首页 > 最新文献

Pedobiologia最新文献

英文 中文
Micromorphology and thematic micro-mapping reveal differences in the soil structuring traits of three arbuscular mycorrhizal fungi 微形态学和专题微绘图揭示了三种丛枝菌根真菌土壤结构特征的差异
IF 2.3 3区 农林科学 Q3 ECOLOGY Pub Date : 2024-03-08 DOI: 10.1016/j.pedobi.2024.150953
Arturo Jiménez-Martínez , Ma. del Carmen Gutiérrez-Castorena , Noé Manuel Montaño , Edgar Vladimir Gutiérrez-Castorena , Alejandro Alarcón , Mayra E. Gavito

Arbuscular mycorrhizal (AM) fungi contribute to soil structure, but little is known about the effect of individual fungal species on soil aggregation. In this study, the influence of 3 AM fungi species on soil aggregation in a Vitric Andosol was determined using physical, micromorphological, and imaging analyses. We used a pipe of polyvinyl chloride (PVC) with a six-way connector, which was filled with soil plus AM fungal inoculum (Funneliformis mosseae, Rhizophagus intraradices, Gigaspora gigantea or non-inoculated -control-). Then lateral pipe connectors (experimental units) were covered with mesh systems (0.5, 0.25, and 0.034 mm), and PVC tubes filled with sterile soil were connected laterally using a clamp. The greenhouse experiment consisted of four treatments each with 32 experimental units. Four experimental units of each treatment were separated and collected at different times during the year: three were used to determine water-stable aggregates (disturbed soils), and one was preserved (undisturbed soil) to elaborate soil thin sections. Thematic micro-maps were constructed with image mosaics from a whole soil thin section, and micromorphological analyses were conducted using spatial operators. Our results showed that AM fungi affect soil aggregation forming micro-aggregates and macro-aggregates of different sizes. The most significant effects were observed with F. mosseae > R. intraradices > Gi. gigantea > control. Aggregation hierarchy was observed in micromorphological analysis, where F. mosseae and R. intraradices start binding organo-mineral particles and microaggregates to form macroaggregates, modifying soil structure from intergrain (apedal= without peds) to crumb aggregates (pedal= with peds). Gigaspora gigantea only promoted macroaggregation, by associating with pumice particles. The two AM fungi from Glomeraceae possess similar morphology compared to that isolate belonging to Gigasporaceae, which explain in part, their differential contribution traits on soil aggregation, as highlighted by using together physical and micromorphological analyses of soil thin sections based on high-resolution image mosaics.

丛枝菌根(AM)真菌有助于改善土壤结构,但人们对单个真菌种类对土壤团聚的影响知之甚少。本研究通过物理、微观形态和成像分析,确定了 3 种 AM 真菌对 Vitric Andosol 中土壤团聚的影响。我们使用了一个带有六通接头的聚氯乙烯(PVC)管道,管道中装满了土壤和 AM 真菌接种体(Funneliformis mosseae、Rhizophagus intraradices、Gigaspora gigantea 或未接种的对照)。然后在横向管道连接器(实验单元)上覆盖网状系统(0.5、0.25 和 0.034 毫米),并用夹子将装满无菌土壤的 PVC 管横向连接起来。温室实验包括四个处理,每个处理有 32 个实验单元。每个处理的四个实验单元在一年中的不同时间被分离和采集:三个用于测定水稳聚集体(扰动土壤),一个被保存(未扰动土壤)以制作土壤薄片。利用整个土壤薄片的图像镶嵌构建了专题微地图,并使用空间运算符进行了微形态分析。我们的研究结果表明,AM 真菌会影响土壤聚集,形成不同大小的微聚集体和大聚集体。F. mosseae > R. intraradices > Gi. gigantea > 对照组的影响最为明显。在微观形态分析中观察到了聚集层次,其中 F. mosseae 和 R. intraradices 开始结合有机矿物质颗粒和微聚集体,形成大聚集体,改变土壤结构,从粒间(apedal=无脚)到碎屑聚集体(pedal=有脚)。Gigaspora gigantea 只通过与浮石颗粒结合来促进大团聚。通过对基于高分辨率图像镶嵌技术的土壤薄片进行物理和微观形态分析,可以发现这两种球囊真菌的形态与巨孢子菌的形态相似,这在一定程度上解释了它们对土壤团聚的不同贡献特征。
{"title":"Micromorphology and thematic micro-mapping reveal differences in the soil structuring traits of three arbuscular mycorrhizal fungi","authors":"Arturo Jiménez-Martínez ,&nbsp;Ma. del Carmen Gutiérrez-Castorena ,&nbsp;Noé Manuel Montaño ,&nbsp;Edgar Vladimir Gutiérrez-Castorena ,&nbsp;Alejandro Alarcón ,&nbsp;Mayra E. Gavito","doi":"10.1016/j.pedobi.2024.150953","DOIUrl":"https://doi.org/10.1016/j.pedobi.2024.150953","url":null,"abstract":"<div><p>Arbuscular mycorrhizal (AM) fungi contribute to soil structure, but little is known about the effect of individual fungal species on soil aggregation. In this study, the influence of 3 AM fungi species on soil aggregation in a Vitric Andosol was determined using physical, micromorphological, and imaging analyses. We used a pipe of polyvinyl chloride (PVC) with a six-way connector, which was filled with soil plus AM fungal inoculum (<em>Funneliformis mosseae</em>, <em>Rhizophagus intraradices, Gigaspora gigantea</em> or non-inoculated -control-). Then lateral pipe connectors (experimental units) were covered with mesh systems (0.5, 0.25, and 0.034 mm), and PVC tubes filled with sterile soil were connected laterally using a clamp. The greenhouse experiment consisted of four treatments each with 32 experimental units. Four experimental units of each treatment were separated and collected at different times during the year: three were used to determine water-stable aggregates (disturbed soils), and one was preserved (undisturbed soil) to elaborate soil thin sections. Thematic micro-maps were constructed with image mosaics from a whole soil thin section, and micromorphological analyses were conducted using spatial operators. Our results showed that AM fungi affect soil aggregation forming micro-aggregates and macro-aggregates of different sizes. The most significant effects were observed with <em>F. mosseae &gt; R. intraradices</em> &gt; <em>Gi. gigantea</em> &gt; control. Aggregation hierarchy was observed in micromorphological analysis, where <em>F. mosseae</em> and <em>R. intraradices</em> start binding organo-mineral particles and microaggregates to form macroaggregates, modifying soil structure from intergrain (apedal= without peds) to crumb aggregates (pedal= with peds). <em>Gigaspora gigantea</em> only promoted macroaggregation, by associating with pumice particles. The two AM fungi from Glomeraceae possess similar morphology compared to that isolate belonging to Gigasporaceae, which explain in part, their differential contribution traits on soil aggregation, as highlighted by using together physical and micromorphological analyses of soil thin sections based on high-resolution image mosaics.</p></div>","PeriodicalId":49711,"journal":{"name":"Pedobiologia","volume":"104 ","pages":"Article 150953"},"PeriodicalIF":2.3,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140181110","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microbial inoculation alters rhizoplane bacterial community and correlates with increased rice yield 微生物接种会改变根瘤菌群落,并与水稻增产有关
IF 2.3 3区 农林科学 Q3 ECOLOGY Pub Date : 2024-03-02 DOI: 10.1016/j.pedobi.2024.150945
Ke Huang , Hongyang Yin , Qianru Zheng , Wen Lv , Xintao Shen , Min Ai , Yuan Zhao

