Pub Date : 2024-09-01DOI: 10.1016/j.pedobi.2024.150989
Andrey G. Zuev , Ivan V. Gruzdev , Anton M. Potapov , Ina Schaefer , Stefan Scheu , Alexei V. Tiunov , Nguyen Van Thinh , Anna I. Zueva
The extraradical mycelium of mycorrhizal fungi is among the major carbon pools in soil that is hard to quantitatively assess in-situ. Established method of in-growth mesh bags in temperate ecosystems is difficult to apply in the tropics, where mesh bags are often damaged by termites. Here we introduce a modification of the in-growth mesh bag technique, in which mesh bags are enforced by stainless steel mesh. Its performance was tested in the Đồng Nai (Cát Tiên) National Park in Vietnam across two monsoon tropical forests, dominated by tree species associated with either ectomycorrhizal (ECM) or arbuscular mycorrhizal (AM) fungi. Armored in-growth mesh bags remained intact, while about 60 % of non-armored mesh bags were damaged by termites after 180 days of exposure. The biomass of extraradical mycelium of ectomycorrhizal fungi estimated by PLFA analysis was similar in the armored and non-armored mesh bags and did not differ between studied forests. However, fungal community composition slightly differed between armored and non-armored mesh bags in the ECM- but not in the AM-dominated forest. Fungal mycelium gathered in the AM-dominated forest was depleted in 15N compared to that collected in the ECM-dominated forest. Overall, our results argue for using armored mesh bags as a robust tool for harvesting the biomass of extraradical mycelium of mycorrhizal fungi in tropical ecosystems.
菌根真菌的根外菌丝是土壤中的主要碳库之一,但很难对其进行现场定量评估。在温带生态系统中使用的内生长网袋法很难在热带地区使用,因为网袋经常被白蚁破坏。在这里,我们介绍了生长期网袋技术的一种改进方法,即用不锈钢网加强网袋。我们在越南的Đồng Nai (Cát Tiên) 国家公园的两片季风热带雨林中测试了这种技术的性能,这两片雨林以与外生菌根真菌(ECM)或丛生菌根真菌(AM)相关的树种为主。经过 180 天的暴露后,生长期内的装甲网袋仍然完好无损,而约 60% 的非装甲网袋被白蚁破坏。用聚合脂肪酸分析法估算的外生菌根真菌菌丝体生物量在装甲网袋和非装甲网袋中相似,在研究的森林中也没有差异。不过,在以 ECM 为主的森林中,装甲网袋和非装甲网袋的真菌群落组成略有不同,而在以 AM 为主的森林中则没有差异。与在以 ECM 为主的森林中收集的真菌菌丝相比,在以 AM 为主的森林中收集的真菌菌丝的 15N 含量较低。总之,我们的研究结果表明,在热带生态系统中,装甲网袋是采集菌根真菌根外菌丝体生物量的有效工具。
{"title":"Assessing extraradical mycelium of mycorrhizal fungi in tropical forests using armored in-growth mesh bags","authors":"Andrey G. Zuev , Ivan V. Gruzdev , Anton M. Potapov , Ina Schaefer , Stefan Scheu , Alexei V. Tiunov , Nguyen Van Thinh , Anna I. Zueva","doi":"10.1016/j.pedobi.2024.150989","DOIUrl":"10.1016/j.pedobi.2024.150989","url":null,"abstract":"<div><p>The extraradical mycelium of mycorrhizal fungi is among the major carbon pools in soil that is hard to quantitatively assess in-situ. Established method of in-growth mesh bags in temperate ecosystems is difficult to apply in the tropics, where mesh bags are often damaged by termites. Here we introduce a modification of the in-growth mesh bag technique, in which mesh bags are enforced by stainless steel mesh. Its performance was tested in the Đồng Nai (Cát Tiên) National Park in Vietnam across two monsoon tropical forests, dominated by tree species associated with either ectomycorrhizal (ECM) or arbuscular mycorrhizal (AM) fungi. Armored in-growth mesh bags remained intact, while about 60 % of non-armored mesh bags were damaged by termites after 180 days of exposure. The biomass of extraradical mycelium of ectomycorrhizal fungi estimated by PLFA analysis was similar in the armored and non-armored mesh bags and did not differ between studied forests. However, fungal community composition slightly differed between armored and non-armored mesh bags in the ECM- but not in the AM-dominated forest. Fungal mycelium gathered in the AM-dominated forest was depleted in <sup>15</sup>N compared to that collected in the ECM-dominated forest. Overall, our results argue for using armored mesh bags as a robust tool for harvesting the biomass of extraradical mycelium of mycorrhizal fungi in tropical ecosystems.</p></div>","PeriodicalId":49711,"journal":{"name":"Pedobiologia","volume":"106 ","pages":"Article 150989"},"PeriodicalIF":2.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142099403","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01DOI: 10.1016/j.pedobi.2024.150990
Wei Huang , Grizelle González , María Fernanda Barberena-Arias , Weili Liu , Xiaoming Zou
Plant litter decomposition is driven by soil biota and biophysiochemical conditions as well as substrate quality. Prescribed burns can affect the abundance and diversity of soil arthropods and the biophysiochemical conditions in terrestrial ecosystems. In this study, we examined the effects of a prescribed burn on soil arthropods and litter chemistry in decomposing litter during a total of 469-days field incubation using litter from two grasses, Dichanthium annulatum and Megathyrsus maximus, in a subtropical moist pastureland of Puerto Rico. We found the prescribed burn substantially elevated ultraviolet (UV) radiation and soil temperature; and significantly decreased the diversity of litter total arthropods, especially predators and Mesostigmata mites, during the initial 5 months after the burn. However, the prescribed burn had no effect on either the biophysical environment nor on arthropod abundance and diversity during the subsequent incubation period of >5 months after the burn. Furthermore, the prescribed burn substantially increased the immobilization of iron (Fe) and manganese (Mn), and decreased sulfur (S) concentration in the decomposing litter. Prescribed burn had no interactions with substrate quality for percent mass remaining (PMR) and elemental release or accumulation. Low substrate quality D. annulatum litter with a carbon to phosphorus (C/P) ratio of 614 was associated with higher microbivore diversity and higher predator density than higher substrate quality M. maximus litter with a C/P ratio of 266 during the entire incubation period. Lower initial concentration of litter P, magnesium (Mg) and calcium (Ca) in D. annulatum resulted in higher immobilization of these elements in decomposing litter than in M. maximus. Our study suggest that prescribed burn can impose short-term changes in biophysiochemical conditions and the diversity of arthropods in litter decomposition during the initial recovery period of about 5 months after a burn, thus highlighting a high resilience of the grassland ecosystem to fire disturbance, and that it can bring lasting changes in the cycling of Fe, Mn, and S in subtropical moist pastureland that can alter ecosystem productivity.
