首页 > 最新文献

Numerische Mathematik最新文献

英文 中文
Moment-SoS methods for optimal transport problems 优化运输问题的矩-SoS 方法
IF 2.1 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-06-11 DOI: 10.1007/s00211-024-01422-x
Olga Mula, Anthony Nouy

Most common optimal transport (OT) solvers are currently based on an approximation of underlying measures by discrete measures. However, it is sometimes relevant to work only with moments of measures instead of the measure itself, and many common OT problems can be formulated as moment problems (the most relevant examples being (L^p)-Wasserstein distances, barycenters, and Gromov–Wasserstein discrepancies on Euclidean spaces). We leverage this fact to develop a generalized moment formulation that covers these classes of OT problems. The transport plan is represented through its moments on a given basis, and the marginal constraints are expressed in terms of moment constraints. A practical computation then consists in considering a truncation of the involved moment sequences up to a certain order, and using the polynomial sums-of-squares hierarchy for measures supported on semi-algebraic sets. We prove that the strategy converges to the solution of the OT problem as the order increases. We also show how to approximate linear quantities of interest, and how to estimate the support of the optimal transport map from the computed moments using Christoffel–Darboux kernels. Numerical experiments illustrate the good behavior of the approach.

目前,大多数常见的最优传输(OT)求解器都是基于离散度量对基础度量的近似。然而,有时只处理度量的矩而不是度量本身是有意义的,而且许多常见的 OT 问题都可以表述为矩问题(最相关的例子是 (L^p)-Wasserstein 距离、重心和欧几里得空间上的 Gromov-Wasserstein 差异)。我们利用这一事实,开发了一种广义的矩公式,涵盖了这些类型的加时赛问题。运输计划通过其在给定基础上的矩来表示,边际约束则用矩约束来表示。然后,实际计算包括考虑对所涉及的矩序列进行截断,直到达到一定的阶次,并使用多项式平方和层次结构来处理半代数集合上的度量。我们证明,随着阶数的增加,该策略收敛于 OT 问题的解。我们还展示了如何逼近感兴趣的线性量,以及如何使用 Christoffel-Darboux 核从计算矩估计最优传输图的支持度。数值实验说明了该方法的良好性能。
{"title":"Moment-SoS methods for optimal transport problems","authors":"Olga Mula, Anthony Nouy","doi":"10.1007/s00211-024-01422-x","DOIUrl":"https://doi.org/10.1007/s00211-024-01422-x","url":null,"abstract":"<p>Most common optimal transport (OT) solvers are currently based on an approximation of underlying measures by discrete measures. However, it is sometimes relevant to work only with moments of measures instead of the measure itself, and many common OT problems can be formulated as moment problems (the most relevant examples being <span>(L^p)</span>-Wasserstein distances, barycenters, and Gromov–Wasserstein discrepancies on Euclidean spaces). We leverage this fact to develop a generalized moment formulation that covers these classes of OT problems. The transport plan is represented through its moments on a given basis, and the marginal constraints are expressed in terms of moment constraints. A practical computation then consists in considering a truncation of the involved moment sequences up to a certain order, and using the polynomial sums-of-squares hierarchy for measures supported on semi-algebraic sets. We prove that the strategy converges to the solution of the OT problem as the order increases. We also show how to approximate linear quantities of interest, and how to estimate the support of the optimal transport map from the computed moments using Christoffel–Darboux kernels. Numerical experiments illustrate the good behavior of the approach.</p>","PeriodicalId":49733,"journal":{"name":"Numerische Mathematik","volume":"21 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141503109","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Validated integration of semilinear parabolic PDEs 半线性抛物线 PDE 的验证整合
IF 2.1 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-06-04 DOI: 10.1007/s00211-024-01415-w
Jan Bouwe van den Berg, Maxime Breden, Ray Sheombarsing

Integrating evolutionary partial differential equations (PDEs) is an essential ingredient for studying the dynamics of the solutions. Indeed, simulations are at the core of scientific computing, but their mathematical reliability is often difficult to quantify, especially when one is interested in the output of a given simulation, rather than in the asymptotic regime where the discretization parameter tends to zero. In this paper we present a computer-assisted proof methodology to perform rigorous time integration for scalar semilinear parabolic PDEs with periodic boundary conditions. We formulate an equivalent zero-finding problem based on a variation of constants formula in Fourier space. Using Chebyshev interpolation and domain decomposition, we then finish the proof with a Newton–Kantorovich type argument. The final output of this procedure is a proof of existence of an orbit, together with guaranteed error bounds between this orbit and a numerically computed approximation. We illustrate the versatility of the approach with results for the Fisher equation, the Swift–Hohenberg equation, the Ohta–Kawasaki equation and the Kuramoto–Sivashinsky equation. We expect that this rigorous integrator can form the basis for studying boundary value problems for connecting orbits in partial differential equations.