Microbial inoculants are recognized as environmentally friendly methods to promote plant growth and improve soil properties. However, the effects of inoculation on the rhizosphere and rhizoplane community structure of plants remain poorly documented and need further investigation. Rhodopseudomonas palustris (R. palustris) strain has nitrogen fixing ability and Bacillus subtilis (B. subtilis) strain is a plant growth-promoting rhizobacterium (PGPR). In this study, we investigated the effects of single and co-inoculation with R. palustris and B. subtilis on the increase of rice yield as well as on the microbial communities in the rhizosphere and rhizoplane of rice through potting experiments, respectively. The results showed that inoculation significantly increased rice yield and seed setting rate, with co-inoculation raising the yield by up to 13.7%. Inoculation influenced both rhizosphere and rhizoplane community structures and functions, amplifying the differences between them. The most significant changes were brought about by the combined inoculation treatment. Co-inoculation with R. palustris and B. subtilis had a synergistic effect. The profound alterations of rhizoplane bacterial community structures and functions were proved to be positively correlated with rice yield and seed setting rate (r = 0.59–0.76, p < 0.05). These results provide new ideas for the investigation of the potential microbiological mechanisms of microbial co-inoculation in practical agricultural applications.

微生物接种剂被认为是促进植物生长和改善土壤性质的环保方法。然而,接种对植物根瘤菌层和根瘤群落结构的影响仍鲜有记载,需要进一步研究。()菌株具有固氮能力,()菌株是一种植物生长促进根瘤菌(PGPR)。本研究通过盆栽实验,分别研究了单一接种和联合接种()菌株对水稻增产的影响,以及对水稻根圈和根面微生物群落的影响。结果表明,接种能显著提高水稻产量和结实率,联合接种能提高产量达 13.7%。接种对根圈和根面群落结构和功能都有影响,扩大了两者之间的差异。联合接种处理带来的变化最为明显。与 和 共同接种会产生协同效应。根瘤菌群落结构和功能的显著变化与水稻产量和结实率呈正相关(=0.59 - 0.76,< 0.05)。这些结果为研究微生物共接种在实际农业应用中的潜在微生物机制提供了新思路。
{"title":"Microbial inoculation alters rhizoplane bacterial community and correlates with increased rice yield","authors":"Ke Huang ,&nbsp;Hongyang Yin ,&nbsp;Qianru Zheng ,&nbsp;Wen Lv ,&nbsp;Xintao Shen ,&nbsp;Min Ai ,&nbsp;Yuan Zhao","doi":"10.1016/j.pedobi.2024.150945","DOIUrl":"10.1016/j.pedobi.2024.150945","url":null,"abstract":"<div><p>Microbial inoculants are recognized as environmentally friendly methods to promote plant growth and improve soil properties. However, the effects of inoculation on the rhizosphere and rhizoplane community structure of plants remain poorly documented and need further investigation. <em>Rhodopseudomonas palustris</em> (<em>R. palustris</em>) strain has nitrogen fixing ability and <em>Bacillus subtilis</em> (<em>B. subtilis</em>) strain is a plant growth-promoting rhizobacterium (PGPR). In this study, we investigated the effects of single and co-inoculation with <em>R. palustris</em> and <em>B. subtilis</em> on the increase of rice yield as well as on the microbial communities in the rhizosphere and rhizoplane of rice through potting experiments, respectively. The results showed that inoculation significantly increased rice yield and seed setting rate, with co-inoculation raising the yield by up to 13.7%. Inoculation influenced both rhizosphere and rhizoplane community structures and functions, amplifying the differences between them. The most significant changes were brought about by the combined inoculation treatment. Co-inoculation with <em>R. palustris</em> and <em>B. subtilis</em> had a synergistic effect. The profound alterations of rhizoplane bacterial community structures and functions were proved to be positively correlated with rice yield and seed setting rate (<em>r</em> = 0.59–0.76, <em>p</em> &lt; 0.05). These results provide new ideas for the investigation of the potential microbiological mechanisms of microbial co-inoculation in practical agricultural applications.</p></div>","PeriodicalId":49711,"journal":{"name":"Pedobiologia","volume":"104 ","pages":"Article 150945"},"PeriodicalIF":2.3,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140044917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Soil macrofauna and water-related functions in patches of regenerating Atlantic Forest in Brazil 巴西大西洋再生森林片区的土壤大型动物和与水有关的功能
IF 2.3 3区 农林科学 Q3 ECOLOGY Pub Date : 2024-02-03 DOI: 10.1016/j.pedobi.2024.150944
Wilian C. Demetrio , George G. Brown , Breno Pupin , Rafaela T. Dudas , Reinaldo Novo , Antônio C.V. Motta , Marie L.C. Bartz , Laura S. Borma

The Atlantic Forest is the most threatened Brazilian biome, with less than 10% of its original surface cover remaining. Thus, several programs of payment for ecosystem services have been developed in this biome focusing on revegetation of degraded areas. Forest regeneration promotes the development of soil invertebrate communities that play an important role in soil processes, delivering a wide range of ecosystem services. We studied the changes in macrofauna communities in three forests under different regeneration stages and the relationship between these invertebrates and soil chemical and physical properties. Macrofauna and soil chemical and physical properties were sampled until 30 cm depth in three forest fragments of the Brazilian Atlantic Forest under different regeneration stages: young regenerating forest (∼8 years old), secondary forest in intermediate regeneration stage (∼20 years old) and native secondary forest fragment. No significant differences in saturated hydraulic conductivity (Ks) were observed among sites, however, the old native forest showed reduction in Ks in deeper layers compared to young regenerating forests. Several macrofauna taxa were positively correlated with Ks and soil carbon. The stage of regeneration modified the abundance and diversity of these invertebrates in general (except for earthworms), and the old native forest showed high abundance of most taxa. In conclusion, our study highlights the potential of macrofauna communities as robust indicators of soil functions re-establishment in regenerating forests within the Atlantic Forest biome. The observed positive correlations between macrofauna abundance and diversity with soil water infiltration and organic carbon content emphasize the key role of these invertebrates to essential ecosystem functions.