植物废弃物的分解受土壤生物区系和生物生理化学条件以及基质质量的影响。烧荒会影响土壤节肢动物的数量和多样性以及陆地生态系统的生物生理生化条件。在这项研究中,我们利用波多黎各亚热带湿润牧场中的两种禾本科植物 Dichanthium annulatum 和 Megathyrsus maximus 的枯落物,在长达 469 天的野外培养过程中,考察了烧荒对土壤节肢动物和枯落物分解化学的影响。我们发现,在焚烧后的最初 5 个月中,焚烧大大增加了紫外线辐射和土壤温度,并显著降低了枯落物中节肢动物的多样性,尤其是捕食者和中生螨。然而,在焚烧后 5 个月的潜伏期内,焚烧对生物物理环境以及节肢动物的数量和多样性都没有影响。此外,焚烧大大提高了铁(Fe)和锰(Mn)的固定化程度,并降低了腐烂垃圾中硫(S)的浓度。在剩余质量百分比(PMR)和元素释放或积累方面,烧荒与基质质量没有相互作用。在整个孵化期间,碳磷(C/P)比为 614 的低基质质量 D. annulatum 枯落物与碳磷(C/P)比为 266 的高基质质量 M. maximus 枯落物相比,具有更高的微型食草动物多样性和更高的捕食者密度。D. annulatum的枯落物P、镁(Mg)和钙(Ca)初始浓度较低,导致这些元素在腐烂的枯落物中的固定化程度高于M. maximus。我们的研究表明,在烧伤后约 5 个月的初期恢复期内,烧伤可在短期内改变生物生理生化条件和枯落物分解过程中节肢动物的多样性,从而凸显草原生态系统对火灾干扰的高恢复力,而且烧伤可使亚热带湿润牧场中铁、锰和硒的循环发生持久变化,从而改变生态系统的生产力。
{"title":"Changes in soil arthropods and litter nutrients after prescribed burn in a subtropical moist pastureland","authors":"Wei Huang , Grizelle González , María Fernanda Barberena-Arias , Weili Liu , Xiaoming Zou","doi":"10.1016/j.pedobi.2024.150990","DOIUrl":"10.1016/j.pedobi.2024.150990","url":null,"abstract":"<div><p>Plant litter decomposition is driven by soil biota and biophysiochemical conditions as well as substrate quality. Prescribed burns can affect the abundance and diversity of soil arthropods and the biophysiochemical conditions in terrestrial ecosystems. In this study, we examined the effects of a prescribed burn on soil arthropods and litter chemistry in decomposing litter during a total of 469-days field incubation using litter from two grasses, <em>Dichanthium annulatum</em> and <em>Megathyrsus maximus</em>, in a subtropical moist pastureland of Puerto Rico. We found the prescribed burn substantially elevated ultraviolet (UV) radiation and soil temperature; and significantly decreased the diversity of litter total arthropods, especially predators and Mesostigmata mites, during the initial 5 months after the burn. However, the prescribed burn had no effect on either the biophysical environment nor on arthropod abundance and diversity during the subsequent incubation period of >5 months after the burn. Furthermore, the prescribed burn substantially increased the immobilization of iron (Fe) and manganese (Mn), and decreased sulfur (S) concentration in the decomposing litter. Prescribed burn had no interactions with substrate quality for percent mass remaining (PMR) and elemental release or accumulation. Low substrate quality <em>D. annulatum</em> litter with a carbon to phosphorus (C/P) ratio of 614 was associated with higher microbivore diversity and higher predator density than higher substrate quality <em>M. maximus</em> litter with a C/P ratio of 266 during the entire incubation period. Lower initial concentration of litter P, magnesium (Mg) and calcium (Ca) in <em>D. annulatum</em> resulted in higher immobilization of these elements in decomposing litter than in <em>M. maximus</em>. Our study suggest that prescribed burn can impose short-term changes in biophysiochemical conditions and the diversity of arthropods in litter decomposition during the initial recovery period of about 5 months after a burn, thus highlighting a high resilience of the grassland ecosystem to fire disturbance, and that it can bring lasting changes in the cycling of Fe, Mn, and S in subtropical moist pastureland that can alter ecosystem productivity.</p></div>","PeriodicalId":49711,"journal":{"name":"Pedobiologia","volume":"106 ","pages":"Article 150990"},"PeriodicalIF":2.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142128781","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01DOI: 10.1016/j.pedobi.2024.150987
Danila N. Goryunov , Ksenia S. Panina , Anna I. Bokova
Red wood ants are keystone species in forest ecosystems. Because ants are active polyphagous predators, they control the abundance of other arthropods. In addition to direct effects on other species, there are a number of indirect effects caused by ants. In our study, we investigated the influence of ants on springtails, which they rarely come into contact with. Springtails have been set as a model group to assess the state of soil animals, since they are one of the most numerous and widespread groups of soil microarthropods. They are characterized by high sensitivity to environmental changes. The basic characteristics (abundance, species richness, and species diversity) of the springtail community and the response of certain species to the presence of ant trails have been studied. The total abundance and species richness of springtails decreased along ant trails. Among occurred species Parisotoma ParIsotoma notabilis, Lepidacyrtus lignorum, Isotomiella minor, Desoria tigrina, and Pseudasinella alba are the most numerous species both along ant trails and in control samples. There are no significant changes in species diversity (assessed by the Shannon-Weaver index). Species structure of springtail communities along ant trails and in control is different. Two groups of common Collembola species are identified: (1) increasing their numbers in the presence of ants, (2) on the contrary, decreasing. The presence of ants in a forest ecosystem influences the soil springtail community, although ant-Collembola interactions are indirect.