对进化偏微分方程(PDEs)进行积分是研究解的动态性的一个基本要素。事实上,模拟是科学计算的核心,但其数学可靠性往往难以量化,特别是当人们感兴趣的是给定模拟的输出,而不是离散化参数趋于零的渐近机制时。在本文中,我们提出了一种计算机辅助证明方法,用于对具有周期性边界条件的标量半线性抛物 PDE 进行严格的时间积分。我们根据傅里叶空间中的常数变化公式,提出了一个等效的寻零问题。利用切比雪夫插值法和域分解法,我们用牛顿-康托洛维奇类型的论证完成了证明。这一过程的最终结果是证明轨道的存在性,并保证该轨道与数值计算近似值之间的误差范围。我们用费雪方程、斯威夫特-霍恩伯格方程、Ohta-川崎方程和 Kuramoto-Sivashinsky 方程的结果来说明这种方法的多功能性。我们希望这种严格的积分器能成为研究偏微分方程中连接轨道的边界值问题的基础。
{"title":"Validated integration of semilinear parabolic PDEs","authors":"Jan Bouwe van den Berg, Maxime Breden, Ray Sheombarsing","doi":"10.1007/s00211-024-01415-w","DOIUrl":"https://doi.org/10.1007/s00211-024-01415-w","url":null,"abstract":"<p>Integrating evolutionary partial differential equations (PDEs) is an essential ingredient for studying the dynamics of the solutions. Indeed, simulations are at the core of scientific computing, but their mathematical reliability is often difficult to quantify, especially when one is interested in the output of a given simulation, rather than in the asymptotic regime where the discretization parameter tends to zero. In this paper we present a computer-assisted proof methodology to perform rigorous time integration for scalar semilinear parabolic PDEs with periodic boundary conditions. We formulate an equivalent zero-finding problem based on a variation of constants formula in Fourier space. Using Chebyshev interpolation and domain decomposition, we then finish the proof with a Newton–Kantorovich type argument. The final output of this procedure is a proof of existence of an orbit, together with guaranteed error bounds between this orbit and a numerically computed approximation. We illustrate the versatility of the approach with results for the Fisher equation, the Swift–Hohenberg equation, the Ohta–Kawasaki equation and the Kuramoto–Sivashinsky equation. We expect that this rigorous integrator can form the basis for studying boundary value problems for connecting orbits in partial differential equations.</p>","PeriodicalId":49733,"journal":{"name":"Numerische Mathematik","volume":"59 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141254147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Space-time CutFEM on overlapping meshes II: simple discontinuous mesh evolution 重叠网格上的时空 CutFEM II:简单不连续网格演化
IF 2.1 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-05-27 DOI: 10.1007/s00211-024-01413-y
Mats G. Larson, Carl Lundholm

We present a cut finite element method for the heat equation on two overlapping meshes: a stationary background mesh and an overlapping mesh that evolves inside/“on top” of it. Here the overlapping mesh is prescribed by a simple discontinuous evolution, meaning that its location, size, and shape as functions of time are discontinuous and piecewise constant. For the discrete function space, we use continuous Galerkin in space and discontinuous Galerkin in time, with the addition of a discontinuity on the boundary between the two meshes. The finite element formulation is based on Nitsche’s method. The simple discontinuous mesh evolution results in a space-time discretization with a slabwise product structure between space and time which allows for existing analysis methodologies to be applied with only minor modifications. We follow the analysis methodology presented by Eriksson and Johnson (SIAM J Numer Anal 28(1):43–77, 1991; SIAM J Numer Anal 32(3):706–740, 1995). The greatest modification is the introduction of a Ritz-like “shift operator” that is used to obtain the discrete strong stability needed for the error analysis. The shift operator generalizes the original analysis to some methods for which the discrete subspace at one time does not lie in the space of the stiffness form at the subsequent time. The error analysis consists of an a priori error estimate that is of optimal order with respect to both time step and mesh size. We also present numerical results for a problem in one spatial dimension that verify the analytic error convergence orders.