大西洋森林是巴西受威胁最严重的生物群落,其原始地表覆盖率仅剩不到 10%。因此,在这一生物群落中制定了多项生态系统服务付费计划,重点是退化地区的植被重建。森林再生促进了土壤无脊椎动物群落的发展,这些群落在土壤过程中发挥着重要作用,提供了广泛的生态系统服务。我们研究了三个森林在不同再生阶段大型底栖生物群落的变化,以及这些无脊椎动物与土壤化学和物理特性之间的关系。我们对巴西大西洋森林中处于不同再生阶段的三个森林片段(再生幼林(约 8 年树龄)、处于再生中期阶段的次生林(约 20 年树龄)和原生森林片段)中 30 厘米深的大型底栖生物以及土壤化学和物理特性进行了采样。不同地点的饱和导水性(Ks)没有明显差异,但与年轻再生林相比,老的原生林深层的 Ks 有所降低。一些大型动物分类群与 Ks 和土壤碳呈正相关。一般来说,再生阶段会改变这些无脊椎动物的丰度和多样性(蚯蚓除外),而古老的原生林中大多数类群的丰度都很高。总之,我们的研究强调了大型底栖生物群落作为大西洋森林生物群落中再生森林土壤功能重建的有力指标的潜力。观察到的大型底栖生物丰度和多样性与土壤水分渗透率和有机碳含量之间的正相关关系强调了这些无脊椎动物对生态系统基本功能的关键作用。
{"title":"Soil macrofauna and water-related functions in patches of regenerating Atlantic Forest in Brazil","authors":"Wilian C. Demetrio ,&nbsp;George G. Brown ,&nbsp;Breno Pupin ,&nbsp;Rafaela T. Dudas ,&nbsp;Reinaldo Novo ,&nbsp;Antônio C.V. Motta ,&nbsp;Marie L.C. Bartz ,&nbsp;Laura S. Borma","doi":"10.1016/j.pedobi.2024.150944","DOIUrl":"10.1016/j.pedobi.2024.150944","url":null,"abstract":"<div><p>The Atlantic Forest is the most threatened Brazilian biome, with less than 10% of its original surface cover remaining. Thus, several programs of payment for ecosystem services have been developed in this biome focusing on revegetation of degraded areas. Forest regeneration promotes the development of soil invertebrate communities that play an important role in soil processes, delivering a wide range of ecosystem services. We studied the changes in macrofauna communities in three forests under different regeneration stages and the relationship between these invertebrates and soil chemical and physical properties. Macrofauna and soil chemical and physical properties were sampled until 30 cm depth in three forest fragments of the Brazilian Atlantic Forest under different regeneration stages: young regenerating forest (∼8 years old), secondary forest in intermediate regeneration stage (∼20 years old) and native secondary forest fragment. No significant differences in saturated hydraulic conductivity (K<sub>s</sub>) were observed among sites, however, the old native forest showed reduction in K<sub>s</sub> in deeper layers compared to young regenerating forests. Several macrofauna taxa were positively correlated with K<sub>s</sub> and soil carbon. The stage of regeneration modified the abundance and diversity of these invertebrates in general (except for earthworms), and the old native forest showed high abundance of most taxa. In conclusion, our study highlights the potential of macrofauna communities as robust indicators of soil functions re-establishment in regenerating forests within the Atlantic Forest biome. The observed positive correlations between macrofauna abundance and diversity with soil water infiltration and organic carbon content emphasize the key role of these invertebrates to essential ecosystem functions.</p></div>","PeriodicalId":49711,"journal":{"name":"Pedobiologia","volume":"103 ","pages":"Article 150944"},"PeriodicalIF":2.3,"publicationDate":"2024-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139665905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Soil nematode communities vary among populations of the iconic desert plant, Welwitschia mirabilis 标志性沙漠植物 Welwitschia mirabilis 不同种群的土壤线虫群落各不相同
IF 2.3 3区 农林科学 Q3 ECOLOGY Pub Date : 2024-02-03 DOI: 10.1016/j.pedobi.2024.150943
Amy M. Treonis , Eugene Marais , Gillian Maggs-Kölling

Scattered throughout the Namib Desert of Namibia are populations of Welwitschia mirabilis, a unique, low-lying, and slow-growing gymnosperm plant. We studied soils under Welwitschia plants and in adjacent interplant areas along a 400-km range to examine the potential of these plants as resource islands supporting nematode communities. We found significant differences in nematode density and community structure among the sites that were correlated to differences in climate, edaphic factors, and plant size and density. Soils from the Torra Conservancy site, which receives the most precipitation and had the highest density of Welwitschia plants, contained the highest organic matter and the most diverse nematode communities, with the broadest representation of nematode trophic groups. The largest and likely oldest Welwitschia plants occurred in the Messum Crater, the site with the least rainfall, which hosted the densest nematode communities (mean = 14,683 kg−1 soil). These communities consisted almost entirely of the bacterial-feeding nematode Panagrolaimus sp. Two other sites, Welwitschia Plain, a well-known tourist destination, and Hope Mine, the southernmost known population, contained the fewest nematodes with moderate levels of diversity. Differences in nematode abundance between Welwitschia soils and interplant soils were not discernable at three of the four field sites, suggesting the resource island effect is not very strong. Interplant spaces also support diverse and abundant nematode communities, perhaps due to the growth of cryptobiotic crusts or ephemeral rainfall-induced vegetation.