{"title":"Collembola and ants: Influence of trails of red wood ants (Formica lugubris) on the community of soil springtails","authors":"Danila N. Goryunov , Ksenia S. Panina , Anna I. Bokova","doi":"10.1016/j.pedobi.2024.150987","DOIUrl":"10.1016/j.pedobi.2024.150987","url":null,"abstract":"<div><p>Red wood ants are keystone species in forest ecosystems. Because ants are active polyphagous predators, they control the abundance of other arthropods. In addition to direct effects on other species, there are a number of indirect effects caused by ants. In our study, we investigated the influence of ants on springtails, which they rarely come into contact with. Springtails have been set as a model group to assess the state of soil animals, since they are one of the most numerous and widespread groups of soil microarthropods. They are characterized by high sensitivity to environmental changes. The basic characteristics (abundance, species richness, and species diversity) of the springtail community and the response of certain species to the presence of ant trails have been studied. The total abundance and species richness of springtails decreased along ant trails. Among occurred species <em>Parisotoma ParIsotoma notabilis, Lepidacyrtus lignorum, Isotomiella minor, Desoria tigrina</em>, and <em>Pseudasinella alba</em> are the most numerous species both along ant trails and in control samples<em>.</em> There are no significant changes in species diversity (assessed by the Shannon-Weaver index). Species structure of springtail communities along ant trails and in control is different. Two groups of common Collembola species are identified: (1) increasing their numbers in the presence of ants, (2) on the contrary, decreasing. The presence of ants in a forest ecosystem influences the soil springtail community, although ant-Collembola interactions are indirect.</p></div>","PeriodicalId":49711,"journal":{"name":"Pedobiologia","volume":"106 ","pages":"Article 150987"},"PeriodicalIF":2.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142099563","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-24DOI: 10.1016/j.pedobi.2024.150988
Sudabeh Gharemahmudli , Seyed Hamidreza Sadeghi , Ali Najafinejad
Establishing soil biological crusts will result in the long-term restoration of ecosystems. Nonetheless, little research has been conducted to demonstrate the influence of soil endemic microorganisms on suppressing the adverse effects of freezing-thawing on soil properties. This current study evaluated the formation of biological crusts, the enhancement of physical and chemical characteristics of soil, and surface soil stability by inoculating native bacteria and cyanobacteria into the soil during a freezing-thawing cycle. The soil was collected from the Badranlou Region in North Khorasan Province, Northern Iran, and native bacteria and cyanobacteria were isolated, identified, chosen, and cultured. The native treatments of bacteria and cyanobacteria were then inoculated in individual bacteria, cyanobacteria, and combined inoculation of cyanobacteria and bacteria onto an experimental soil in six replications. After 60 days, they were subjected to freezing-thawing conditions to have maximum effect on the soil environment, and finally, the soil surface properties were statistically compared. The results of the significant effect (p<0.001) of inoculation treatments on the physical and chemical properties of the study soil revealed that the carbon, nitrogen, organic matter, phosphorus, potassium, and surface soil stability in bacterial treatment compared to the control treatment increased by 68, 39, 68, 17, 25, 99 %, respectively. While under cyanobacterial treatment, they rose by 83, 61, 83, 18, 73, and 172 %, respectively. The combination inoculation treatment of bacteria and cyanobacteria enhanced the study variables by 73, 66, 73, 25, 58, and 189 %, respectively. Compared to control plots, the soil bulk density in bacterial, cyanobacterial, and compound inoculation treatments was substantially reduced (p<0.001) by 9, 15, and 12 %, respectively. The soil stability, carbon, and organic matter were among the most essential properties of the soil, and they best showed the difference between the various treatments applied. It confirmed the region's potential restoration by inoculating native soil microorganisms.