我们提出了在两个重叠网格上计算热方程的切割有限元方法:一个静止的背景网格和一个在其内部/"顶部 "演化的重叠网格。在这里,重叠网格是由简单的非连续演化规定的,这意味着其位置、大小和形状随时间的函数是不连续和片断恒定的。对于离散函数空间,我们使用空间连续 Galerkin 和时间不连续 Galerkin,并在两个网格之间的边界上添加了一个不连续点。有限元计算基于尼采方法。简单的非连续网格演化产生了一种时空离散化,其空间和时间之间的结构为板状乘积结构,只需稍加修改即可应用现有的分析方法。我们沿用了 Eriksson 和 Johnson 提出的分析方法(SIAM J Numer Anal 28(1):43-77, 1991; SIAM J Numer Anal 32(3):706-740, 1995)。最大的修改是引入了类似里兹的 "移位算子",用于获得误差分析所需的离散强稳定性。移位算子将原始分析推广到某些方法中,对于这些方法,某一时刻的离散子空间并不位于随后时刻的刚度形式空间中。误差分析包括先验误差估计,该误差估计在时间步长和网格大小方面都是最佳阶次。我们还给出了一个空间维度问题的数值结果,验证了分析误差收敛阶次。
{"title":"Space-time CutFEM on overlapping meshes II: simple discontinuous mesh evolution","authors":"Mats G. Larson, Carl Lundholm","doi":"10.1007/s00211-024-01413-y","DOIUrl":"https://doi.org/10.1007/s00211-024-01413-y","url":null,"abstract":"<p>We present a cut finite element method for the heat equation on two overlapping meshes: a stationary background mesh and an overlapping mesh that evolves inside/“on top” of it. Here the overlapping mesh is prescribed by a simple discontinuous evolution, meaning that its location, size, and shape as functions of time are <i>discontinuous</i> and <i>piecewise constant</i>. For the discrete function space, we use continuous Galerkin in space and discontinuous Galerkin in time, with the addition of a discontinuity on the boundary between the two meshes. The finite element formulation is based on Nitsche’s method. The simple discontinuous mesh evolution results in a space-time discretization with a slabwise product structure between space and time which allows for existing analysis methodologies to be applied with only minor modifications. We follow the analysis methodology presented by Eriksson and Johnson (SIAM J Numer Anal 28(1):43–77, 1991; SIAM J Numer Anal 32(3):706–740, 1995). The greatest modification is the introduction of a Ritz-like “shift operator” that is used to obtain the discrete strong stability needed for the error analysis. The shift operator generalizes the original analysis to some methods for which the discrete subspace at one time does not lie in the space of the stiffness form at the subsequent time. The error analysis consists of an a priori error estimate that is of optimal order with respect to both time step and mesh size. We also present numerical results for a problem in one spatial dimension that verify the analytic error convergence orders.</p>","PeriodicalId":49733,"journal":{"name":"Numerische Mathematik","volume":"52 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141167102","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Space-time CutFEM on overlapping meshes I: simple continuous mesh motion 重叠网格上的时空 CutFEM I:简单连续网格运动
IF 2.1 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-05-25 DOI: 10.1007/s00211-024-01417-8
Mats G. Larson, Anders Logg, Carl Lundholm

We present a cut finite element method for the heat equation on two overlapping meshes: a stationary background mesh and an overlapping mesh that moves around inside/“on top” of it. Here the overlapping mesh is prescribed by a simple continuous motion, meaning that its location as a function of time is continuous and piecewise linear. For the discrete function space, we use continuous Galerkin in space and discontinuous Galerkin in time, with the addition of a discontinuity on the boundary between the two meshes. The finite element formulation is based on Nitsche’s method and also includes an integral term over the space-time boundary between the two meshes that mimics the standard discontinuous Galerkin time-jump term. The simple continuous mesh motion results in a space-time discretization for which standard analysis methodologies either fail or are unsuitable. We therefore employ what seems to be a relatively uncommon energy analysis framework for finite element methods for parabolic problems that is general and robust enough to be applicable to the current setting. The energy analysis consists of a stability estimate that is slightly stronger than the standard basic one and an a priori error estimate that is of optimal order with respect to both time step and mesh size. We also present numerical results for a problem in one spatial dimension that verify the analytic error convergence orders.

