiology","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11368520/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140295108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synergism Between Hypothalamic Astrocytes and Neurons in Metabolic Control. 下丘脑星形胶质细胞和神经元在新陈代谢控制中的协同作用
IF 5.3 2区 医学 Q1 PHYSIOLOGY Pub Date : 2024-07-01 Epub Date: 2024-03-26 DOI: 10.1152/physiol.00009.2024
Laura M Frago, Alfonso Gómez-Romero, Roberto Collado-Pérez, Jesús Argente, Julie A Chowen

Astrocytes are no longer considered as passive support cells. In the hypothalamus, these glial cells actively participate in the control of appetite, energy expenditure, and the processes leading to obesity and its secondary complications. Here we briefly review studies supporting this conclusion and the advances made in understanding the underlying mechanisms.

星形胶质细胞不再被视为被动的支持细胞。在下丘脑中,这些胶质细胞积极参与控制食欲、能量消耗和导致肥胖及其继发性并发症的过程。在此,我们简要回顾了支持这一结论的研究以及在了解其潜在机制方面取得的进展。
{"title":"Synergism Between Hypothalamic Astrocytes and Neurons in Metabolic Control.","authors":"Laura M Frago, Alfonso Gómez-Romero, Roberto Collado-Pérez, Jesús Argente, Julie A Chowen","doi":"10.1152/physiol.00009.2024","DOIUrl":"10.1152/physiol.00009.2024","url":null,"abstract":"<p><p>Astrocytes are no longer considered as passive support cells. In the hypothalamus, these glial cells actively participate in the control of appetite, energy expenditure, and the processes leading to obesity and its secondary complications. Here we briefly review studies supporting this conclusion and the advances made in understanding the underlying mechanisms.</p>","PeriodicalId":49694,"journal":{"name":"Physiology","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140289384","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Physiology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1