{"title":"The potential of soil endemic microorganisms in ameliorating the physicochemical properties of soil subjected to a freeze-thaw cycle","authors":"Sudabeh Gharemahmudli , Seyed Hamidreza Sadeghi , Ali Najafinejad","doi":"10.1016/j.pedobi.2024.150988","DOIUrl":"10.1016/j.pedobi.2024.150988","url":null,"abstract":"<div><p>Establishing soil biological crusts will result in the long-term restoration of ecosystems. Nonetheless, little research has been conducted to demonstrate the influence of soil endemic microorganisms on suppressing the adverse effects of freezing-thawing on soil properties. This current study evaluated the formation of biological crusts, the enhancement of physical and chemical characteristics of soil, and surface soil stability by inoculating native bacteria and cyanobacteria into the soil during a freezing-thawing cycle. The soil was collected from the Badranlou Region in North Khorasan Province, Northern Iran, and native bacteria and cyanobacteria were isolated, identified, chosen, and cultured. The native treatments of bacteria and cyanobacteria were then inoculated in individual bacteria, cyanobacteria, and combined inoculation of cyanobacteria and bacteria onto an experimental soil in six replications. After 60 days, they were subjected to freezing-thawing conditions to have maximum effect on the soil environment, and finally, the soil surface properties were statistically compared. The results of the significant effect (p<0.001) of inoculation treatments on the physical and chemical properties of the study soil revealed that the carbon, nitrogen, organic matter, phosphorus, potassium, and surface soil stability in bacterial treatment compared to the control treatment increased by 68, 39, 68, 17, 25, 99 %, respectively. While under cyanobacterial treatment, they rose by 83, 61, 83, 18, 73, and 172 %, respectively. The combination inoculation treatment of bacteria and cyanobacteria enhanced the study variables by 73, 66, 73, 25, 58, and 189 %, respectively. Compared to control plots, the soil bulk density in bacterial, cyanobacterial, and compound inoculation treatments was substantially reduced (p<0.001) by 9, 15, and 12 %, respectively. The soil stability, carbon, and organic matter were among the most essential properties of the soil, and they best showed the difference between the various treatments applied. It confirmed the region's potential restoration by inoculating native soil microorganisms.</p></div>","PeriodicalId":49711,"journal":{"name":"Pedobiologia","volume":"106 ","pages":"Article 150988"},"PeriodicalIF":2.0,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142084132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-03DOI: 10.1016/j.pedobi.2024.150986
Erik A. Lehnhoff , Caroline R. Toth , Prashasti Agarwal , Ciro Velasco-Cruz , Brian J. Schutte , Omololu John Idowu , Xiufen Li
Cover cropping is a well-established strategy to improve soil health, especially in arid and semi-arid agricultural systems. Benefits to soil health are often mediated via effects of cover crops on soil microbial community structure, function and diversity, crucial for regulating soil biogeochemical cycles, eventually promoting agricultural sustainability. However, limited water availability is a major constraint for both cover crop growth and soil microbial activity. This study sought to characterize and elucidate the shifts in soil microbial community structure in response to different cover crops and differential irrigation treatments using phospholipid fatty acid (PLFA) profiling in southern New Mexico. We tested five cover crop treatments: Pisum sativum (Australian winter pea), Hordeum vulgare cv. Stockford (barley), Brassica juncea cv. Caliente 199 (brown mustard), a three-way mix, and a fallow control — in combination with irrigation treatments of one, two, or three irrigation applications — in a split-plot design over two years. Zea mays (sweet corn) was grown as the summer cash crop. We collected soil samples just after cover crop planting in the fall of 2018, following second year cover crop termination but during Z. mays growth in June 2020, and after the second season of Z. mays growth in October 2020. Differential irrigation treatments did not lead to consistent patterns of change under any cover crop or irrigation treatment. However, PLFA parameters in cover cropped compared to winter fallow plots tended to decrease under one and three irrigations but increased with two irrigations. Changes were more common for bacterial than for fungal PLFA biomarkers, and more common in B. juncea and H. vulgare cover crops than in P. sativa or the mix. It is important to note that, while cover crop effects were inconsistent, cover cropping did lead to some shifts in PLFA biomarkers, even in the short two-year period of cover cropping.
{"title":"Winter cover crops and irrigation alter soil microbial community composition in an arid cropping system","authors":"Erik A. Lehnhoff , Caroline R. Toth , Prashasti Agarwal , Ciro Velasco-Cruz , Brian J. Schutte , Omololu John Idowu , Xiufen Li","doi":"10.1016/j.pedobi.2024.150986","DOIUrl":"10.1016/j.pedobi.2024.150986","url":null,"abstract":"<div><p>Cover cropping is a well-established strategy to improve soil health, especially in arid and semi-arid agricultural systems. Benefits to soil health are often mediated via effects of cover crops on soil microbial community structure, function and diversity, crucial for regulating soil biogeochemical cycles, eventually promoting agricultural sustainability. However, limited water availability is a major constraint for both cover crop growth and soil microbial activity. This study sought to characterize and elucidate the shifts in soil microbial community structure in response to different cover crops and differential irrigation treatments using phospholipid fatty acid (PLFA) profiling in southern New Mexico. We tested five cover crop treatments: <em>Pisum sativum</em> (Australian winter pea), <em>Hordeum vulgare</em> cv. Stockford (barley), <em>Brassica juncea</em> cv. Caliente 199 (brown mustard), a three-way mix, and a fallow control — in combination with irrigation treatments of one, two, or three irrigation applications — in a split-plot design over two years. <em>Zea mays</em> (sweet corn) was grown as the summer cash crop. We collected soil samples just after cover crop planting in the fall of 2018, following second year cover crop termination but during <em>Z. mays</em> growth in June 2020, and after the second season of <em>Z. mays</em> growth in October 2020. Differential irrigation treatments did not lead to consistent patterns of change under any cover crop or irrigation treatment. However, PLFA parameters in cover cropped compared to winter fallow plots tended to decrease under one and three irrigations but increased with two irrigations. Changes were more common for bacterial than for fungal PLFA biomarkers, and more common in <em>B. juncea</em> and <em>H. vulgare</em> cover crops than in <em>P. sativa</em> or the mix. It is important to note that, while cover crop effects were inconsistent, cover cropping did lead to some shifts in PLFA biomarkers, even in the short two-year period of cover cropping.