我们提出了在两个重叠网格上计算热方程的切割有限元方法:一个静止的背景网格和一个在其内部/"顶部 "移动的重叠网格。在这里,重叠网格由简单连续运动规定,这意味着其位置随时间的函数是连续的、片断线性的。对于离散函数空间,我们使用空间连续 Galerkin 和时间不连续 Galerkin,并在两个网格之间的边界上增加了一个不连续性。有限元公式基于尼采方法,还包括两个网格之间时空边界上的积分项,该积分项模仿了标准的非连续 Galerkin 时间跳跃项。简单的连续网格运动导致时空离散化,而标准的分析方法要么失效,要么不适用。因此,我们为抛物线问题的有限元方法采用了一种似乎相对少见的能量分析框架,它具有足够的通用性和鲁棒性,适用于当前的设置。能量分析包括比标准基本估计略强的稳定性估计,以及与时间步长和网格大小相关的最优阶的先验误差估计。我们还给出了一个空间维度问题的数值结果,验证了分析误差收敛阶次。
{"title":"Space-time CutFEM on overlapping meshes I: simple continuous mesh motion","authors":"Mats G. Larson, Anders Logg, Carl Lundholm","doi":"10.1007/s00211-024-01417-8","DOIUrl":"https://doi.org/10.1007/s00211-024-01417-8","url":null,"abstract":"<p>We present a cut finite element method for the heat equation on two overlapping meshes: a stationary background mesh and an overlapping mesh that moves around inside/“on top” of it. Here the overlapping mesh is prescribed by a simple continuous motion, meaning that its location as a function of time is <i>continuous</i> and <i>piecewise linear</i>. For the discrete function space, we use continuous Galerkin in space and discontinuous Galerkin in time, with the addition of a discontinuity on the boundary between the two meshes. The finite element formulation is based on Nitsche’s method and also includes an integral term over the space-time boundary between the two meshes that mimics the standard discontinuous Galerkin time-jump term. The simple continuous mesh motion results in a space-time discretization for which standard analysis methodologies either fail or are unsuitable. We therefore employ what seems to be a relatively uncommon energy analysis framework for finite element methods for parabolic problems that is general and robust enough to be applicable to the current setting. The energy analysis consists of a stability estimate that is slightly stronger than the standard basic one and an a priori error estimate that is of optimal order with respect to both time step and mesh size. We also present numerical results for a problem in one spatial dimension that verify the analytic error convergence orders.\u0000</p>","PeriodicalId":49733,"journal":{"name":"Numerische Mathematik","volume":"73 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141148070","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Drift approximation by the modified Boris algorithm of charged-particle dynamics in toroidal geometry 环状几何中带电粒子动力学的改进鲍里斯算法漂移近似
IF 2.1 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-05-24 DOI: 10.1007/s00211-024-01416-9
Yanyan Shi

In this paper, we study the dynamics of charged particles under a strong magnetic field in toroidal axi-symmetric geometry. Using modulated Fourier expansions of the exact and numerical solutions, the long-term drift motion of the exact solution in toroidal geometry is derived, and the error analysis of the large-stepsize modified Boris algorithm over long time is provided. Numerical experiments are conducted to illustrate the theoretical results.

本文研究了带电粒子在环形轴对称几何体强磁场下的动力学。利用精确解和数值解的调制傅里叶展开,推导了精确解在环形几何中的长期漂移运动,并提供了大步幅修正 Boris 算法在长时间内的误差分析。为说明理论结果,还进行了数值实验。
{"title":"Drift approximation by the modified Boris algorithm of charged-particle dynamics in toroidal geometry","authors":"Yanyan Shi","doi":"10.1007/s00211-024-01416-9","DOIUrl":"https://doi.org/10.1007/s00211-024-01416-9","url":null,"abstract":"<p>In this paper, we study the dynamics of charged particles under a strong magnetic field in toroidal axi-symmetric geometry. Using modulated Fourier expansions of the exact and numerical solutions, the long-term drift motion of the exact solution in toroidal geometry is derived, and the error analysis of the large-stepsize modified Boris algorithm over long time is provided. Numerical experiments are conducted to illustrate the theoretical results.\u0000</p>","PeriodicalId":49733,"journal":{"name":"Numerische Mathematik","volume":"11 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141148088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Finite Elements with Switch Detection for direct optimal control of nonsmooth systems 有限元与开关检测,用于非平滑系统的直接优化控制
IF 2.1 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-05-24 DOI: 10.1007/s00211-024-01412-z
Armin Nurkanović, Mario Sperl, Sebastian Albrecht, Moritz Diehl