Welwitschia mirabilis 是一种独特、低洼、生长缓慢的裸子植物,散布在纳米比亚的纳米布沙漠中。我们研究了 Welwitschia 植物下的土壤以及 400 公里范围内相邻植物间区域的土壤,以考察这些植物作为支持线虫群落的资源岛的潜力。我们发现,不同地点的线虫密度和群落结构存在明显差异,这些差异与气候、土壤因素、植物大小和密度的不同有关。托拉保护区的土壤降水量最大,Welwitschia 植物密度最高,土壤中的有机物含量最高,线虫群落最多样化,线虫营养群的代表性最广泛。降雨量最少的梅苏姆陨石坑(Messum Crater)生长着最大、可能也是最古老的 Welwitschia 植物,其线虫群落密度最高(平均 = 14,683 kg-1 土壤)。另外两个地点,即著名的旅游胜地 Welwitschia 平原和已知种群最南端的希望矿区,线虫数量最少,但多样性水平适中。在四个实地考察地点中的三个地点,Welwitschia 土壤和植物间土壤的线虫丰度差异并不明显,这表明资源岛效应并不强烈。植株间的空间也支持多样化和丰富的线虫群落,这可能是由于隐生物结壳或短暂降雨引起的植被的生长。
{"title":"Soil nematode communities vary among populations of the iconic desert plant, Welwitschia mirabilis","authors":"Amy M. Treonis ,&nbsp;Eugene Marais ,&nbsp;Gillian Maggs-Kölling","doi":"10.1016/j.pedobi.2024.150943","DOIUrl":"10.1016/j.pedobi.2024.150943","url":null,"abstract":"<div><p>Scattered throughout the Namib Desert of Namibia are populations of <em>Welwitschia mirabilis</em>, a unique, low-lying, and slow-growing gymnosperm plant. We studied soils under <em>Welwitschia</em> plants and in adjacent interplant areas along a 400-km range to examine the potential of these plants as resource islands supporting nematode communities. We found significant differences in nematode density and community structure among the sites that were correlated to differences in climate, edaphic factors, and plant size and density. Soils from the Torra Conservancy site, which receives the most precipitation and had the highest density of <em>Welwitschia</em> plants, contained the highest organic matter and the most diverse nematode communities, with the broadest representation of nematode trophic groups. The largest and likely oldest <em>Welwitschia</em> plants occurred in the Messum Crater, the site with the least rainfall, which hosted the densest nematode communities (mean = 14,683 kg<sup>−1</sup> soil). These communities consisted almost entirely of the bacterial-feeding nematode <em>Panagrolaimus</em> sp. Two other sites, Welwitschia Plain, a well-known tourist destination, and Hope Mine, the southernmost known population, contained the fewest nematodes with moderate levels of diversity. Differences in nematode abundance between <em>Welwitschia</em> soils and interplant soils were not discernable at three of the four field sites, suggesting the resource island effect is not very strong. Interplant spaces also support diverse and abundant nematode communities, perhaps due to the growth of cryptobiotic crusts or ephemeral rainfall-induced vegetation.</p></div>","PeriodicalId":49711,"journal":{"name":"Pedobiologia","volume":"103 ","pages":"Article 150943"},"PeriodicalIF":2.3,"publicationDate":"2024-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139679381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Divergent responses between lineages of arbuscular mycorrhizal fungi to soil phosphorus and nitrogen availability 丛枝菌根真菌不同品系对土壤磷和氮供应的不同反应
IF 2.3 3区 农林科学 Q3 ECOLOGY Pub Date : 2024-01-23 DOI: 10.1016/j.pedobi.2024.150934
Brendan Delroy , Hai-Yang Zhang , Andrew Bissett , Jeff R. Powell

Arbuscular mycorrhizal (AM) associations are multifunctional. Two important functions they perform are facilitating nutrient uptake in host plants and protecting plants from biotic stress, among other functions. AM fungal taxa vary in how capably they perform these functions and can also respond differently to environmental selection. Therefore, there is a need to better understand how particular environmental variables might alter the response of AM fungal communities. Here, we analysed data from a DNA-based survey of fungal communities in soils collected throughout Australia to observe relationships among soil nitrogen and phosphorus availability and the abundance of two AM fungal taxa that reportedly vary in function – the Gigasporaceae (putatively more important for nutrient uptake) and Glomeraceae (putatively more important for biotic stress). Relationships were assessed in three vegetation types – grasslands, forests and woodlands – to assess whether associations with soil nutrition varied depending on carbon availability for AM fungi. Fungi from the Gigasporaceae decreased in frequency as available phosphorus increased, while those from the Glomeraceae increased or were unresponsive as available phosphorus increased. Similar patterns were observed for nitrate availability, although only in woodlands. These patterns are consistent with expectations that AM fungi from the Gigasporaceae, in general, are better suited to alleviate nutrient limitation in hosts as soil chemical fertility decreases. This knowledge may aid in implementing optimal strategies involving AM fungal inoculum best suited to the local conditions of future land management and agricultural projects.

丛枝菌根(AM)结合具有多种功能。它们的两个重要功能是促进寄主植物吸收养分和保护植物免受生物压力等。AM 真菌类群执行这些功能的能力各不相同,对环境选择的反应也不尽相同。因此,有必要更好地了解特定的环境变量会如何改变 AM 真菌群落的反应。在此,我们分析了在澳大利亚各地采集的土壤中基于 DNA 的真菌群落调查数据,以观察土壤氮和磷的可用性与两个据报道功能不同的 AM 真菌类群--巨孢子菌科(被认为对养分吸收更重要)和团伞菌科(被认为对生物压力更重要)--的丰度之间的关系。我们在三种植被类型(草地、森林和林地)中评估了它们之间的关系,以评估它们与土壤营养的关系是否因 AM 真菌的碳可用性而有所不同。随着可用磷的增加,巨孢子菌科真菌的出现频率降低,而团扇菌科真菌的出现频率增加或无反应。在硝酸盐的可用性方面也观察到了类似的模式,但只限于林地。这些模式符合人们的预期,即随着土壤化学肥力的降低,一般来说巨孢子菌科的AM真菌更适合缓解寄主的养分限制。这一知识可能有助于实施最适合未来土地管理和农业项目当地条件的涉及 AM 真菌接种物的最佳策略。
{"title":"Divergent responses between lineages of arbuscular mycorrhizal fungi to soil phosphorus and nitrogen availability","authors":"Brendan Delroy ,&nbsp;Hai-Yang Zhang ,&nbsp;Andrew Bissett ,&nbsp;Jeff R. Powell","doi":"10.1016/j.pedobi.2024.150934","DOIUrl":"10.1016/j.pedobi.2024.150934","url":null,"abstract":"<div><p>Arbuscular mycorrhizal (AM) associations are multifunctional. Two important functions they perform are facilitating nutrient uptake in host plants and protecting plants from biotic stress, among other functions. AM fungal taxa vary in how capably they perform these functions and can also respond differently to environmental selection. Therefore, there is a need to better understand how particular environmental variables might alter the response of AM fungal communities. Here, we analysed data from a DNA-based survey of fungal communities in soils collected throughout Australia to observe relationships among soil nitrogen and phosphorus availability and the abundance of two AM fungal taxa that reportedly vary in function – the Gigasporaceae (putatively more important for nutrient uptake) and Glomeraceae (putatively more important for biotic stress). Relationships were assessed in three vegetation types – grasslands, forests and woodlands – to assess whether associations with soil nutrition varied depending on carbon availability for AM fungi. Fungi from the Gigasporaceae decreased in frequency as available phosphorus increased, while those from the Glomeraceae increased or were unresponsive as available phosphorus increased. Similar patterns were observed for nitrate availability, although only in woodlands. These patterns are consistent with expectations that AM fungi from the Gigasporaceae, in general, are better suited to alleviate nutrient limitation in hosts as soil chemical fertility decreases. This knowledge may aid in implementing optimal strategies involving AM fungal inoculum best suited to the local conditions of future land management and agricultural projects.</p></div>","PeriodicalId":49711,"journal":{"name":"Pedobiologia","volume":"103 ","pages":"Article 150934"},"PeriodicalIF":2.3,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0031405624009053/pdfft?md5=6a8bfda8325e42716bfca31ade938dbe&pid=1-s2.0-S0031405624009053-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139556465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bacterial communities in the potato tuberosphere share similarities with bulk soil and rhizosphere communities, yet possess distinct features 马铃薯块茎层中的细菌群落与大块土壤和根瘤菌群落有相似之处,但又具有不同的特征
IF 2.3 3区 农林科学 Q3 ECOLOGY Pub Date : 2024-01-22 DOI: 10.1016/j.pedobi.2024.150935
Georgia Voulgari, Achim Schmalenberger