</p></div>","PeriodicalId":49711,"journal":{"name":"Pedobiologia","volume":"106 ","pages":"Article 150986"},"PeriodicalIF":2.0,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141961434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-19DOI: 10.1016/j.pedobi.2024.150985
Anacláudia Alves Primo , José Ferreira Lustosa Filho , Helen Botelho Marota , Rafael Gonçalves Tonucci , Ivo Ribeiro da Silva , Teogenes Senna de Oliveira
Soil organic matter (SOM) is the main pathway of carbon (C) input to the soil with the decomposition of shoot residues, roots and their exudates. The objective was to evaluate the contribution of different vegetal composition and plant parts of Caatinga species and the effects of introducing a grass in the soil microbial community structure and biochemical composition of SOM. A trial was conducted under controlled conditions (120 days) using, separately, the shoot and roots residues of native species from the herbaceous (HERB) and shrub-arboreal (ARB) strata and a grass (GRASS). Megathyrsus maximum, which is native from Africa, but well adapted to the semi-arid conditions of Brazil, was used. Combinations of these species in different proportions were also evaluated: (i) 55 % shrub and trees + 45 % grass (MIX1) and (ii) 75 % shrub and trees + 25 % grass (MIX2). At the end of incubation, soil samples were collected to evaluate the microbial community structure through the phospholipid fatty acids (PLFA). Physical fractioning of SOM into particulate organic matter (POM) and mineral-associated organic matter (MAOM) was also performed, followed by biochemical characterization of these fractions by thermochemolysis analysis. The ARB shoot residue resulted in a 181.5 % increase (p < 0.05) in total PLFA biomass in the soil. A significant increase (p < 0.05) in the abundance of fungi and bacteria was observed with the incorporation of shoot residues. MAOM was characterized by a higher abundance of aliphatic (31.6 ± 5.0 %) and nitrogen-bearing compounds (21.0 ± 2.0 %), while higher lignin derivatives were observed in POM (18.0 ± 0.6 %). The ground cover provided a diversity of compounds in the SOM, thus regulating the structure of the microbial community. These results highlight the importance of conserving biodiversity, both in natural ecosystems and in agroecosystems in the semi-arid environment.
{"title":"Different composition of plant residues as a driver of microbial community structure and soil organic matter composition: A microcosm study","authors":"Anacláudia Alves Primo , José Ferreira Lustosa Filho , Helen Botelho Marota , Rafael Gonçalves Tonucci , Ivo Ribeiro da Silva , Teogenes Senna de Oliveira","doi":"10.1016/j.pedobi.2024.150985","DOIUrl":"10.1016/j.pedobi.2024.150985","url":null,"abstract":"<div><p>Soil organic matter (SOM) is the main pathway of carbon (C) input to the soil with the decomposition of shoot residues, roots and their exudates. The objective was to evaluate the contribution of different vegetal composition and plant parts of Caatinga species and the effects of introducing a grass in the soil microbial community structure and biochemical composition of SOM. A trial was conducted under controlled conditions (120 days) using, separately, the shoot and roots residue<strong>s</strong> of native species from the herbaceous (HERB) and shrub-arboreal (ARB) strata and a grass (GRASS). <em>Megathyrsus maximum</em>, which is native from Africa, but well adapted to the semi-arid conditions of Brazil, was used. Combinations of these species in different proportions were also evaluated: (i) 55 % shrub and trees + 45 % grass (MIX1) and (ii) 75 % shrub and trees + 25 % grass (MIX2). At the end of incubation, soil samples were collected to evaluate the microbial community structure through the phospholipid fatty acids (PLFA). Physical fractioning of SOM into particulate organic matter (POM) and mineral-associated organic matter (MAOM) was also performed, followed by biochemical characterization of these fractions by thermochemolysis analysis. The ARB shoot residue resulted in a 181.5 % increase (<em>p</em> < 0.05) in total PLFA biomass in the soil. A significant increase (<em>p</em> < 0.05) in the abundance of fungi and bacteria was observed with the incorporation of shoot residues. MAOM was characterized by a higher abundance of aliphatic (31.6 ± 5.0 %) and nitrogen-bearing compounds (21.0 ± 2.0 %), while higher lignin derivatives were observed in POM (18.0 ± 0.6 %). The ground cover provided a diversity of compounds in the SOM, thus regulating the structure of the microbial community. These results highlight the importance of conserving biodiversity, both in natural ecosystems and in agroecosystems in the semi-arid environment.</p></div>","PeriodicalId":49711,"journal":{"name":"Pedobiologia","volume":"106 ","pages":"Article 150985"},"PeriodicalIF":2.0,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141847816","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Soil organic matter is the dominant pool of carbon (C) in terrestrial ecosystems. Recent advances in understanding of the mechanisms of C stabilization in the soil emphasize microbes as the main drivers. Special attention is placed on the accumulation of bacterial and fungal necromasses. This calls for development of fast and reliable methods to estimate microbial necromass in a various type of soils, including peat soils. Here we provide precise method to measure fungal and bacterial necromasses with high-pressure liquid chromatography-fluorescence detector (HPLC-FLD) and its comparison with gas chromatography method. Purity of the chromatographic peaks was confirmed with mass spectrometry. The HPLC-FLD method provides reliable results for mineral, organic and highly organic peat soils.