This paper introduces Finite Elements with Switch Detection (FESD), a numerical discretization method for nonsmooth differential equations. We consider the Filippov convexification of these systems and a transformation into dynamic complementarity systems introduced by Stewart (Numer Math 58(1):299–328, 1990). FESD is based on solving nonlinear complementarity problems and can automatically detect nonsmooth events in time. If standard time-stepping Runge–Kutta (RK) methods are naively applied to a nonsmooth ODE, the accuracy is at best of order one. In FESD, we let the integrator step size be a degree of freedom. Additional complementarity conditions, which we call cross complementarities, enable exact switch detection, hence FESD can recover the high order accuracy that the RK methods enjoy for smooth ODE. Additional conditions called step equilibration allow the step size to change only when switches occur and thus avoid spurious degrees of freedom. Convergence results for the FESD method are derived, local uniqueness of the solution and convergence of numerical sensitivities are proven. The efficacy of FESD is demonstrated in several simulation and optimal control examples. In an optimal control problem benchmark with FESD, we achieve up to five orders of magnitude more accurate solutions than a standard time-stepping approach for the same computational time.

本文介绍了非光滑微分方程的数值离散化方法--开关检测有限元(FESD)。我们考虑了这些系统的 Filippov 凸化和 Stewart 引入的动态互补系统转换(Numer Math 58(1):299-328, 1990)。FESD 以求解非线性互补性问题为基础,可以自动检测时间上的非光滑事件。如果将标准的时间步进 Runge-Kutta (RK) 方法天真地应用于非光滑 ODE,其精度最多只有一阶。在 FESD 中,我们将积分器步长作为一个自由度。附加的互补条件(我们称之为交叉互补)可以实现精确的开关检测,因此 FESD 可以恢复 RK 方法在光滑 ODE 中的高阶精度。被称为步长均衡的附加条件允许步长仅在开关发生时改变,从而避免了虚假自由度。推导出了 FESD 方法的收敛结果,证明了解的局部唯一性和数值敏感性的收敛性。FESD 的功效在几个模拟和最优控制实例中得到了证明。在一个最优控制问题基准中,使用 FESD,在相同的计算时间内,我们获得了比标准时间步进方法高五个数量级的精确解。
{"title":"Finite Elements with Switch Detection for direct optimal control of nonsmooth systems","authors":"Armin Nurkanović, Mario Sperl, Sebastian Albrecht, Moritz Diehl","doi":"10.1007/s00211-024-01412-z","DOIUrl":"https://doi.org/10.1007/s00211-024-01412-z","url":null,"abstract":"<p>This paper introduces Finite Elements with Switch Detection (FESD), a numerical discretization method for nonsmooth differential equations. We consider the Filippov convexification of these systems and a transformation into dynamic complementarity systems introduced by Stewart (Numer Math 58(1):299–328, 1990). FESD is based on solving nonlinear complementarity problems and can automatically detect nonsmooth events in time. If standard time-stepping Runge–Kutta (RK) methods are naively applied to a nonsmooth ODE, the accuracy is at best of order one. In FESD, we let the integrator step size be a degree of freedom. Additional complementarity conditions, which we call <i>cross complementarities</i>, enable <i>exact</i> switch detection, hence FESD can recover the high order accuracy that the RK methods enjoy for smooth ODE. Additional conditions called <i>step equilibration</i> allow the step size to change only when switches occur and thus avoid spurious degrees of freedom. Convergence results for the FESD method are derived, local uniqueness of the solution and convergence of numerical sensitivities are proven. The efficacy of FESD is demonstrated in several simulation and optimal control examples. In an optimal control problem benchmark with FESD, we achieve up to five orders of magnitude more accurate solutions than a standard time-stepping approach for the same computational time.</p>","PeriodicalId":49733,"journal":{"name":"Numerische Mathematik","volume":"28 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141148206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Super-localization of spatial network models 空间网络模型的超定位
IF 2.1 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-05-21 DOI: 10.1007/s00211-024-01410-1
Moritz Hauck, Axel Målqvist