To date, a paucity of studies have examined bacterial communities in tuberospheres. However, the function of these bacterial communities in healthy potato plants is still largely unknown. Here, we aimed to describe the structure and composition of tuberosphere bacteriomes and its capability to make organosulfur plant available using the rhizosphere and bulk soil bacterial community characteristics as a reference. Rhizosphere, tuberosphere and bulk soil was collected from two field grown potato varieties. Bacterial communities were characterized by 16S rRNA gene amplicon sequencing. Bacterial organosulfur mobilization indicators were evaluated with cultivation dependent and independent methods and were correlated (Spearman) with the relative abundance of bacterial families. The structure of tuberosphere bacterial communities either overlapped with the bulk soil or had similarities with the rhizosphere. Relative abundance of specific bacterial families were distinct between bulk soil, tuberosphere and rhizosphere. Tuberospheres had a tendency for higher arylsulfonate utilization compared to bulk soil. The families Sphingomonadaceae, Sphingobacteriaceae and Rhizobiaceae which presented a decline in their relative abundances from the rhizosphere to tuberosphere and bulk soil had positive correlations with organosulfur mobilizing indicators. Potato variety and soil characteristics played a role in structuring the tuberosphere bacterial communities. Tuberospheres represent an environment in-between bulk soil and rhizosphere indicative from the intermediate relative abundances of specific bacterial families. A moderately higher bacterial organosulfur mobilization activity in tuberospheres suggests that this microbial function may serve specific biological roles for potato tubers.

迄今为止,对块茎球中细菌群落的研究还很少。然而,这些细菌群落在健康马铃薯植株中的功能在很大程度上仍然未知。在此,我们旨在以根瘤菌层和大块土壤细菌群落特征为参考,描述块茎层细菌群落的结构和组成及其使植物获得有机硫的能力。通过 16 S rRNA 基因扩增片段测序确定了细菌群落的特征。细菌有机硫动员指标用依赖于栽培和独立于栽培的方法进行评估,并与细菌家族的相对丰度相关(Spearman)。块茎圈细菌群落的结构要么与块茎土壤重叠,要么与根瘤菌圈相似。块茎土壤、块茎圈和根瘤菌圈中特定细菌家族的相对丰度各不相同。与大块土壤相比,块茎圈对芳基磺酸盐的利用率更高。鞘氨单胞菌科(Sphingomonadaceae)、鞘氨杆菌科(Sphingobacteriaceae)和根瘤菌科(Rhizobiaceae)的相对丰度从根瘤层到块茎层和大块土壤均呈下降趋势,它们与有机硫动员指标呈正相关。块茎层代表了介于大块土壤和根瘤层之间的环境,表明了特定细菌家族的中间相对丰度。块茎圈中的细菌有机硫动员活性略高,这表明这种微生物功能可能对马铃薯块茎具有特殊的生物学作用。
{"title":"Bacterial communities in the potato tuberosphere share similarities with bulk soil and rhizosphere communities, yet possess distinct features","authors":"Georgia Voulgari,&nbsp;Achim Schmalenberger","doi":"10.1016/j.pedobi.2024.150935","DOIUrl":"10.1016/j.pedobi.2024.150935","url":null,"abstract":"<div><p>To date, a paucity of studies have examined bacterial communities in tuberospheres. However, the function of these bacterial communities in healthy potato plants is still largely unknown. Here, we aimed to describe the structure and composition of tuberosphere bacteriomes and its capability to make organosulfur plant available using the rhizosphere and bulk soil bacterial community characteristics as a reference. Rhizosphere, tuberosphere and bulk soil was collected from two field grown potato varieties. Bacterial communities were characterized by 16S rRNA gene amplicon sequencing. Bacterial organosulfur mobilization indicators were evaluated with cultivation dependent and independent methods and were correlated (Spearman) with the relative abundance of bacterial families. The structure of tuberosphere bacterial communities either overlapped with the bulk soil or had similarities with the rhizosphere. Relative abundance of specific bacterial families were distinct between bulk soil, tuberosphere and rhizosphere. Tuberospheres had a tendency for higher arylsulfonate utilization compared to bulk soil. The families <em>Sphingomonadaceae, Sphingobacteriaceae</em> and <em>Rhizobiaceae</em> which presented a decline in their relative abundances from the rhizosphere to tuberosphere and bulk soil had positive correlations with organosulfur mobilizing indicators. Potato variety and soil characteristics played a role in structuring the tuberosphere bacterial communities. Tuberospheres represent an environment in-between bulk soil and rhizosphere indicative from the intermediate relative abundances of specific bacterial families. A moderately higher bacterial organosulfur mobilization activity in tuberospheres suggests that this microbial function may serve specific biological roles for potato tubers.</p></div>","PeriodicalId":49711,"journal":{"name":"Pedobiologia","volume":"103 ","pages":"Article 150935"},"PeriodicalIF":2.3,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0031405624009065/pdfft?md5=f58313b2f1df9faee4bf76c177eb9d52&pid=1-s2.0-S0031405624009065-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139556321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Contradiction with enzymatic stoichiometry theory: Persistent low ratios of β-glucosidase to phosphomonoesterase following 10-year continuous phosphorus fertilization in three subtropical forests 与酶的化学计量理论相矛盾:三片亚热带森林连续 10 年施用磷肥后,β-葡萄糖苷酶与磷单酯酶的比率持续偏低
IF 2.3 3区 农林科学 Q3 ECOLOGY Pub Date : 2024-01-22 DOI: 10.1016/j.pedobi.2024.150931
Taiki Mori , Cong Wang , Senhao Wang , Wei Zhang , Jiangming Mo

The ratio of β-glucosidase (BG) to phosphomonoesterase (PME) activity (BG:PME) is often used to predict the intensity of microbial phosphorus (P) shortage, with lower BG:PME indicating stronger P shortage (enzymatic stoichiometry theory). Here, we demonstrated that 10-year continuous P fertilization as high as 150 kg P ha−1 yr−1 in the form of NaH2PO4 solution did not elevate the BG:PME up to the level of other terrestrial ecosystems. The BG:PME of primary, secondary, and planted forests were 0.094, 0.067, and 0.089, respectively in P-fertilized plots, which were much lower than global average (0.62 ± 0.04), despite the fact that Bray-extracted P contents were substantially elevated (more than 600 times). Thus, the findings of the current study suggest that BG:PME overestimates P shortage in our P-enriched forests, implying that the enzymatic stoichiometry theory may not be universally applicable.