{"title":"Precise method to measure fungal and bacterial necromass using high pressure liquid chromatography with fluorescence detector adjusted to inorganic, organic and peat soils","authors":"Sylwia Adamczyk, Raisa Mäkipää, Aleksi Lehtonen, Bartosz Adamczyk","doi":"10.1016/j.pedobi.2024.150977","DOIUrl":"https://doi.org/10.1016/j.pedobi.2024.150977","url":null,"abstract":"<div><p>Soil organic matter is the dominant pool of carbon (C) in terrestrial ecosystems. Recent advances in understanding of the mechanisms of C stabilization in the soil emphasize microbes as the main drivers. Special attention is placed on the accumulation of bacterial and fungal necromasses. This calls for development of fast and reliable methods to estimate microbial necromass in a various type of soils, including peat soils. Here we provide precise method to measure fungal and bacterial necromasses with high-pressure liquid chromatography-fluorescence detector (HPLC-FLD) and its comparison with gas chromatography method. Purity of the chromatographic peaks was confirmed with mass spectrometry. The HPLC-FLD method provides reliable results for mineral, organic and highly organic peat soils.</p></div>","PeriodicalId":49711,"journal":{"name":"Pedobiologia","volume":"106 ","pages":"Article 150977"},"PeriodicalIF":2.0,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S003140562403498X/pdfft?md5=9138454a3c41d0432368884a8768965c&pid=1-s2.0-S003140562403498X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141606968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01DOI: 10.1016/j.pedobi.2024.150973
Jorge Poveda, Jorge Martín-García, Paula Zamora-Brauweiler, Mónica Pastor, Julio J. Díez
The Mediterranean forest has an important ecological and economic role, being holm oak (Quercus ilex), Pyrenean oak (Quercus pyrenaica), umbrella pine (Pinus pinea) and Scot pine (Pinus sylvestris) some of its main tree species. The fungal damping-off disease caused by Fusarium seriously threatens the establishment of these forest species in nurseries and reforestation, requiring the search for environmentally friendly alternatives to control the disease. We have used different species of ectomycorrhizal fungi (EMF) as potential biological control agents (BCAs) effective against the disease: Lactarius sanguifluus, Tricholoma portentosum, Suillus luteus and Agaricus silvicola from Pinus-species, and Leccinum lepidum, Amanita rubescens and Xerocomus ferrugineus from Quercus-species. A direct in vitro confrontation was performed and conidial germination of Fusarium in contact with cell-free filtrates produced by EMF was studied. Le. lepidum was the most effective Quercus-fungus in vitro against F. oxysporum, reducing its growth up to 32 % and its conidial germination up to 87 %. S. luteus was the most effective Pinus-fungus in vitro against F. oxysporum and F. verticillioides, reducing in direct confrontation, reducing its growth up to 30 %. However, La. sanguifluus was the Pinus-fungus that inhibited conidial germination of both pathogens, up to 55 %. In planta trials were carried out with seeds of the four forest species growing on substrate colonized by Le. lepidum (in Q. ilex and Q. pyrenaica seeds, infected by F. oxysporum) or by La. sanguifluus (P. pinea and P. sylvestris seeds, infected by F. oxysporum or F. verticillioides). Only La. sanguifluus was effective in reducing disease caused by F. oxysporum (strain Fo4) on P. sylvestris seeds. Therefore, EMF may be a potential tool in the control of damping-off in forest species, requiring further research.
地中海森林具有重要的生态和经济作用,主要树种有霍尔姆栎(Quercus ilex)、比利牛斯栎(Quercus pyrenaica)、伞松(Pinus pinea)和苏格兰松(Pinus sylvestris)。由镰刀菌引起的真菌性潮湿病严重威胁着这些森林树种在苗圃和重新造林中的生长,因此需要寻找对环境友好的替代品来控制这种病害。我们利用不同种类的外生菌根真菌(EMF)作为潜在的生物防治剂(BCA),可有效防治该疾病:它们分别是松科的 Lactarius sanguifluus、Tricholoma portentosum、Suillus luteus 和 Agaricus silvicola,以及柞科的 Leccinum lepidum、Amanita rubescens 和 Xerocomus ferrugineus。进行了直接体外对抗,并研究了镰刀菌与电磁场产生的无细胞滤液接触后的分生孢子萌发情况。Le.lepidum是体外对抗F. oxysporum最有效的柞木真菌,可减少其生长达32%,分生孢子萌发达87%。S. luteus 是体外抗氧化孢霉和疣孢霉最有效的松属真菌,在直接对抗中可减少其生长量达 30%。然而,La. sanguifluus 是抑制这两种病原体分生孢子发芽的松属真菌,抑制率高达 55%。对生长在被 Le. lepidum 定殖的基质上的四种森林树种的种子进行了植物试验(在被 F. oxysporum 感染的 Q. ilex 和 Q. pyrenaica 种子中),或被 La. sanguifluus 定殖的基质上的四种森林树种的种子进行了植物试验(在被 F. oxysporum 或 F. verticillioides 感染的 P. pinea 和 P. sylvestris 种子中)。只有 La. sanguifluus 能有效减少由 F. oxysporum(菌株 Fo4)引起的西洋杉种子病害。因此,电磁场可能是一种潜在的工具,可用于控制森林物种的枯萎病,需要进一步研究。