Spatial network models are used as a simplified discrete representation in a wide range of applications, e.g., flow in blood vessels, elasticity of fiber based materials, and pore network models of porous materials. Nevertheless, the resulting linear systems are typically large and poorly conditioned and their numerical solution is challenging. This paper proposes a numerical homogenization technique for spatial network models which is based on the super-localized orthogonal decomposition (SLOD), recently introduced for elliptic multiscale partial differential equations. It provides accurate coarse solution spaces with approximation properties independent of the smoothness of the material data. A unique selling point of the SLOD is that it constructs an almost local basis of these coarse spaces, requiring less computations on the fine scale and achieving improved sparsity on the coarse scale compared to other state-of-the-art methods. We provide an a posteriori analysis of the proposed method and numerically confirm the method’s unique localization properties. In addition, we show its applicability also for high-contrast channeled material data.

空间网络模型作为一种简化的离散表示法被广泛应用于各种领域,例如血管中的流动、纤维材料的弹性以及多孔材料的孔隙网络模型。然而,由此产生的线性系统通常较大且条件较差,其数值求解具有挑战性。本文针对空间网络模型提出了一种基于超局部正交分解(SLOD)的数值均质化技术,SLOD 是最近针对椭圆多尺度偏微分方程提出的。它提供了精确的粗解空间,其近似特性与材料数据的平滑度无关。SLOD 的一个独特卖点是,它为这些粗解空间构建了一个几乎是局部的基础,与其他最先进的方法相比,它在精细尺度上所需的计算量更少,而在粗解尺度上则实现了更高的稀疏性。我们对提出的方法进行了后验分析,并从数值上证实了该方法独特的本地化特性。此外,我们还展示了该方法对高对比度通道材料数据的适用性。
{"title":"Super-localization of spatial network models","authors":"Moritz Hauck, Axel Målqvist","doi":"10.1007/s00211-024-01410-1","DOIUrl":"https://doi.org/10.1007/s00211-024-01410-1","url":null,"abstract":"<p>Spatial network models are used as a simplified discrete representation in a wide range of applications, e.g., flow in blood vessels, elasticity of fiber based materials, and pore network models of porous materials. Nevertheless, the resulting linear systems are typically large and poorly conditioned and their numerical solution is challenging. This paper proposes a numerical homogenization technique for spatial network models which is based on the super-localized orthogonal decomposition (SLOD), recently introduced for elliptic multiscale partial differential equations. It provides accurate coarse solution spaces with approximation properties independent of the smoothness of the material data. A unique selling point of the SLOD is that it constructs an almost local basis of these coarse spaces, requiring less computations on the fine scale and achieving improved sparsity on the coarse scale compared to other state-of-the-art methods. We provide an a posteriori analysis of the proposed method and numerically confirm the method’s unique localization properties. In addition, we show its applicability also for high-contrast channeled material data.\u0000</p>","PeriodicalId":49733,"journal":{"name":"Numerische Mathematik","volume":"48 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141148086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiresolution kernel matrix algebra 多分辨率核矩阵代数
IF 2.1 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-05-09 DOI: 10.1007/s00211-024-01409-8
H. Harbrecht, M. Multerer, O. Schenk, Ch. Schwab

We propose a sparse algebra for samplet compressed kernel matrices to enable efficient scattered data analysis. We show that the compression of kernel matrices by means of samplets produces optimally sparse matrices in a certain S-format. The compression can be performed in cost and memory that scale essentially linearly with the number of data points for kernels of finite differentiability. The same holds true for the addition and multiplication of S-formatted matrices. We prove that the inverse of a kernel matrix, given that it exists, is compressible in the S-format as well. The use of selected inversion allows to directly compute the entries in the corresponding sparsity pattern. Moreover, S-formatted matrix operations enable the efficient, approximate computation of more complicated matrix functions such as ({varvec{A}}^alpha ) or (exp ({varvec{A}})) of a matrix ({varvec{A}}). The matrix algebra is justified mathematically by pseudo differential calculus. As an application, we consider Gaussian process learning algorithms for implicit surfaces. Numerical results are presented to illustrate and quantify our findings.