β-葡萄糖苷酶(BG)与磷单酯酶(PME)活性之比(BG:PME)通常被用来预测微生物缺磷(P)的强度,BG:PME越低表明缺磷越强(酶的化学计量理论)。在这里,我们证明了连续 10 年以 NaH2PO4 溶液形式施用高达 150 kg P ha-1 yr-1 的磷肥并不会使 BG:PME 提高到其他陆地生态系统的水平。在施过钾肥的地块中,原始林、次生林和人工林的 BG:PME 分别为 0.094、0.067 和 0.089,远低于全球平均水平(0.62 ± 0.04),尽管布雷提取的钾含量大幅提高(超过 600 倍)。因此,本研究的结果表明,BG:PME 高估了我国富含 P 的森林中 P 的缺乏程度,这意味着酶的化学计量理论可能并不普遍适用。
{"title":"Contradiction with enzymatic stoichiometry theory: Persistent low ratios of β-glucosidase to phosphomonoesterase following 10-year continuous phosphorus fertilization in three subtropical forests","authors":"Taiki Mori ,&nbsp;Cong Wang ,&nbsp;Senhao Wang ,&nbsp;Wei Zhang ,&nbsp;Jiangming Mo","doi":"10.1016/j.pedobi.2024.150931","DOIUrl":"10.1016/j.pedobi.2024.150931","url":null,"abstract":"<div><p>The ratio of β-glucosidase (BG) to phosphomonoesterase (PME) activity (BG:PME) is often used to predict the intensity of microbial phosphorus (P) shortage, with lower BG:PME indicating stronger P shortage (enzymatic stoichiometry theory). Here, we demonstrated that 10-year continuous P fertilization as high as 150 kg P ha<sup>−1</sup> yr<sup>−1</sup> in the form of NaH<sub>2</sub>PO<sub>4</sub> solution did not elevate the BG:PME up to the level of other terrestrial ecosystems. The BG:PME of primary, secondary, and planted forests were 0.094, 0.067, and 0.089, respectively in P-fertilized plots, which were much lower than global average (0.62 ± 0.04), despite the fact that Bray-extracted P contents were substantially elevated (more than 600 times). Thus, the findings of the current study suggest that BG:PME overestimates P shortage in our P-enriched forests, implying that the enzymatic stoichiometry theory may not be universally applicable.</p></div>","PeriodicalId":49711,"journal":{"name":"Pedobiologia","volume":"103 ","pages":"Article 150931"},"PeriodicalIF":2.3,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139556467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impacts of garlic mustard (Alliaria petiolata, Brassicaceae) invasion on oribatid mites in urban forest soils vary with the size of the invaded patch 大蒜芥(十字花科 Alliaria petiolata)入侵对城市森林土壤中口器螨的影响随入侵地块的大小而变化
IF 2.3 3区 农林科学 Q3 ECOLOGY Pub Date : 2024-01-20 DOI: 10.1016/j.pedobi.2024.150933
Leah Flaherty , Melissa Hills , Victoria Giacobbo , Paige Kuczmarski , Morgan Momborquette , Lisa Lumley

Investment in non-native species management should be informed by knowledge of impact, including on native biodiversity and ecosystem function. Oribatid soil mites may be useful to evaluate the impacts of plant invasions since they are bioindicators of disturbance and soil ecosystem health. Still, more research is needed to characterize their responses to plant invasion, especially at the species level. Our objective was to determine the effect of invasion of urban forest understories by an allelopathic weed (garlic mustard, Alliaria petiolata (Brassicaceae)) on belowground oribatid mite species and communities. At two sites in central Alberta (Canada), over two years, we examined adult oribatid (≥ 300 µm) community assemblages, species richness, evenness, diversity, and abundance in plots invaded with garlic mustard and uninvaded plots with native vegetation. Environmental covariates known to be associated with soil invertebrate communities were also evaluated. Results suggest that the spatial extent of the garlic mustard invasion (patch area) mediates its impact on oribatid mite communities. However, there were no community-level impacts when considering invasion as binary (garlic mustard vs. native vegetation). Garlic mustard patch area influenced oribatid community composition and was positively related to species richness and several abundance metrics. The oribatid species we observed benefiting from garlic mustard invasion have been previously associated with disturbed soils. The mechanisms driving these patterns need more research, but we hypothesize they may relate to patch-specific resident times. Site was also a dominant factor influencing oribatid mite communities, and impacts of year, litter depth, and canopy cover were also detected at the species and/or community level. These findings contribute to our understanding of the impact of an invasive weed on bioindicating soil mite communities and species and highlight the importance of considering invasion context, including spatial extent when evaluating the impacts of invasive species on belowground invertebrate communities.