{"title":"Biological control of damping-off by Fusarium oxysporum and F. verticillioides on pine and oak seedlings using edible ectomycorrhizal fungi","authors":"Jorge Poveda, Jorge Martín-García, Paula Zamora-Brauweiler, Mónica Pastor, Julio J. Díez","doi":"10.1016/j.pedobi.2024.150973","DOIUrl":"https://doi.org/10.1016/j.pedobi.2024.150973","url":null,"abstract":"<div><p>The Mediterranean forest has an important ecological and economic role, being holm oak (<em>Quercus ilex</em>), Pyrenean oak (<em>Quercus pyrenaica</em>), umbrella pine (<em>Pinus pinea</em>) and Scot pine (<em>Pinus sylvestris</em>) some of its main tree species. The fungal damping-off disease caused by <em>Fusarium</em> seriously threatens the establishment of these forest species in nurseries and reforestation, requiring the search for environmentally friendly alternatives to control the disease. We have used different species of ectomycorrhizal fungi (EMF) as potential biological control agents (BCAs) effective against the disease: <em>Lactarius sanguifluus</em>, <em>Tricholoma portentosum</em>, <em>Suillus luteus</em> and <em>Agaricus silvicola</em> from <em>Pinus</em>-species, and <em>Leccinum lepidum</em>, <em>Amanita rubescens</em> and <em>Xerocomus ferrugineus</em> from <em>Quercus</em>-species. A direct <em>in vitro</em> confrontation was performed and conidial germination of <em>Fusarium</em> in contact with cell-free filtrates produced by EMF was studied. <em>Le. lepidum</em> was the most effective <em>Quercus</em>-fungus <em>in vitro</em> against <em>F. oxysporum</em>, reducing its growth up to 32 % and its conidial germination up to 87 %. <em>S. luteus</em> was the most effective <em>Pinus</em>-fungus <em>in vitro</em> against <em>F. oxysporum</em> and <em>F. verticillioides</em>, reducing in direct confrontation, reducing its growth up to 30 %. However, <em>La. sanguifluus</em> was the <em>Pinus</em>-fungus that inhibited conidial germination of both pathogens, up to 55 %. <em>In planta</em> trials were carried out with seeds of the four forest species growing on substrate colonized by <em>Le. lepidum</em> (in <em>Q. ilex</em> and <em>Q. pyrenaica</em> seeds, infected by <em>F. oxysporum</em>) or by <em>La. sanguifluus</em> (<em>P. pinea</em> and <em>P. sylvestris</em> seeds, infected by <em>F. oxysporum</em> or <em>F. verticillioides</em>). Only <em>La. sanguifluus</em> was effective in reducing disease caused by <em>F. oxysporum</em> (strain Fo4) on <em>P. sylvestris</em> seeds. Therefore, EMF may be a potential tool in the control of damping-off in forest species, requiring further research.</p></div>","PeriodicalId":49711,"journal":{"name":"Pedobiologia","volume":"105 ","pages":"Article 150973"},"PeriodicalIF":2.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141479968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01DOI: 10.1016/j.pedobi.2024.150974
Juliette Chassain , Sophie Joimel , Laure Vieublé Gonod
Larger soil organisms have often been reported as the most sensitive to disturbances caused by cropping practices. However, soil macrofauna comprises groups with a wide diversity of morphological and ecological features, which may respond differently to applied practices. In order to further assess the effect of cropping systems on soil macrofauna, macrofauna organisms were extracted from soil blocks over 21 fields (each comprising three plots) located in the Paris basin, in autumns 2020 and 2021. Fields belonged to conventional, conservation or organic systems, either long-established (≥ 7 years) or in transition (≤ 3 years). Tillage, pesticide treatment and organic matter input intensity were assessed in each field using composite indexes of practice intensity. Macrofauna density and diversity, earthworm ecological categories, species richness and functional traits were investigated. Our results showed that the density and diversity of macrofauna demonstrated few differences regarding different cropping systems, with highly variable effects across groups and years. Specific macroarthropod groups responded differently to tillage, pesticide treatment and organic input intensity, but not over the two years of the study. Regarding earthworms, high tillage intensity had a negative effect on the density and biomass of epi-anecic juveniles and on species with a small body size. Higher organic matter inputs had a negative effect on the density and biomass of endogeic earthworms, and could be related to several earthworm functional traits (body length, mass/length ratio, carbon preferences). Effects of pesticide treatments were less clear, although they could have impacted some earthworm species. More generally, taxonomic and functional trait approaches of earthworm community led to similar conclusions. Overall, our results support the need to account for (i) the actual intensity of practices in cropping systems and (ii) the different taxonomic, trophic and ecological groups of macrofauna, in order to assess the effects of cropping systems on soil biodiversity.