我们提出了一种用于 samplet 压缩核矩阵的稀疏代数,以实现高效的散点数据分析。我们证明,通过 samplet 压缩核矩阵可以产生特定 S 格式的最佳稀疏矩阵。对于有限可微分的核,压缩的成本和内存与数据点的数量基本成线性关系。S 格式矩阵的加法和乘法也是如此。我们证明,如果存在核矩阵的逆,那么它在 S 格式中也是可压缩的。使用选择反转可以直接计算相应稀疏性模式中的条目。此外,S 格式的矩阵运算可以高效、近似地计算更复杂的矩阵函数,例如矩阵 ({varvec{A}}^alpha ) 或 (exp ({varvec{A}})) 的矩阵 ({varvec{A}})。矩阵代数在数学上是通过伪微分计算来证明的。作为应用,我们考虑了隐式曲面的高斯过程学习算法。我们给出了数值结果,以说明和量化我们的发现。
{"title":"Multiresolution kernel matrix algebra","authors":"H. Harbrecht, M. Multerer, O. Schenk, Ch. Schwab","doi":"10.1007/s00211-024-01409-8","DOIUrl":"https://doi.org/10.1007/s00211-024-01409-8","url":null,"abstract":"<p>We propose a sparse algebra for samplet compressed kernel matrices to enable efficient scattered data analysis. We show that the compression of kernel matrices by means of samplets produces optimally sparse matrices in a certain <i>S</i>-format. The compression can be performed in cost and memory that scale essentially linearly with the number of data points for kernels of finite differentiability. The same holds true for the addition and multiplication of <i>S</i>-formatted matrices. We prove that the inverse of a kernel matrix, given that it exists, is compressible in the <i>S</i>-format as well. The use of selected inversion allows to directly compute the entries in the corresponding sparsity pattern. Moreover, <i>S</i>-formatted matrix operations enable the efficient, approximate computation of more complicated matrix functions such as <span>({varvec{A}}^alpha )</span> or <span>(exp ({varvec{A}}))</span> of a matrix <span>({varvec{A}})</span>. The matrix algebra is justified mathematically by pseudo differential calculus. As an application, we consider Gaussian process learning algorithms for implicit surfaces. Numerical results are presented to illustrate and quantify our findings.</p>","PeriodicalId":49733,"journal":{"name":"Numerische Mathematik","volume":"2672 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140931362","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interior estimates for the virtual element method 虚拟元素法的内部估计
IF 2.1 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-05-09 DOI: 10.1007/s00211-024-01408-9
Silvia Bertoluzza, Micol Pennacchio, Daniele Prada

We analyze the local accuracy of the virtual element method. More precisely, we prove an error bound similar to the one holding for the finite element method, namely, that the local (H^1) error in a interior subdomain is bounded by a term behaving like the best approximation allowed by the local smoothness of the solution in a larger interior subdomain plus the global error measured in a negative norm.

我们分析了虚拟元素方法的局部精度。更准确地说,我们证明了一个与有限元法类似的误差约束,即内部子域的局部误差由一个项约束,这个项的行为类似于较大内部子域中局部平滑解所允许的最佳近似值加上以负规范测量的全局误差。
{"title":"Interior estimates for the virtual element method","authors":"Silvia Bertoluzza, Micol Pennacchio, Daniele Prada","doi":"10.1007/s00211-024-01408-9","DOIUrl":"https://doi.org/10.1007/s00211-024-01408-9","url":null,"abstract":"<p>We analyze the local accuracy of the virtual element method. More precisely, we prove an error bound similar to the one holding for the finite element method, namely, that the local <span>(H^1)</span> error in a interior subdomain is bounded by a term behaving like the best approximation allowed by the local smoothness of the solution in a larger interior subdomain plus the global error measured in a negative norm.\u0000</p>","PeriodicalId":49733,"journal":{"name":"Numerische Mathematik","volume":"32 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140931451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adaptive hybrid high-order method for guaranteed lower eigenvalue bounds 保证特征值下限的自适应混合高阶方法
IF 2.1 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-05-06 DOI: 10.1007/s00211-024-01407-w
Carsten Carstensen, Benedikt Gräßle, Ngoc Tien Tran