投资非本地物种管理应了解其影响,包括对本地生物多样性和生态系统功能的影响。Oribatid 土壤螨可能有助于评估植物入侵的影响,因为它们是干扰和土壤生态系统健康的生物指标。不过,还需要更多的研究来确定它们对植物入侵的反应特征,尤其是在物种水平上。我们的目标是确定一种等效性杂草(大蒜芥,Alliaria petiolata(十字花科))入侵城市森林林下对地下鸟螨物种和群落的影响。在加拿大阿尔伯塔省中部的两个地点,我们用两年时间考察了被大蒜芥入侵的地块和未被大蒜芥入侵但具有原生植被的地块中的成年口螨(≥ 300 µm)群落组合、物种丰富度、均匀度、多样性和丰度。此外,还对已知与土壤无脊椎动物群落相关的环境协变量进行了评估。结果表明,大蒜芥入侵的空间范围(斑块面积)介导了其对口螨群落的影响。但是,如果将入侵视为二元因素(大蒜芥与本地植被),则不会对群落产生影响。大蒜芥的斑块面积影响了兽螨群落的组成,并与物种丰富度和一些丰度指标呈正相关。我们观察到的受益于大蒜芥入侵的兽脚类物种以前曾与受干扰的土壤有关。驱动这些模式的机制还需要更多的研究,但我们推测它们可能与特定斑块的驻留时间有关。地点也是影响口唇螨群落的一个主要因素,在物种和/或群落水平上也发现了年份、枯落物深度和冠层覆盖的影响。这些发现有助于我们理解入侵杂草对生物指示土壤螨群落和物种的影响,并强调了在评估入侵物种对地下无脊椎动物群落的影响时,考虑入侵背景(包括空间范围)的重要性。
{"title":"Impacts of garlic mustard (Alliaria petiolata, Brassicaceae) invasion on oribatid mites in urban forest soils vary with the size of the invaded patch","authors":"Leah Flaherty ,&nbsp;Melissa Hills ,&nbsp;Victoria Giacobbo ,&nbsp;Paige Kuczmarski ,&nbsp;Morgan Momborquette ,&nbsp;Lisa Lumley","doi":"10.1016/j.pedobi.2024.150933","DOIUrl":"10.1016/j.pedobi.2024.150933","url":null,"abstract":"<div><p><span>Investment in non-native species management should be informed by knowledge of impact, including on native biodiversity and ecosystem function. Oribatid<span> soil mites<span> may be useful to evaluate the impacts of plant invasions since they are bioindicators of disturbance and soil ecosystem health. Still, more research is needed to characterize their responses to plant invasion, especially at the species level. Our objective was to determine the effect of invasion of urban forest understories by an allelopathic weed (garlic mustard, </span></span></span><em>Alliaria petiolata</em><span><span><span> (Brassicaceae)) on belowground oribatid mite species and communities. At two sites in central Alberta (Canada), over two years, we examined adult oribatid (≥ 300 µm) community assemblages, species richness, evenness, diversity, and abundance in plots invaded with garlic mustard and uninvaded plots with native vegetation. Environmental covariates known to be associated with </span>soil invertebrate<span> communities were also evaluated. Results suggest that the spatial extent of the garlic mustard invasion (patch area) mediates its impact on oribatid mite communities. However, there were no community-level impacts when considering invasion as binary (garlic mustard vs. native vegetation). Garlic mustard patch area influenced oribatid community composition and was positively related to species richness and several abundance metrics. The oribatid species we observed benefiting from garlic mustard invasion have been previously associated with disturbed soils. The mechanisms driving these patterns need more research, but we hypothesize they may relate to patch-specific resident times. Site was also a dominant factor influencing oribatid mite communities, and impacts of year, litter depth, and canopy cover were also detected at the species and/or community level. These findings contribute to our understanding of the impact of an invasive weed on bioindicating soil mite communities and species and highlight the importance of considering invasion context, including spatial extent when evaluating the impacts of </span></span>invasive species on belowground invertebrate communities.</span></p></div>","PeriodicalId":49711,"journal":{"name":"Pedobiologia","volume":"103 ","pages":"Article 150933"},"PeriodicalIF":2.3,"publicationDate":"2024-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139508763","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Taking sides? Aspect has limited influence on soil environment or litter decomposition in pan-European study of roadside verges 偏袒哪一方?在泛欧路边绿化带研究中,地势对土壤环境或垃圾分解的影响有限
IF 2.3 3区 农林科学 Q3 ECOLOGY Pub Date : 2024-01-01 DOI: 10.1016/j.pedobi.2023.150927
A. Amstutz , LB. Firth , JI. Spicer , P. De Frenne , L. Gómez-Aparicio , BJ. Graae , S. Kuś , S. Lindmo , A. Orczewska , F. Rodríguez-Sánchez , P. Vangansbeke , T. Vanneste , ME. Hanley

In addition to well-known effects on species ecophysiology, phenology, and distributions, climate change is widely predicted to impact essential ecosystem services such as decomposition and nutrient cycling. While temperature and soil moisture are thought to influence litter decomposition, elucidating consistent soil process responses to observed or predicted shifts in climate have proven difficult to evidence. Here we investigated how aspect (i.e., north-south orientation), a natural model for variation in soil temperature, influenced soil physico-chemical conditions and decomposition of two standardised litter types (Green tea and Rooibos teabags) in Pole-facing (PF) and Equator-facing (EF) roadside verges spanning a 3000 km and 27° latitudinal gradient across Europe. Despite average daily temperatures being 1.5 - 3.0 °C warmer on EF than PF slopes, there were only minor region-specific differences in initial soil physico-chemical conditions and short-term variation in litter decomposition (i.e., litter mass loss was higher in EF-verges for the first month of deployment only) associated with aspect. We conclude that previously observed differences in soil environments and the decomposition process associated with slope orientation, is largely litter or environment specific, although medium-term soil-decomposition in semi-natural grassland ecosystems may also be insensitive to the magnitude of temperature variation within the range predicted by the IPCC SSP1–2.6 emissions scenario. Nonetheless, consistent average and extreme temperature differences between adjacent PF- and EF-aspects along roadside verges provides a model system to explore exactly how resilient the soil environment and the micro-organisms responsible for decomposition, are to temperature variation.