{"title":"A complex relationship between cropping systems and soil macrofauna: Influence of practice intensity, taxa and traits","authors":"Juliette Chassain , Sophie Joimel , Laure Vieublé Gonod","doi":"10.1016/j.pedobi.2024.150974","DOIUrl":"https://doi.org/10.1016/j.pedobi.2024.150974","url":null,"abstract":"<div><p>Larger soil organisms have often been reported as the most sensitive to disturbances caused by cropping practices. However, soil macrofauna comprises groups with a wide diversity of morphological and ecological features, which may respond differently to applied practices. In order to further assess the effect of cropping systems on soil macrofauna, macrofauna organisms were extracted from soil blocks over 21 fields (each comprising three plots) located in the Paris basin, in autumns 2020 and 2021. Fields belonged to conventional, conservation or organic systems, either long-established (≥ 7 years) or in transition (≤ 3 years). Tillage, pesticide treatment and organic matter input intensity were assessed in each field using composite indexes of practice intensity. Macrofauna density and diversity, earthworm ecological categories, species richness and functional traits were investigated. Our results showed that the density and diversity of macrofauna demonstrated few differences regarding different cropping systems, with highly variable effects across groups and years. Specific macroarthropod groups responded differently to tillage, pesticide treatment and organic input intensity, but not over the two years of the study. Regarding earthworms, high tillage intensity had a negative effect on the density and biomass of epi-anecic juveniles and on species with a small body size. Higher organic matter inputs had a negative effect on the density and biomass of endogeic earthworms, and could be related to several earthworm functional traits (body length, mass/length ratio, carbon preferences). Effects of pesticide treatments were less clear, although they could have impacted some earthworm species. More generally, taxonomic and functional trait approaches of earthworm community led to similar conclusions. Overall, our results support the need to account for (i) the actual intensity of practices in cropping systems and (ii) the different taxonomic, trophic and ecological groups of macrofauna, in order to assess the effects of cropping systems on soil biodiversity.</p></div>","PeriodicalId":49711,"journal":{"name":"Pedobiologia","volume":"105 ","pages":"Article 150974"},"PeriodicalIF":2.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0031405624034954/pdfft?md5=6acbb8c64f545cb63465965f822d7d5d&pid=1-s2.0-S0031405624034954-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141479969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01DOI: 10.1016/j.pedobi.2024.150976
Rita C. Bicho , Janeck J. Scott-Fordsmand , Mónica J.B. Amorim
Amongst climate change’s impacts a major concern is salinization of soils, for example due to saltwater intrusion. The aim of the present study was to investigate in a standard field soil the impacts of soil salinity increase. The purpose was to study this in two soil invertebrates that are key model ecotoxicology test-species, Enchytraeus crypticus and Folsomia candida as surrogate representatives of the soil ecosystem. The exposure followed the standard ecotoxicity OECD (Organization for Economic Cooperation and Development) test guidelines, and the assessed endpoints were survival, reproduction and size. Exposure done in LUFA 2.2 soil, spiked with 0,0.6,1,2,3,4,5,6,8 g NaCl/kg soil dry weight (DW) for E. crypticus (21 days) and 0,0.06,0.6,1,2,3,4,5,6 g NaCl/kg soil DW for F. candida (28 days). There was a similar impact for both species in terms of survival (LC50=4.2 g NaCl/kg soil DW), whereas at the reproductive output level of F. candida (EC50=2.1 g NaCl/kg soil DW) was more sensitive than E. crypticus (EC50=2.4 g NaCl/kg soil DW). Further, size was impacted for F. candida in a monotonic dose-response curve for both adults (EC50=3.5 g NaCl/kg soil DW) and juveniles (EC50=2 g NaCl/kg soil DW), whereas for E. crypticus there was an increase in reproductive output at lower concentrations (0.6–1 g NaCl/kg soil DW). This increased reproduction was associated with a larger size of adults within the same concentration range. Considering the prediction from the climate models, the soil invertebrate community will be affected. As upper soils are likely to have the highest salinity increase due to evaporation, soil surface species, such as the collembolan tested here, are at higher risk. Negative population effects were occurring within salinity levels predicted by climate change models.
{"title":"Climate change in edaphic systems – Impact of salinity intrusions in terrestrial invertebrates","authors":"Rita C. Bicho , Janeck J. Scott-Fordsmand , Mónica J.B. Amorim","doi":"10.1016/j.pedobi.2024.150976","DOIUrl":"https://doi.org/10.1016/j.pedobi.2024.150976","url":null,"abstract":"<div><p>Amongst climate change’s impacts a major concern is salinization of soils, for example due to saltwater intrusion. The aim of the present study was to investigate in a standard field soil the impacts of soil salinity increase. The purpose was to study this in two soil invertebrates that are key model ecotoxicology test-species, <em>Enchytraeus crypticus</em> and <em>Folsomia candida</em> as surrogate representatives of the soil ecosystem. The exposure followed the standard ecotoxicity OECD (Organization for Economic Cooperation and Development) test guidelines, and the assessed endpoints were survival, reproduction and size. Exposure done in LUFA 2.2 soil, spiked with 0,0.6,1,2,3,4,5,6,8 g NaCl/kg soil dry weight (DW) for <em>E. crypticus</em> (21 days) and 0,0.06,0.6,1,2,3,4,5,6 g NaCl/kg soil DW for <em>F. candida</em> (28 days). There was a similar impact for both species in terms of survival (LC<sub>50</sub>=4.2 g NaCl/kg soil DW), whereas at the reproductive output level of <em>F. candida</em> (EC<sub>50</sub>=2.1 g NaCl/kg soil DW) was more sensitive than <em>E. crypticus</em> (EC<sub>50</sub>=2.4 g NaCl/kg soil DW). Further, size was impacted for <em>F. candida</em> in a monotonic dose-response curve for both adults (EC<sub>50</sub>=3.5 g NaCl/kg soil DW) and juveniles (EC<sub>50</sub>=2 g NaCl/kg soil DW), whereas for <em>E. crypticus</em> there was an increase in reproductive output at lower concentrations (0.6–1 g NaCl/kg soil DW). This increased reproduction was associated with a larger size of adults within the same concentration range. Considering the prediction from the climate models, the soil invertebrate community will be affected. As upper soils are likely to have the highest salinity increase due to evaporation, soil surface species, such as the collembolan tested here, are at higher risk. Negative population effects were occurring within salinity levels predicted by climate change models.</p></div>","PeriodicalId":49711,"journal":{"name":"Pedobiologia","volume":"105 ","pages":"Article 150976"},"PeriodicalIF":2.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0031405624034978/pdfft?md5=f607a7ffe3d08b887910eebb3cccd142&pid=1-s2.0-S0031405624034978-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141595169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}