The higher-order guaranteed lower eigenvalue bounds of the Laplacian in the recent work by Carstensen et al. (Numer Math 149(2):273–304, 2021) require a parameter (C_{text {st},1}) that is found not robust as the polynomial degree p increases. This is related to the (H^1) stability bound of the (L^{2}) projection onto polynomials of degree at most p and its growth (C_{textrm{st, 1}}propto (p+1)^{1/2}) as (p rightarrow infty ). A similar estimate for the Galerkin projection holds with a p-robust constant (C_{text {st},2}) and (C_{text {st},2} le 2) for right-isosceles triangles. This paper utilizes the new inequality with the constant (C_{text {st},2}) to design a modified hybrid high-order eigensolver that directly computes guaranteed lower eigenvalue bounds under the idealized hypothesis of exact solve of the generalized algebraic eigenvalue problem and a mild explicit condition on the maximal mesh-size in the simplicial mesh. A key advance is a p-robust parameter selection. The analysis of the new method with a different fine-tuned volume stabilization allows for a priori quasi-best approximation and improved (L^{2}) error estimates as well as a stabilization-free reliable and efficient a posteriori error control. The associated adaptive mesh-refining algorithm performs superior in computer benchmarks with striking numerical evidence for optimal higher empirical convergence rates.

卡斯滕森等人最近的研究(《数值数学》149(2):273-304, 2021)中的拉普拉卡矩的高阶保证下特征值边界需要一个参数 (C_{text{st},1}),随着多项式度数 p 的增加,这个参数并不稳定。这与(L^{2})投影到最多 p 阶多项式的(H^1)稳定性约束及其增长(C_{textrm{st, 1}}propto (p+1)^{1/2}) as (p rightarrow infty )有关。对于直角等腰三角形,Galerkin 投影的类似估计值也是成立的,并且有一个 p-robust 常量 (C_{text {st},2}) 和 (C_{text {st},2} le 2) 。本文利用带有常数 (C_{text {st},2}) 的新不等式设计了一种改进的混合高阶特征值求解器,它可以在精确求解广义代数特征值问题的理想化假设下直接计算有保证的特征值下限值,并对简单网格中的最大网格尺寸设定了温和的显式条件。一个关键的进步是p-稳健参数选择。通过对新方法与不同的微调体积稳定的分析,可以实现先验的准最佳近似和改进的误差估计,以及无稳定的可靠高效的后验误差控制。相关的自适应网格细化算法在计算机基准测试中表现出色,并有显著的数值证据证明其具有更高的最佳经验收敛率。
{"title":"Adaptive hybrid high-order method for guaranteed lower eigenvalue bounds","authors":"Carsten Carstensen, Benedikt Gräßle, Ngoc Tien Tran","doi":"10.1007/s00211-024-01407-w","DOIUrl":"https://doi.org/10.1007/s00211-024-01407-w","url":null,"abstract":"<p>The higher-order guaranteed lower eigenvalue bounds of the Laplacian in the recent work by Carstensen et al. (Numer Math 149(2):273–304, 2021) require a parameter <span>(C_{text {st},1})</span> that is found <i>not</i> robust as the polynomial degree <i>p</i> increases. This is related to the <span>(H^1)</span> stability bound of the <span>(L^{2})</span> projection onto polynomials of degree at most <i>p</i> and its growth <span>(C_{textrm{st, 1}}propto (p+1)^{1/2})</span> as <span>(p rightarrow infty )</span>. A similar estimate for the Galerkin projection holds with a <i>p</i>-robust constant <span>(C_{text {st},2})</span> and <span>(C_{text {st},2} le 2)</span> for right-isosceles triangles. This paper utilizes the new inequality with the constant <span>(C_{text {st},2})</span> to design a modified hybrid high-order eigensolver that directly computes guaranteed lower eigenvalue bounds under the idealized hypothesis of exact solve of the generalized algebraic eigenvalue problem and a mild explicit condition on the maximal mesh-size in the simplicial mesh. A key advance is a <i>p</i>-robust parameter selection. The analysis of the new method with a different fine-tuned volume stabilization allows for a priori quasi-best approximation and improved <span>(L^{2})</span> error estimates as well as a stabilization-free reliable and efficient a posteriori error control. The associated adaptive mesh-refining algorithm performs superior in computer benchmarks with striking numerical evidence for optimal higher empirical convergence rates.</p>","PeriodicalId":49733,"journal":{"name":"Numerische Mathematik","volume":"111 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140882670","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Numerische Mathematik
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1