The Yellow River Delta, as an important reserve land resource area, faces soil salinization problems. Understanding the bacterial community composition in saline soils is an important foundation for control and utilization of saline soils. However, few studies have been conducted on the composition of bacterial communities in soils with different degrees of salinization. Thus, saline soils categorized into low-salinity (LS), medium-salinity (MS), and high-salinity (HS) based on electrical conductivity (EC) were collected. The 16S rRNA high-throughput sequencing analysis was performed to analyze the effects of salinities on soil bacterial community patterns, as well as the relationships between soil bacterial communities and environmental factors. The results showed that Actinobacteriota, Proteobacteria, Chloroflexi, Firmicutes, Acidobacteriota, Gemmatimonadota and Bacteroidota accounted for almost 90 % of all the bacterial community. The linear discriminant analysis effects (LDA > 3.7) showed that 6, 5 and 3 biomarkers were present in LS, MS and HS soils, respectively, which indicated EC was an important factor influencing the saline soil bacterial community patterns. Redundancy analysis further revealed that the primary environmental parameters impacting the bacterial community were pH, EC, nitrate nitrogen, available phosphorus, total phosphorus, and soil organic matter. According to network analysis, the microbial network complexity was increased steadily with increasing of soil salinity. These findings together revealed that bacterial communities could serve as a reliable way to assess and improve the quality of salinized soils.
The extraradical mycelium of mycorrhizal fungi is among the major carbon pools in soil that is hard to quantitatively assess in-situ. Established method of in-growth mesh bags in temperate ecosystems is difficult to apply in the tropics, where mesh bags are often damaged by termites. Here we introduce a modification of the in-growth mesh bag technique, in which mesh bags are enforced by stainless steel mesh. Its performance was tested in the Đồng Nai (Cát Tiên) National Park in Vietnam across two monsoon tropical forests, dominated by tree species associated with either ectomycorrhizal (ECM) or arbuscular mycorrhizal (AM) fungi. Armored in-growth mesh bags remained intact, while about 60 % of non-armored mesh bags were damaged by termites after 180 days of exposure. The biomass of extraradical mycelium of ectomycorrhizal fungi estimated by PLFA analysis was similar in the armored and non-armored mesh bags and did not differ between studied forests. However, fungal community composition slightly differed between armored and non-armored mesh bags in the ECM- but not in the AM-dominated forest. Fungal mycelium gathered in the AM-dominated forest was depleted in 15N compared to that collected in the ECM-dominated forest. Overall, our results argue for using armored mesh bags as a robust tool for harvesting the biomass of extraradical mycelium of mycorrhizal fungi in tropical ecosystems.
Plant litter decomposition is driven by soil biota and biophysiochemical conditions as well as substrate quality. Prescribed burns can affect the abundance and diversity of soil arthropods and the biophysiochemical conditions in terrestrial ecosystems. In this study, we examined the effects of a prescribed burn on soil arthropods and litter chemistry in decomposing litter during a total of 469-days field incubation using litter from two grasses, Dichanthium annulatum and Megathyrsus maximus, in a subtropical moist pastureland of Puerto Rico. We found the prescribed burn substantially elevated ultraviolet (UV) radiation and soil temperature; and significantly decreased the diversity of litter total arthropods, especially predators and Mesostigmata mites, during the initial 5 months after the burn. However, the prescribed burn had no effect on either the biophysical environment nor on arthropod abundance and diversity during the subsequent incubation period of >5 months after the burn. Furthermore, the prescribed burn substantially increased the immobilization of iron (Fe) and manganese (Mn), and decreased sulfur (S) concentration in the decomposing litter. Prescribed burn had no interactions with substrate quality for percent mass remaining (PMR) and elemental release or accumulation. Low substrate quality D. annulatum litter with a carbon to phosphorus (C/P) ratio of 614 was associated with higher microbivore diversity and higher predator density than higher substrate quality M. maximus litter with a C/P ratio of 266 during the entire incubation period. Lower initial concentration of litter P, magnesium (Mg) and calcium (Ca) in D. annulatum resulted in higher immobilization of these elements in decomposing litter than in M. maximus. Our study suggest that prescribed burn can impose short-term changes in biophysiochemical conditions and the diversity of arthropods in litter decomposition during the initial recovery period of about 5 months after a burn, thus highlighting a high resilience of the grassland ecosystem to fire disturbance, and that it can bring lasting changes in the cycling of Fe, Mn, and S in subtropical moist pastureland that can alter ecosystem productivity.
Red wood ants are keystone species in forest ecosystems. Because ants are active polyphagous predators, they control the abundance of other arthropods. In addition to direct effects on other species, there are a number of indirect effects caused by ants. In our study, we investigated the influence of ants on springtails, which they rarely come into contact with. Springtails have been set as a model group to assess the state of soil animals, since they are one of the most numerous and widespread groups of soil microarthropods. They are characterized by high sensitivity to environmental changes. The basic characteristics (abundance, species richness, and species diversity) of the springtail community and the response of certain species to the presence of ant trails have been studied. The total abundance and species richness of springtails decreased along ant trails. Among occurred species Parisotoma ParIsotoma notabilis, Lepidacyrtus lignorum, Isotomiella minor, Desoria tigrina, and Pseudasinella alba are the most numerous species both along ant trails and in control samples. There are no significant changes in species diversity (assessed by the Shannon-Weaver index). Species structure of springtail communities along ant trails and in control is different. Two groups of common Collembola species are identified: (1) increasing their numbers in the presence of ants, (2) on the contrary, decreasing. The presence of ants in a forest ecosystem influences the soil springtail community, although ant-Collembola interactions are indirect.