除了众所周知的对物种生态生理学、物候学和分布的影响外,气候变化还被广泛预测会影响生态系统的基本服务,如分解和养分循环。虽然温度和土壤湿度被认为会影响废弃物的分解,但要阐明土壤过程对观测到的或预测的气候变化的一致反应却很难证明。在这里,我们研究了土壤温度变化的自然模式--朝向(即南北方向)如何影响朝向极地(PF)和赤道(EF)的路边荒地的土壤理化条件以及两种标准化废弃物(绿茶、路依布和茶包)的分解,这两种废弃物的纬度梯度为 27°,横跨欧洲 3,000 公里。尽管 EF 坡地的日平均气温比 PF 坡地高 1.5 - 3.0 °C,但在初始土壤理化条件和枯落物分解的短期变化(即仅在部署的第一个月,EF 坡地的枯落物质量损失较高)方面,与纬度相关的特定区域差异很小。我们的结论是,尽管半自然草地生态系统的中期土壤分解可能对 IPCC SSP1-2.6 排放情景预测范围内的温度变化幅度不敏感,但之前观察到的与坡向相关的土壤环境和分解过程的差异在很大程度上是针对枯落物或环境的。尽管如此,路边绿化带相邻的 PF 面和 EF 面之间一致的平均温度和极端温度差异提供了一个模型系统,可用于探索土壤环境和负责分解的微生物对温度变化的适应能力。
{"title":"Taking sides? Aspect has limited influence on soil environment or litter decomposition in pan-European study of roadside verges","authors":"A. Amstutz ,&nbsp;LB. Firth ,&nbsp;JI. Spicer ,&nbsp;P. De Frenne ,&nbsp;L. Gómez-Aparicio ,&nbsp;BJ. Graae ,&nbsp;S. Kuś ,&nbsp;S. Lindmo ,&nbsp;A. Orczewska ,&nbsp;F. Rodríguez-Sánchez ,&nbsp;P. Vangansbeke ,&nbsp;T. Vanneste ,&nbsp;ME. Hanley","doi":"10.1016/j.pedobi.2023.150927","DOIUrl":"10.1016/j.pedobi.2023.150927","url":null,"abstract":"<div><p>In addition to well-known effects on species ecophysiology, phenology, and distributions, climate change is widely predicted to impact essential ecosystem services such as decomposition and nutrient cycling. While temperature and soil moisture are thought to influence litter decomposition, elucidating consistent soil process responses to observed or predicted shifts in climate have proven difficult to evidence. Here we investigated how aspect (i.e., north-south orientation), a natural model for variation in soil temperature, influenced soil physico-chemical conditions and decomposition of two standardised litter types (Green tea and Rooibos teabags) in Pole-facing (PF) and Equator-facing (EF) roadside verges spanning a 3000 km and 27° latitudinal gradient across Europe. Despite average daily temperatures being 1.5 - 3.0 °C warmer on EF than PF slopes, there were only minor region-specific differences in initial soil physico-chemical conditions and short-term variation in litter decomposition (i.e., litter mass loss was higher in EF-verges for the first month of deployment only) associated with aspect. We conclude that previously observed differences in soil environments and the decomposition process associated with slope orientation, is largely litter or environment specific, although medium-term soil-decomposition in semi-natural grassland ecosystems may also be insensitive to the magnitude of temperature variation within the range predicted by the IPCC SSP1–2.6 emissions scenario. Nonetheless, consistent average and extreme temperature differences between adjacent PF- and EF-aspects along roadside verges provides a model system to explore exactly how resilient the soil environment and the micro-organisms responsible for decomposition, are to temperature variation.</p></div>","PeriodicalId":49711,"journal":{"name":"Pedobiologia","volume":"102 ","pages":"Article 150927"},"PeriodicalIF":2.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0031405623079957/pdfft?md5=14fdbffdaaadd252595cd7678cbe9ef2&pid=1-s2.0-S0031405623079957-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139462049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mineral fertilization impacts microbial activity and endophytic fungi but not microbial biomass in semiarid grasslands 矿物肥影响半干旱草地的微生物活动和内生真菌,但不影响微生物生物量
IF 2.3 3区 农林科学 Q3 ECOLOGY Pub Date : 2024-01-01 DOI: 10.1016/j.pedobi.2023.150929
Santiago Toledo , Veronica Gargaglione , Pablo L. Peri

Applications of mineral fertilizer to grasslands have become more frequent in recent decades to increase forage production. However, the impacts of mineral fertilizer on the soil microbiome is poorly understood in cold semiarid grassland ecosystems of Southern Patagonia, Argentina. Therefore, our objective was to analyze experimentally the influence of mineral nutrient fertilization (N, P, K, and NPK in combination) on soil microbial community attributes, such as microbial biomass carbon (MBC) and nitrogen (MBN), soil basal respiration (SBR), microbial metabolic coefficients, the colonization of endophytic fungi such as arbuscular mycorrhizal (AM) fungi, and dark septate endophytes (DSE), and aboveground plant productivity. Mineral fertilization with macronutrients (N, P, K, and NPK) decreased the SBR, qCO2, AM fungi and DSE fungi, but did not generate changes in MBC and MBN. The magnitude of these responses depends on years after fertilization. We found that soil microbiome was strongly dependent on a range of biotic and abiotic factors, such as growing season precipitation, aboveground plant biomass the relationship between the microbial biomass and microbial respiration, and between endophytic fungi and plants. This work improved our understanding of the soil microorganisms’ response to mineral fertilizer application and provides new insights into soil nutrient dynamics and ecosystem functioning.

近几十年来,为了提高牧草产量,在草原上施用矿物肥料的频率越来越高。然而,在阿根廷南巴塔哥尼亚寒冷的半干旱草原生态系统中,人们对矿物肥料对土壤微生物组的影响知之甚少。因此,我们的目标是通过实验分析矿物养分肥料(氮、磷、钾和氮磷钾组合)对土壤微生物群落属性的影响,如微生物生物量碳(MBC)和氮(MBN)、土壤基础呼吸(SBR)、微生物代谢系数、内生真菌(如丛枝菌根真菌(AM)和暗隔内生菌(DSE))的定殖以及地上植物生产力。施用大量营养元素(氮、磷、钾和氮磷钾)的矿物肥会降低 SBR、qCO2、AM 真菌和 DSE 真菌,但不会导致 MBC 和 MBN 发生变化。这些反应的程度取决于施肥后的年份。我们发现,土壤微生物组与一系列生物和非生物因素密切相关,如生长季降水量、地上植物生物量、微生物生物量与微生物呼吸之间的关系以及内生真菌与植物之间的关系。这项工作提高了我们对土壤微生物对施用矿物肥料的反应的认识,并为我们了解土壤养分动态和生态系统功能提供了新的视角。
{"title":"Mineral fertilization impacts microbial activity and endophytic fungi but not microbial biomass in semiarid grasslands","authors":"Santiago Toledo ,&nbsp;Veronica Gargaglione ,&nbsp;Pablo L. Peri","doi":"10.1016/j.pedobi.2023.150929","DOIUrl":"10.1016/j.pedobi.2023.150929","url":null,"abstract":"<div><p><span><span>Applications of mineral fertilizer<span> to grasslands have become more frequent in recent decades to increase forage production. However, the impacts of mineral fertilizer on the soil </span></span>microbiome<span><span> is poorly understood in cold semiarid grassland ecosystems of Southern Patagonia, Argentina. Therefore, our objective was to analyze experimentally the influence of mineral nutrient fertilization (N, P, K, and NPK in combination) on </span>soil microbial community<span> attributes, such as microbial biomass<span> carbon (MBC) and nitrogen (MBN), soil basal respiration<span> (SBR), microbial metabolic coefficients, the colonization of endophytic fungi such as arbuscular mycorrhizal (AM) fungi, and dark septate endophytes (DSE), and aboveground plant productivity. Mineral fertilization with macronutrients (N, P, K, and NPK) decreased the SBR, qCO</span></span></span></span></span><sub>2</sub><span><span>, AM fungi and DSE fungi, but did not generate changes in MBC and MBN. The magnitude of these responses depends on years after fertilization. We found that soil microbiome was strongly dependent on a range of biotic and abiotic factors<span>, such as growing season precipitation, aboveground plant biomass the relationship between the microbial biomass and microbial respiration, and between endophytic fungi and plants. This work improved our understanding of the soil microorganisms’ response to mineral </span></span>fertilizer application<span> and provides new insights into soil nutrient dynamics and ecosystem functioning.</span></span></p></div>","PeriodicalId":49711,"journal":{"name":"Pedobiologia","volume":"102 ","pages":"Article 150929"},"PeriodicalIF":2.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139065691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Pedobiologia
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1